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Abstract
We consider the problem of embedding a relation, represented as a directed graph, into Euclidean
space. For three types of embeddings motivated by the recent literature on knowledge graphs,
we obtain characterizations of which relations they are able to capture, as well as bounds on the
minimal dimensionality and precision needed.
Keywords: embeddings; knowledge graphs.

1. Introduction

The problem of embedding graphs in Euclidean space has arisen in a variety of contexts over the
past few decades. Most recently, it has been used for making symbolic knowledge available to neural
nets, to help with basic reasoning tasks (Nickel et al., 2016). This knowledge consists of relations
expressed in tuples, like (Tokyo, is-capital-of, Japan). Alternatively, each relation (like
is-capital-of) can be thought of as a directed graph whose nodes correspond to entities (such
as cities and countries).

A wide array of methods have been proposed for embedding such relations in vector spaces (Pac-
canaro and Hinton, 2001; Kemp et al., 2006; Sutskever et al., 2009; Bordes et al., 2011; Nickel et al.,
2011; Bordes et al., 2013; Socher et al., 2013; Nickel and Kiela, 2017). For instance, translational
embeddings (Bordes et al., 2013) map each entity x to a vector φ(x) ∈ Rd and each relation r to a
vector Ψ(r) ∈ Rd. The intention is that for any entities x, y and any relation r,

relation (x, r, y) holds ⇐⇒ φ(x) + Ψ(r) ≈ φ(y).

This is motivated in part by the success of word embeddings (Mikolov et al., 2013a), which embed
words in Euclidean space so that words with similar co-occurrence statistics lie close to one another.
It has been observed that these embeddings happen to obey linear relationships of the type above
for certain relations and entities, making it possible, for instance, to use them for simple analogical
reasoning (Mikolov et al., 2013b). Rather than relying upon these haphazard coincidences, it makes
sense to explicitly embed relations of interest so that this property is assured.
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An alternative scheme, structured embeddings (Bordes et al., 2011), again assigns each entity x
a vector φ(x) ∈ Rd, but assigns each relation r a pair of d× d matrices, Lr and Rr, so that

relation (x, r, y) holds ⇐⇒ Lrφ(x) ≈ Rrφ(y).

Notice that this is more general than translational embeddings because Lr can capture any affine
transformation by adding a constant-valued feature to φ.

Another example of an embedding method is bilinear embedding (Nickel et al., 2011), in which
each entity x gets a vector φ(x) ∈ Rd and each relation r gets a matrix Ar, so that

relation (x, r, y) holds ⇐⇒ φ(x)TAr φ(y) ≥ some threshold.

These three embedding methods—translational, structured, and bilinear—broadly represent the
various schemes that have been proposed in the recent machine learning literature, and many other
suggestions are variants of these. For instance, linear relational embedding (Paccanaro and Hinton,
2001) assigns each entity x a vector φ(x) and each relation r a matrix Mr so that (x, r, y) ⇐⇒
φ(y) ≈Mrφ(x): a special case of structured embedding.

Typically the parameters of the embeddings (the mapping φ as well as the vectors and matrices
for each relation) are fit to a given list of relation triples, using some suitable loss function. They
can then be used for simple reasoning tasks, such as link prediction.

In this paper, we take a formal approach to this whole enterprise.

1. What kinds of relations can be embedded using these methods? Can arbitrary relations be
accurately represented?

2. What dimensionality is needed for these embeddings?

3. What precision is needed for these embeddings? This question turns out to play a central role.

In particular, we will think of a relation as being reliably embeddable if it admits an embedding
that does not require too much precision or too high a dimension. We wish to gauge what kinds of
relations have this property.

In order to answer these questions, it is enough to look at a single relation at a time. We therefore
look at the problem of embedding a given directed graph in Euclidean space.

1.1. Related work

There is a substantial literature on embedding undirected graphs into Euclidean space. A key result
is the following.

Theorem 1 (Maehara (1984)) For any undirected graph G = (V,E), there is a mapping φ : V →
Rd such that {u, v} ∈ E ⇐⇒ ‖φ(u)− φ(v)‖ ≤ 1. Here d ≤ |V |.

We will call this an undirected distance embedding to avoid confusion with embeddings of directed
graphs, our main focus. The sphericity of an undirected graphG is defined as the smallest dimension
d for which such an embedding exists; computing it was proved NP-hard by Kang and Muller
(2012). The same paper showed an even more troubling result, that embeddings achieving this
minimum dimension sometimes require precision (number of bits per coordinate) exponential in
|V |. This has been a key consideration in our formulation of robustness.

An embedding of an undirected graph can also be based on dot products rather than Euclidean
distance. We call these undirected similarity embeddings. The following is known.
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Theorem 2 (Reiterman et al. (1989)) For any undirected graph G = (V,E), there is a mapping
φ : V → Rd such that {u, v} ∈ E ⇐⇒ φ(u) · φ(v) ≥ 1. Here d ≤ |V |.

The minimum dimension d needed for an undirected similarity embedding is at most the sphericity
of G, but can be much smaller. A complete binary tree on n nodes, for instance, has sphericity
Ω(log n) but can be embedded in R3 using a dot-product embedding (Reiterman et al., 1989).

The present paper is about embeddings of directed graphs, and many of the results we obtain
are qualitatively different from the undirected case. We also diverge from earlier theory work by
giving precision a central role in the analysis, via a suitable notion of robustness.

Another body of work, popular in theoretical computer science, has looked at embeddings of
distance metrics into Euclidean space (Linial et al., 1995). Here a metric on finitely many points
is specified by an undirected graph with edge lengths, where the distance between two nodes is
the length of the shortest path between them. The idea is to find an embedding of the nodes into
Euclidean space that preserves all distances. For many graphs, an embedding of this type is not
possible: for constant-degree expander graphs, for instance, a multiplicative distortion of Ω(log n)
is inevitable, where n is the number of nodes. The problem we are considering differs in two critical
respects: first, we only need to preserve immediate neighborhoods, and second, we are dealing with
directed graphs.

The machine learning literature has proposed many methods for embedding, such as those men-
tioned above, along with empirical evaluation. There has also been work on embeddings into non-
Euclidean spaces: complex-valued (Trouillon et al., 2016) or hyperbolic (Nickel and Kiela, 2017).
In this paper, we focus on the Euclidean case.

1.2. Overview of results

Let G = (V,E) be a directed graph representing a relation we wish to embed. Here V is the set of
entities, and an edge (u, v) means that the relation holds from u to v.

We begin by considering a formalization of translational embeddings. We find that only a
limited class of relations can be embedded this way: a directed cycle does not have a translational
embedding (Theorem 4), but any directed acyclic graph does (Theorem 5).

Next, we consider more powerful classes of embeddings: abstractions of the structured and
bilinear embeddings mentioned above, that we call distance embeddings and similarity embeddings,
respectively. We find, first, that all directed graphs admit both types of embeddings (Theorem 10).
Moreover, the minimum dimension achievable in the two cases differs by at most 1 (Theorem 18),
and is closely related to the sign rank of the adjacency matrix of the graph (Theorem 28). We present
several examples of embeddings for canonical types of graphs: paths, cycles, trees, and so on.

We also explicitly focus on the precision of embeddings, which has not been a feature of the ear-
lier theory work on undirected graphs. In particular, we introduce a notion of δ-robustness, where
larger values of δ correspond to more robust embeddings. We relate this directly to precision by
showing that any graph that admits a δ-robust embedding also has distance and similarity embed-
dings into the O((1/δ2) log n)-dimensional Boolean hypercube (Theorem 25). In this way, the δ
parameter translates directly into an upper bound on the number of bits needed. We look at the
robustness achievable on different families of graphs. We find, for instance, that for any graph of
maximum degreeD, robustness δ ≥ 1/D can be attained (Theorem 10). On the other hand, random
dense graphs are not robustly embeddable (Corollary 30).
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Our analysis of embeddings focuses on two parameters: dimension and robustness. We show
that the former is NP-hard to minimize (Appendix B), while the latter can be maximized efficiently
by semidefinite programming (Section 6). Thus robustness is a promising optimization criterion for
designing embeddings.

2. Translational embeddings

Definition 3 A translational embedding of a directed graph G = (V,E) is given by a mapping
φ : V → Rd, a unit vector z ∈ Rd, and thresholds {tu ≥ 0 : u ∈ V }, such that for all u 6= v,

(u, v) ∈ E ⇐⇒ ‖φ(v)− (φ(u) + z)‖ ≤ tu.

If all the thresholds tu are identical, then we call it a uniform translational embedding.

Note that (i) the requirement that z be a unit vector is without loss of generality, and (ii) we avoid
checking self-edges in order to sidestep various complications. Paraphrasing, the definition imposes
an ordinal constraint: if (u, v) ∈ E but (u,w) 6∈ E, then φ(v) must lie closer to φ(u) + z than does
φ(w).

For instance, let Pn denote the directed path 1 → 2 → · · · → n. A uniform translational
embedding in R is given by φ(k) = k, z = 1, and any 0 < t < 1.

As another example, consider the directed complete bipartite graph containing all edges from
node set V1 to complementary node set V2. A uniform translational embedding to R is again avail-
able: map

φ(u) =

{
0 for u ∈ V1
1 for u ∈ V2

with z = 1 and any 0 < t < 1.
It is of interest to determine what kinds of graphs can be embedded translationally. We begin

with a negative result.

Theorem 4 Cn, the directed cycle on n nodes, does not admit a translational embedding for any
n ≥ 3.

Proof Assume that u1 → u2 → · · · → un → u1 has a translational embedding (φ, z, {tu}); we
will arrive at a contradiction.

First, for any edge x→ y, the conditions for (x, y) ∈ E and (y, x) 6∈ E are, respectively,

‖φ(y)− (φ(x) + z)‖2 ≤ t2x
‖φ(x)− (φ(y) + z)‖2 > t2y

which can be rewritten

‖(φ(y)− φ(x))− z‖2 ≤ t2x
‖(φ(y)− φ(x)) + z‖2 > t2y.

The left-hand sides have ‖φ(y)− φ(x)‖2 and ‖z‖2 in common. Subtracting, we get

z · (φ(y)− φ(x)) >
1

4
(t2y − t2x).
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Now we can apply this to the n edges of the cycle to yield the system of inequalities

z · (φ(u2)− φ(u1)) >
1

4
(t2u2 − t

2
u1)

z · (φ(u3)− φ(u2)) >
1

4
(t2u3 − t

2
u2)

...

z · (φ(u1)− φ(un)) >
1

4
(t2u1 − t

2
un)

The left-hand sides add up to zero, as do the right-hand sides, a contradiction.

On the other hand, any directed acyclic graph can be translationally embedded.

Theorem 5 Suppose directed graph G = (V,E) is acyclic. Then G admits a uniform translational
embedding.

Proof By topologically ordering G, assume without loss of generality that V = {1, 2, . . . , n} and
that all edges (i, j) ∈ E have i < j. Let G′ = (V,E′) denote the undirected version of G, with
an edge {i, j} ∈ E′ for every (i, j) ∈ E. By applying a result of Frankl and Maehara (1988), we
obtain an embedding ψ : V → Rd of G′ with the following characteristics:

• ‖ψ(i)‖2 = ∆, where ∆ ≥ 1 is at most the maximum degree of G′.

• If {i, j} ∈ E′ then ‖ψ(i)− ψ(j)‖2 = 2(∆− 1).

• If {i, j} 6∈ E′ then ‖ψ(i)− ψ(j)‖2 = 2∆.

We then define a uniform translational embedding of G into Rd+1 as follows:

φ(i) = (iδ, ψ(i)),

where δ = 1/(n− 1). Take z = e1, the first coordinate direction, and threshold t =
√

2∆− 1.
To see that this works, pick any i < j. First off, if (i, j) ∈ E, then {i, j} ∈ E′ and

‖φ(j)− (φ(i) + z)‖2 = (jδ − iδ − 1)2 + ‖ψ(i)− ψ(j)‖2

≤ (1− δ)2 + 2(∆− 1) ≤ t2.

On the other hand, if (i, j) 6∈ E, then {i, j} 6∈ E′, and we have

‖φ(j)− (φ(i) + z)‖2 > ‖ψ(i)− ψ(j)‖2 = 2∆ > t2.

Finally, we confirm that the embedding does not suggest a back edge from j to i:

‖φ(i)− (φ(j) + z)‖2 = (iδ − jδ − 1)2 + ‖ψ(i)− ψ(j)‖2

≥ (1 + δ)2 + 2(∆− 1) > t2.

Open problem 1 What characterization can be given for the minimum dimension of a translational
embedding of a dag?
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3. Distance embeddings

Definition 6 A distance embedding of a directed graph G = (V,E) is given by a pair of mappings
φin, φout : V → Rd, and a threshold t, such that for all pairs of nodes u, v,

(u, v) ∈ E ⇐⇒ ‖φout(u)− φin(v)‖ ≤ t.

We will sometimes be interested in distance embeddings into the unit sphere, where all φin(u) and
φout(v) have length one.

This formalism captures several types of embedding that have been proposed in the machine
learning literature. Recall, for instance, the notion of a structured embedding (Bordes et al., 2011),
given by φ : V → Rd and d × d matrices L and R, where (u, v) ∈ E ⇐⇒ Lφ(u) ≈ Rφ(v).
This can be converted into a distance embedding by taking φout(u) = Lφ(u) and φin(u) = Rφ(u).
Conversely, if a graph has distance embedding φin, φout : V → Rd, then it has a structured embed-
ding (φ : V → R2d, L,R), where φ(u) is the concatenation of φin(u) and φout(u) and matrices L
and R retrieve the bottom and top d coordinates, respectively, of a 2d-dimensional vector.

In the above formulation of distance embedding, there is a single threshold, t, that applies for
all points. An alternative would be to allow a different threshold tu for each node u, so that

(u, v) ∈ E ⇐⇒ ‖φout(u)− φin(v)‖ ≤ tu.

This is easily simulated under our current definition, by adding an extra dimension. Given an
embedding φin, φout : V → Rd with varying thresholds tu, we can define φ̃in : φ̃out : V → Rd+1

by φ̃in(u) = (φin(u), 0) and φ̃out(u) = (φout(u),
√
t2 − t2u), where t = maxu tu. Then

‖φout(u)− φin(v)‖ ≤ tu ⇐⇒ ‖φ̃out(u)− φ̃in(v)‖ ≤ t.

We will shortly see that every directed graph has a distance embedding. It is of interest, then, to
characterize the minimum achievable dimension.

Definition 7 Let ddist(G) be the smallest dimension d of any distance embedding ofG. Let d◦dist(G)
be the smallest dimension of any distance embedding into the unit sphere.

A useful observation is that ddist and d◦dist do not differ by much.

Theorem 8 For any directed graph G, we have ddist(G) ≤ d◦dist(G) ≤ ddist(G) + 1.

Proof The first inequality is trivial. We give an informal sketch of the second, since the details also
appear in Theorem 22. A distance embedding φ of G in Rd can be mapped to an embedding φ′ in a
small neighborhood of the unit sphere Sd ⊂ Rd+1. To see this, notice that scaling down φ (and t)
by a constant factor maintains the embedding property. If they are sufficiently downscaled that the
set of embedded points lies within a d-dimensional ball of very small radius, then this ball can be
placed close to the surface of the unit sphere in Rd+1, and the points can be projected to the surface
of the sphere while inducing an arbitrarily small multiplicative distortion in pairwise distances.

As described in the introduction, earlier work has brought out troubling pathologies in the pre-
cision required for embedding an undirected graph: achieving the minimum possible dimension
could require the vectors to be specified using a number of bits that is exponential in |V | (Kang and
Muller, 2012). For this reason, we keep careful track of precision. Our key tool in doing so is a
notion of robustness, which we will later relate to both precision and dimension.
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Definition 9 Suppose a distance embedding of a directed graphG = (V,E) is given by (φin, φout, t).
We say the embedding is δ-robust, for δ > 0, if

• (u, v) ∈ E =⇒ ‖φout(u)− φin(v)‖2 ≤ t2.

• (u, v) 6∈ E =⇒ ‖φout(u)− φin(v)‖2 ≥ t2(1 + δ).

We now show that all directed graphs have distance embeddings.

Theorem 10 Let G = (V,E) be any directed graph. Let A be its |V | × |V | adjacency matrix: that
is, Auv is 1 if (u, v) ∈ E and 0 otherwise. Let k denote the rank of A and σ1 its largest singular
value. Then G has a distance embedding into the unit sphere in Rk that is (1/σ1)-robust.

Proof For convenience, label the vertices 1, 2, . . . , n. Take the singular value decomposition of A
so that A = UTΣV where U and V are n× n orthogonal matrices, and Σ is a diagonal matrix with
entries σ1 ≥ σ2 ≥ · · · ≥ σn. If rank k < n, then σk+1 = · · · = σn = 0.

Writing A = (Σ1/2U)T (Σ1/2V ), take φout(i) ∈ Rk to be the first k coordinates of the ith
column of Σ1/2U (the remaining coordinates are zero), and φin(i) ∈ Rk to be the first k coordinates
of the ith column of Σ1/2V . Then Aij = φout(i) · φin(j). These vectors all have length at most
√
σ1; normalize them to unit length, to get φ̂out, φ̂in : V → Sk−1. Then

• (i, j) ∈ E =⇒ φ̂out(i) · φ̂in(j) ≥ 1/σ1 and ‖φ̂out(i)− φ̂in(j)‖2 ≤ 2(1− 1/σ1).

• (i, j) 6∈ E =⇒ φ̂out(i) · φ̂in(j) = 0 and ‖φ̂out(i)− φ̂in(j)‖2 = 2.

Setting t =
√

2(1− 1/σ1), we see the embedding is δ-robust for δ ≥ 1/(1− 1/σ1)− 1 ≥ 1/σ1.

As a consequence, any graph of constant degree is robustly embeddable. The proof of the
following corollary is deferred to the appendix.

Corollary 11 Suppose all nodes in G have indegree ≤ ∆− and outdegree ≤ ∆+. Then G has a
distance embedding that is

√
1/(∆+∆−)-robust.

3.1. Differences from undirected embeddings

At a first glance, it may seem that directed embeddings may not be significantly different from
undirected embeddings considering standard transformations between the two types of graphs, as
defined below. However, we will see that this is not the case, by considering some examples in
which a directed graph can be embedded in much lower dimension than its undirected counterpart.

Definition 12

1. For an undirected graph G, let
←→
G be the directed graph which has edges (u, v), (v, u) ∈

E(
←→
G ) for every {u, v} ∈ E(G).

2. For a directed graph G, let G be the undirected graph with 2 vertices vout, vin for every
v ∈ V (G) and with edge {uout, vin} ∈ E(G) for every (u, v) ∈ E(G).

Theorem 13 Let G = Kn,n be the undirected complete bipartite graph. The sphericity of G is
Ω(n) whereas ddist(

←→
G ) is 1.

7



WHAT RELATIONS ARE RELIABLY EMBEDDABLE IN EUCLIDEAN SPACE?

A proof can be found in the appendix. An important intuition from this example is that em-
bedding undirected bipartite graphs can be difficult because they have large independent sets with
many common neighbors. However, for directed graphs this does not present a problem because of
the flexibility that comes from having two embeddings, φin and φout.

This idea is also what makes embedding G significantly more difficult than embedding a di-
rected graph G as G has large independent sets.

Theorem 14 LetG =
←→
Kn be a directed graph with every possible edge (including self loops). Then

ddist(G) = 0 while G has sphericity Ω(n).

3.2. Robustness yields low dimensionality

We now show that any graph with a δ-robust embedding can be embedded in dimensionO((1/δ2) log n).

Theorem 15 IfG has a δ-robust distance embedding (in any dimension), then it also has a δ
2 -robust

embedding in O( 1
δ2

log n) dimensions.

Proof This is a consequence of a lemma of Johnson and Lindenstrauss (1984). Let φout, φin : V →
Rd, with threshold t, be a δ-robust embedding of G. The JL lemma states that for any ε > 0, there
exists a map f : Rd → Rm, with m = O((log n)/ε2), so that

(1− ε)‖φout(u)− φin(v)‖2 ≤ ‖f(φout(u))− f(φin(v))‖2 ≤ (1 + ε)‖φout(u)− φin(v)‖2,

for all u, v ∈ V . To ensure that the new embedding is (δ/2)-robust, it suffices to take ε = δ/8.

Later, we will see that a graph with a δ-robust embedding is in fact robustly embeddable in
the O((1/δ2) log n)-dimensional Hamming cube. In this way, robustness implies the existence of a
low-dimensional embedding that requires only one bit of precision per coordinate.

4. Similarity embeddings

Definition 16 A similarity embedding of a directed graph G = (V,E) is given by a pair of map-
pings φL, φR : V → Rd and a threshold t, such that

(u, v) ∈ E ⇐⇒ φL(u) · φR(v) ≥ t.

We will often be interested in embeddings into the unit sphere, where the φL(u) and φR(u) have
unit norm. We use L,R notation as opposed to {in, out} to help distinguish similarity embeddings
from distance embeddings.

This is closely related to the notion of bilinear embedding (Nickel et al., 2011), which assigns
each node u to a vector φ(u) ∈ Rd so that (u, v) ∈ E ⇐⇒ φ(u)TAφ(v) ≥ t, for some d×d matrix
A. To obtain a similarity embedding, take φL(u) = φ(u) and φR(u) = Aφ(u). Conversely, given a
similarity embedding φL, φR : V → Rd, we can construct a bilinear embedding by setting φ(u) to

the 2d-dimensional concatenation of φL(u) and φR(u), and taking A to be
(

0 I
0 0

)
.

The distance embedding constructed in Theorem 10 also functions as a similarity embedding.
Thus, such embeddings exist for every graph.
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Definition 17 For directed graph G, let dsim(G) denote the smallest dimension into which a simi-
larity embedding can be given.

We now see that the dimensions ddist, d◦dist, dsim are almost identical.

Theorem 18 d◦dist(G)− 1 ≤ dsim(G) ≤ d◦dist(G) ≤ ddist(G) + 1 for any directed graph G.

Proof The inequality dsim(G) ≤ d◦dist(G) is immediate: any distance embedding into the unit
sphere automatically meets the requirements of a similarity embedding. The final inequality is from
Theorem 8. It thus remains to show that d◦dist(G) ≤ dsim(G) + 1.

Let φL, φR : V → Rd be a similarity embedding of G with threshold t. Indexing vertices as
1, 2, . . . , n, let M be an n× n matrix with Mij = φL(i) · φR(j).

If J is the all-ones matrix, then M − tJ is matrix of rank at most d+ 1 such that

(M − tJ)ij ≥ 0⇐⇒ (i, j) ∈ E.

We will extract a distance embedding into the unit sphere from this matrix.
Express M − tJ as UTW for U,W ∈ R(d+1)×n. Next, normalize the columns of U and W

to unit length, to get Û and Ŵ . The key idea is that the pairwise dot products between these unit
vectors still satisfy the above criterion. In short, taking φout(i) to be the ith column of Û and φin(i)

to be the ith column of Ŵ , we get a distance embedding of G into the unit sphere in Rd+1:

(i, j) ∈ E ⇐⇒ φout(i) · φin(j) ≥ 0 ⇐⇒ ‖φout(i)− φin(j)‖2 ≤ 2.

Combined with Theorem 8, this means that |ddist(G)−dsim(G)| ≤ 1. In contrast, for undirected
graphs, the minimum dimension needed by a dot-product embedding could be significantly less than
for a distance embedding (Reiterman et al., 1989).

4.1. Robust similarity embeddings

Measuring the robustness of a similarity embedding is a bit different than for distance embeddings.
For instance, the threshold for a similarity embedding need not even be positive, and thus a term of
form t(1 + δ) is not meaningful. We use an additive rather than multiplicative notion of robustness.

Definition 19 We say a similarity embedding given by (φL, φR, t) is δ-robust, for δ > 0, if

(u, v) 6∈ E =⇒ φL(u) · φR(v) ≤ t− δmax
w∈V

max(‖φL(w)‖2, ‖φR(w)‖2).

The term maxw∈V ‖φ(w)‖2 ensures that rescaling a similarity embedding does not change its ro-
bustness parameter.

Theorem 10 produces a distance embedding in the unit sphere, which is therefore also a simi-
larity embedding. The following is an immediate corollary.

Corollary 20 LetG = (V,E) be any directed graph. If its adjacency matrix has rank k and largest
singular value σ1, then G has a (1/σ1)-robust similarity embedding into the unit sphere in Rk.
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4.2. Relationship between similarity-robustness and distance-robustness

We find that both presented definitions of robustness are closely linked. More specifically, robust
similarity embeddings necessarily imply the existence of robust distance embeddings. Robust dis-
tance embeddings yield robust similarity embeddings only after normalizing by the diameter of an
embedding which we define below.

Definition 21 The diameter of a distance embedding (φin, φout, t), denoted diam(φ), is the maxi-
mum distance between any two embedded vectors. Define the diameter ratio, dr(φ), to be diam(φ)/t.

We note that the diameter of most embeddings tends to be quite low (O(1) for random graphs
for example).

Theorem 22 Let G be a directed graph with a δ-robust distance embedding (φin, φout, t) with
diameter ratio dr(φ) = D. Then G has a similarity embedding with robustness Ω( δ

2

D3 ) as δ
D → 0.

Theorem 23 LetG = (V,E) be a directed graph with a δ-robust distance embedding (φin, φout, t)
into Rd. Let B be the largest length of the vectors φin, φout, and define the scaled diameter of the
embedding as

∆ = max

(
B

t
, 1

)
.

Then G has a similarity embedding into Rd+1 with robustness δ2/(18∆4).

We also find a relationship in the other direction.

Theorem 24 Let G be a graph that has a δ-robust similarity embedding. Then G has distance-
robustness at least δ/2.

4.3. Embeddings into the Hamming cube

We now show that any graph that has a δ-robust similarity embedding (into any dimension) can
be embedded robustly into the O((1/δ2) log n)-dimensional Hamming cube. Thus this notion of
robustness translates directly into a bound on the number of bits of precision needed for embedding.

Theorem 25 Suppose directed graph G = (V,E) has a δ-robust similarity embedding into the unit
sphere. Then it has an O(δ)-robust distance embedding into {0, 1}k, where k = O((1/δ2) log n),
that is simultaneously an O(δ)-robust similarity embedding.

A proof is found in the appendix.
Notice that by combining Theorems 10 and 25, we see that any directed graph whose in-

degrees and outdegrees are bounded by ∆ has both distance and similarity embeddings into the
O((1/∆2) log n)-dimensional Hamming cube that are O(1/∆)-robust.

A partial converse is immediate: any distance or similarity embedding into {0, 1}k is necessarily
at least (1/k)-robust. Thus, robustness can serve as an approximate proxy for dimension.

On the other hand, it is unclear whether embeddability in low-dimensional Euclidean space
necessarily implies the existence of a robust embedding.

Open problem 2 Does the existence of a low-dimensional embedding imply that there also exists
a robust embedding?

10
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5. Lower bounds

5.1. Sign rank

Our previous construction from the proof of Theorem 18 with M − tJ yields a matrix in which
positive elements correspond to edges in G, and negative elements correspond to non-edges. This
reveals a natural relationship between finding similarity embeddings and finding low rank sign ma-
trices of an adjacency graph.

Definition 26 Given a matrix of +s and−s, the sign rank of the matrix is said to the minimum rank
of a matrix over the reals such that every entry agrees in sign with the corresponding + or −. We
use the convention that 0 is neither + nor − and consequently the minimum rank matrix must have
all non-zero elements.

A matrix of +’s and −’s can be naturally interpreted as a directed graph, with Mij = + corre-
sponding to an edge and Mij = − corresponding to a non-edge.

Definition 27 The sign rank of a graph G is the minimum sign rank of a sign matrix M such that
Mij = + if and only if (i, j) ∈ E.

Using the same construction we used in Theorem 18 we find that dsign(G) is closely linked to
our other notions of dimension.

Theorem 28 For any graph G, we have dsim(G) ≤ dsign(G) ≤ dsim(G) + 1.

5.2. Random graphs

In this section, we show that random dense graphs have (with high probability) large embedding
dimensions as well as low robust (with the former implying the latter). For convenience, we denote
d(G) = min(ddist(G), dsign(G), dsim(G)), and show that d(G) is large for random graphs. We do
this through a simple counting argument regarding the number of sign matrices of a given rank.

Lemma 1 (Alon et al. (2016)) For r ≤ n/2, the number of n × n sign matrices of sign rank at
most r does not exceed 2O(rn logn).

Theorem 29 Let G be a random directed graph over n vertices such that each edge is chosen with
constant probability p. Then as n→∞, with high probability,

d(G) ≥ O(
nH(p)

log n
),

where H(p) = −p log p− (1− p) log(1− p).

Proof Each n × n sign matrix is in direct correspondence with a directed graph G , and dsign(G)
is the sign rank of the matrix.

Consider a random graph drawn by selecting each edge independently with probability p. Fix
any ε > 0 and consider the typical set (Cover and Thomas (2006)) induced by these random graphs
(denoted Tε). It follows that for sufficiently large n,

11
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1. With probability 1− ε, our random graph G ∈ Tε

2. For any G ∈ Tε, P (G) ≤ 2−n
2(H(p)−ε)

By Lemma 1, for any r, the maximum number of elements in Tε that have sign rank at most r is
2O(rn logn), and consequently our random graph G has rank at least r with probability at least

P (d(G) ≥ r) ≥ 1− ε− 2O(rn logn)2−(n
2)(H(p)−ε).

Selecting r = CnH(p)
logn for a sufficiently small constant C finishes the proof.

Applying Theorems 15, 24 then shows that random graphs have low robustness.

Corollary 30 Let G be a random directed graph over n vertices such that each edge is chosen with
constant probability p. Then G has distance robustness and similarity robustness at most O( logn√

n
).

6. Algorithms

We show in the appendix that computing ddist(G) and dsim(G) are both NP-hard problems. On the
other hand, computing the robustness of a graph G turns out to be far more tractable.

We present a semidefinite programming approach to finding the distance-robustness and similarity-
robustness of G. This can be used (see Theorems 15 and 25) to construct low dimensional robust
embeddings of G.

6.1. Distance embeddings

Given a graph G with V = {v1, v2, . . . , vn}, we find its distance robustness with a semidefinite
program. For convenience, we will let xi denote φout(vi) and yi denote φin(vi). We also include a
scalar variable δ which represents the robustness, and assume (without loss of generality) that our
threshold t = 1. Then, the following semidefinite program suffices.

maximize
x,y,t,δ

δ

subject to 〈xi, xi〉+ 〈yj , yj〉 − 2〈xi, yj〉 ≤ 1, (vi, vj) ∈ E
〈xi, xi〉+ 〈yj , yj〉 − 2〈xi, yj〉 ≥ 1 + δ, (vi, vj) /∈ E

6.2. Similarity embeddings

This similarity case is almost analogous, but has the detail that we restrict ourselves to unit vec-
tors. This is still guaranteed to find the optimal robustness since any similarity embedding can be
converted into a spherical embedding with the same robustness (albeit higher dimension).

maximize
x,y,t,δ

δ

subject to 〈xi, yj〉 ≥ t, (vi, vj) ∈ E
〈xi, yj〉 ≤ t− δ, (vi, vj) /∈ E
〈xi, xi〉 = 〈yi, yi〉 = 1, 1 ≤ i ≤ n

12
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Appendix A. Proofs to Selected Theorems

A.1. Proof of Corollary 11

Proof This follows immediately from Theorem 10 because the largest singular value of the adja-
cency matrix will be at most

√
∆+∆−. This is doubtless a well-known fact, but for completeness

we give a brief explanation here.
The top singular value σ1 is the square root of the top eigenvalue of ATA, call it λ. Let v be

the corresponding eigenvector. Since ATA has no negative entries, we may assume v ≥ 0 (flipping
every entry of v to its absolute value can only increase vTATAv). If vi is the largest entry of v,

λvi = (ATAv)i =

n∑
j=1

(ATA)ijvj ≤ vi
∑
j

(ATA)ij = vi

(∑
`

A`i

(∑
j

A`j

))
≤ vi∆−∆+.

Thus λ ≤ ∆+∆− and σ1 ≤
√

∆+∆−.

A.2. Proof of Theorem 13

Proof It is known that G has sphericity O(n) (Maehara (1984)). To embed
←→
G , let A,B be its

partitioning into independent sets. Then for any a ∈ A, φout(a) = −1, φin(a) = 1. For any b ∈ B,
φout(b) = 1, φin(b) = −1. This embedding φ, with t = 0, is a distance embedding into R.

14
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A.3. Proof of Theorem 22

Proof Recall our previous method (Theorem 8) of placing distance embeddings on the unit sphere
by mapping them onto a small neighborhood of the sphere. This method no longer suffices since
picking too small a neighborhood would lead to very small robustness for the resulting similarity
embedding.

Conversely, trying to simply scale into a larger neighborhood can possibly distort distances
enough to make the embedding no longer valid. As a result, we need to find an “optimal” neighbor-
hood.

Let e be a unit vector orthogonal to all vectors in φ (i.e. a new dimension). Let φ′ be defined as
the embedding such that

φ′R(v) =
e+ φin(v)√
1 + ‖φin(v)‖2

,

φ′L(v) =
e+ φout(v)√
1 + ‖φout(v)‖2

.

It follows that for any vertices u, v, we have

〈φ′L(u), φ′R(v)〉 =
2 + ‖φout(u)‖2 + ‖φin(v)‖2 − ‖φout(u)− φin(v)‖2

2
√

(1 + ‖φout(u)‖2)(1 + ‖φin(v)‖2)
.

We now bound this quantity in the cases that (u, v) ∈ E, (u, v) /∈ E. In doing so, we will show that
φ′ is a similarity embedding, into the unit sphere, of the desired robustness.

We will make repeated use of the following facts.

1. (u, v) /∈ E if and only if ‖φout(u)− φin(v)‖2 ≥ (1 + δ)t2.

2. (u, v) ∈ E if and only if ‖φout(u)− φin(v)‖2 ≤ t.

3. Without loss of generality, let the origin be φout(u) for some arbitrary vertex u. Then all
‖φin(u)‖, ‖φout(u)‖ are ≤ Dt.

Suppose (u, v) ∈ E. Then

〈φ′L(u), φ′R(v)〉 =
2 + ‖φout(u)‖2 + ‖φin(v)‖2 − ‖φout(u)− φin(v)‖2

2
√

(1 + ‖φout(u)‖2)(1 + ‖φin(v)‖2)

≥ 1

2

(√1 + ‖φout(u)‖2
1 + ‖φin(v)‖2

+

√
1 + ‖φin(v)‖2
1 + ‖φout(u)‖2

)
− t2

2

≥ 1− t2

2
.

15
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Suppose (u, v) /∈ E. Then

〈φ′L(u), φ′R(v)〉 =
2 + ‖φout(u)‖2 + ‖φin(v)‖2 − ‖φout(u)− φin(v)‖2

2
√

(1 + ‖φout(u)‖2)(1 + ‖φin(v)‖2)

≤ 1

2

(√1 + ‖φout(u)‖2
1 + ‖φin(v)‖2

+

√
1 + ‖φin(v)‖2
1 + ‖φout(u)‖2

)
− t2(1 + δ)

2(1 +D2t2)

≤ 1

2

(√
1 +D2t2 +

√
1

1 +D2t2

)
− t2(1 + δ)

2(1 +D2t2)

≤ 1 +
3D4t4

16
− t2

2
(1 + δ)(1−D2t2)

Since φ′ is clearly an embedding into the unit sphere, its similarity-robustness is simply the
minimum difference between an edge “dot product” and a non-edge “dot product”. Therefore, φ′

must have similarity-robustness at least

1− t2

2
−
(

1 +
3D4t4

16
− t2

2
(1 + δ)(1−D2t2)

)
=
t2

2
(δ −D2t2 − δD2t2)− 3D4t4

16
.

The key idea is that we can scale φ as we like, which means that we can select t to be any value we

choose. Thus, selecting t = O(
√

δ
D3 ), we have,

=
O(δ)

2D3
(δ −O(

δ

D
)−O(

δ2

D
))−O(

δ2

D2
)

= O(
δ2

D3
), as

δ

D
→ 0.

A.4. Proof of Theorem 23

Proof Recall our earlier idea, in the proof sketch for Theorem 8, of placing distance embeddings
on the unit sphere by mapping them onto a small neighborhood of the sphere. We will now look at
a particular realization of this method.

The distance embedding given by φin, φout : V → Rd can be scaled so that t = 1. We then get
the following, for all u, v ∈ V .

(a) (u, v) /∈ E if and only if ‖φout(u)− φin(v)‖2 ≥ 1 + δ.

(b) (u, v) ∈ E if and only if ‖φout(u)− φin(v)‖2 ≤ 1.

(c) All ‖φin(u)‖, ‖φout(u)‖ are ≤ ∆.

16



WHAT RELATIONS ARE RELIABLY EMBEDDABLE IN EUCLIDEAN SPACE?

Let e be a unit vector orthogonal to all embedded vectors (i.e. a new dimension). For some
constant c > 0 whose value we will later set, let φ′L, φ

′
R : V → Rd+1 be defined by

φ′R(v) =
e+ c φin(v)√

1 + c2‖φin(v)‖2

φ′L(v) =
e+ c φout(v)√

1 + c2‖φout(v)‖2

Notice that these vectors have unit length. It follows that for any u, v,

〈φ′L(u), φ′R(v)〉 =
1 + c2〈φout(u), φin(v)〉√

(1 + c2‖φout(u)‖2)(1 + c2‖φin(v)‖2)

=
(1 + c2‖φout(u)‖2) + (1 + c2‖φin(v)‖2)− c2‖φout(u)− φin(v)‖2

2
√

(1 + c2‖φout(u)‖2)(1 + c2‖φin(v)‖2)

We now bound this quantity in the cases that (u, v) ∈ E and (u, v) /∈ E. In doing so, we will
show that φ′ is a similarity embedding, into the unit sphere, of the desired robustness.

Suppose (u, v) ∈ E. Using the inequality A + B ≥ 2
√
AB for A,B ≥ 0 as well as property

(b), we have

〈φ′L(u), φ′R(v)〉 ≥ 1− c2

2
· ‖φout(u)− φin(v)‖2√

(1 + c2‖φout(u)‖2)(1 + c2‖φin(v)‖2)

≥ 1− c2

2
.

On the other hand, if (u, v) /∈ E, then by properties (a) and (c),

〈φ′L(u), φ′R(v)〉 ≤ 1

2

(√
1 + c2‖φout(u)‖2
1 + c2‖φin(v)‖2

+

√
1 + c2‖φin(v)‖2
1 + c2‖φout(u)‖2

)
− c2

2
· 1 + δ

1 + c2∆2
.

We can simplify the first term using the inequalities (1 + x) + 1/(1 + x) ≤ 2 + 2x2 and
√

1 + x ≤
1 + x/2 for x ≥ 0. Again using property (c), we get

〈φ′L(u), φ′R(v)〉 ≤ 1 +
c4∆4

4
− c2

2
· 1 + δ

1 + c2∆2
.

Set c =
√
δ/(3∆4). Then c2∆2 ≤ δ/3 and we get

〈φ′L(u), φ′R(v)〉 ≤ 1− c2

2

(
1 +

δ

2
− c2∆4

2

)
= 1− c2

2

(
1 +

δ

3

)
.

The robustness of a similarity embedding is measured additively, and follows by taking the differ-
ence of the expressions for the cases when (u, v) ∈ E and (u, v) 6∈ E.
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A.5. Proof of Theorem 24

Proof Let φ be a δ-robust similarity embedding of G. Rescale the embedding so that φL,R(v) all
have norm at most 1. Then it follows that for some t ∈ [−1, 1],

1. (u, v) ∈ E if and only if 〈φL(u), φR(v)〉 ≥ t.

2. (u, v) /∈ E, if and only if 〈φL(u), φR(v)〉 ≤ t− δ.

Next, we convert this embedding into a spherical embedding as follows. Let e, f be unit vectors
that are orthogonal to each other and to all vectors in our embedding. We append suitable multiples
of e to each φL(v) vector and of f to each φR(v), so that the resulting vectors all have unit length.
This operation preserves dot products and thus gives a spherical embedding φ′ with robustness δ.

Since φ′ is spherical, it is also a distance embedding with φ′L,R = φ′out,in where

1. (u, v) ∈ E if and only if ‖φ′out(u)− φ′in(v)‖2 ≤ 2− 2t.

2. (u, v) /∈ E if and only if ‖φ′out(u)− φ′in(v)‖2 ≥ 2− 2t+ 2δ.

From here, we can lower-bound the distance robustness of φ′ by

2− 2t+ 2δ

2− 2t
− 1 ≥ δ

2
.

A.6. Proof of Theorem 25

Proof Write n = |V |. Suppose the 2n vectors φL(u), φR(u) lie on Sd−1, the unit sphere in Rd,
and constitute a δ-robust similarity embedding: for some threshold t, and any u, v,

• (u, v) ∈ E =⇒ φL(u) · φR(v) ≥ t+ δ, and

• (u, v) 6∈ E =⇒ φL(u) · φR(v) ≤ t.

We will embed these vectors into the Hamming cube using the random halfspace method of Goe-
mans and Williamson (1995) and Charikar (2002). Specifically, pick k vectors r1, . . . , rk uniformly
at random from Sd−1, and define the embedding h : Rd → {0, 1}k by h(x) = (h1(x), . . . , hk(x)),
where the ith hash function hi : Rd → {0, 1} is

hi(x) =

{
1 if ri · x ≥ 0
0 if ri · x < 0

Now, for any vectors x, y,

Pr(hi(x) 6= hi(y)) = Pr((ri · x)(ri · y) ≤ 0) =
θ

π
,

where θ is the angle between x and y. Thus for nodes u, v in G,

Pr(hi(φL(u)) 6= hi(φR(v))) = arccos(φL(u) · φR(v))/π{
≤ arccos(t+ δ)/π if (u, v) ∈ E
≥ arccos(t)/π if (u, v) 6∈ E (1)
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The difference between the two options is:

1

π
(arccos(t)− arccos(t+ δ)) =

1

π

∫ t+δ

t

dz√
1− z2

≥ δ

π
.

Write hL(u) = h(φL(u)) and hR(u) = h(φR(u)). Letting d(·) denote Hamming distance in
{0, 1}k, we have that the expected value of d(hL(u), hR(v)) is k times the quantity in equation
(1). A simple Chernoff-Hoeffding bound, unioned over all pairs u, v, then suffices to show that if
k = O((1/δ2) log n), then with probability at least 1− 1/n,

• (u, v) ∈ E =⇒ d(hL(u), hR(v)) ≤ k(arccos(t)− 2δ/3)/π, and

• (u, v) 6∈ E =⇒ d(hL(u), hR(v)) ≥ k(arccos(t)− δ/3)/π.

Thus hL, hR constitute an O(δ)-robust distance embedding. To see that this is also an O(δ)-robust
similarity embedding, notice that all the embedded vectors hL(u) and hR(u) have expected squared
Euclidean norm k/2, and given the setting of k, these norms will be tightly concentrated, within
multiplicative factor 1±O(δ), about their expected values.

Appendix B. NP hardness results

In this section, we show that it is NP-hard to find distance or similarity embeddings of minimum
dimension. We do so by adapting the results of Kang and Muller (2012) on undirected embeddings
to the directed case. First, we briefly review some definitions from their paper. Readers interested
in further details should consult their very clear presentation.

Definition 31 (Kang and Muller (2012))

1. An oriented k-hyperplane arrangement H = {h1, h2, . . . , hn} is a set of hyperplanes in Rk
each of which is given an orientation, so that all points in Rk are either on the positive side
of hi, denoted h+i , or the negative side, denoted h−i , or on hi itself.

2. The sign vector of a point p ∈ Rk with respect toH is the vector σ(p) ∈ {+,−, 0}n such that

σ(p)i =


+ if p ∈ h+i
− if p ∈ h−i
0 if p ∈ hi

3. The combinatorial description ofH is defined to be the set of all sign vectors,D(H) = {σ(p) :
p ∈ Rk}.

4. Consider any set S ⊂ {−,+}n containing (−,−,−, . . . ,−) and (+,+, . . . ,+). We say S is
k-realizable if there exists an oriented k-hyperplane arrangementH with S ⊂ D(H).

5. k-REALIZABILITY denotes the algorithmic problem of deciding, given a set S ⊂ {−,+}n as
input, whether S is k-realizable.

Theorem 32 (Kang and Muller (2012)) k-REALIZABILITY is NP-hard for all k > 1.
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B.1. Distance embeddings

The main idea is to reduce from k-REALIZABILITY. Given a set S ⊂ {−,+}n, we will con-
struct a graph G(S) in polynomial time, such that S is k-realizable if and only if G(S) has a
k-dimensional distance embedding. For convenience, we start by presenting the construction from
Kang and Muller (2012).

Definition 33 (Kang and Muller (2012)) For any S ⊂ {−,+}n, define GU (S) = (V,E) to be the
undirected graph with vertices

V = {a1, a2, . . . an} ∪ {b1, b2, . . . bn} ∪ {cσ : σ ∈ S}

and edges

• {cσ, cπ} ∈ E for all σ, π ∈ S

• {ai, aj}, {bi, bj} ∈ E for all i 6= j

• {ai, cσ} ∈ E if and only if σi = +

• {bi, cσ} ∈ E if and only if σi = −.

Theorem 34 (Kang and Muller (2012)) S is k-realizable if and only ifGU (S) has a k-dimensional
undirected distance embedding.

Our directed construction is very similar to GU (S).

Definition 35 For S ⊂ {−,+}n, let GD(S) = (V,E) be the directed graph with vertices

V = {a1, a2, . . . an} ∪ {b1, b2, . . . bn} ∪ {cσ, σ ∈ S}

and edges

• (ai, cσ) ∈ E if and only if σi = +

• (bi, cσ) ∈ E if and only if σi = −.

Theorem 36 S is k-realizable if and only ifGD(S) has a distance embedding of dimension at most
k.

Proof

⇒ Suppose GD(S) has a distance embedding φ with dimension k. Let hi be the hyperplane that
is the perpendicular bisector of φout(ai) and φout(bi); orient it so that φout(ai) lies on the
positive side and φout(bi) on the negative side. Letting H = {h1, h2, . . . , hn}, we claim that
φin(cσ) has sign vector exactly σ with respect toH. Thus S ⊂ D(H).

To prove our claim, consider any σ ∈ S, 1 ≤ i ≤ n. cσ has an edge from exactly one of
ai and bi and consequently φin(cσ) is closer to the corresponding φout(ai) or φout(bi). Thus
φin(cσ) is on the σi side of hi. Combining this over all i, we see that φin(cσ) has sign vector
σ as desired.
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⇐ Suppose S is k-realizable. Then by Theorem 34, GU (S) has a k-dimensional undirected
distance embedding φ (in the sense of Theorem 1). We construct a k-dimensional dis-
tance embedding φ′ of GD(S) from φ as follows. φ′out(ai) = φ(ai), φ′out(bi) = φ(bi),
φ′in(cσ) = φ(cσ), and the remaining vectors are assigned so that they are each at distance
> 1 from all the other vectors. The only possible edges in such an embedding are edges from
{a1, a2, . . . an, b1, b2, . . . bn} → {cσ : σ ∈ S}. Since the corresponding edges are in GU (S),
it follows that φ′ is a valid embedding of GD(S) as desired.

Since the construction ofGD(S) from S takes polynomial time, the hardness of k-REALIZABILITY

implies the following.

Corollary 37 Computing ddist(G) for a directed graph G is NP-hard.

B.2. Similarity embeddings

This section is almost identical to the previous section. The only difference is that our construc-
tions GD(S) and GU (S) are different to account for the fact that we are dealing with similarity
embeddings instead of distance embeddings.

Definition 38 (Kang and Muller (2012)) For S ⊂ {−,+}n, GU (S) = (V,E) is the undirected
graph defined as follows.

V = {a1, a2, . . . an} ∪ {cσ : σ ∈ S}.

E is defined by

• {ai, aj} ∈ E for all i 6= j

• {ai, cσ} ∈ E if and only if σi = +.

Theorem 39 (Kang and Muller (2012)) S is k-realizable if and only ifGU (S) has a k-dimensional
undirected similarity embedding (in the sense of Theorem 2).

Definition 40 For S ⊂ {−,+}n, GD(S) = (V,E) is the directed graph defined as follows.

V = {a1, a2, . . . an} ∪ {cσ : σ ∈ S}.

E = {(ai, cσ) : σi = +}.

Theorem 41 S is k-realizable if and only if dsim(GD(S)) ≤ k.

Proof

⇒ Suppose GD(S) has a similarity embedding φ with dimension k. Let

hi = {v : 〈v, φL(ai)〉 = t},

and let H = {h1, h2, . . . , hn}. We claim that φR(cσ) has sign vector exactly σ with respect
to H. This clearly suffices as it shows that σ ∈ D(H) for all σ ∈ S. The proof is analogous
to case presented in Theorem 34.
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WHAT RELATIONS ARE RELIABLY EMBEDDABLE IN EUCLIDEAN SPACE?

⇐ Suppose S is k-realizable. Then by Theorem 34, GU (S) has a k dimensional undirected
similarity embedding φ with threshold t = 1. Our construction of a similarity embedding for
GD(S) is identical to our construction in Theorem 34 with the only difference being that our
remaining points are mapped to 0 instead of infinity. Since our threshold t > 0, this means
that none of the non edges are embedded, and this completes the proof.

Corollary 42 Computing dsim(G) for a directed graph G is NP-hard.
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