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Abstract
We address online combinatorial optimization when the player has a prior over the adversary’s sequence
of losses. In this framework, Russo and Van Roy proposed an information-theoretic analysis of Thompson
Sampling based on the information ratio, resulting in optimal worst-case regret bounds. In this paper we
introduce three novel ideas to this line of work. First we propose a new quantity, the scale-sensitive informa-
tion ratio, which allows us to obtain more refined first-order regret bounds (i.e., bounds of the formO(

√
L∗)

where L∗ is the loss of the best combinatorial action). Second we replace the entropy over combinatorial
actions by a coordinate entropy, which allows us to obtain the first optimal worst-case bound for Thomp-
son Sampling in the combinatorial setting. We additionally introduce a novel link between Bayesian agents
and frequentist confidence intervals. Combining these ideas we show that the classical multi-armed bandit
first-order regret bound Õ(

√
dL∗) still holds true in the more challenging and more general semi-bandit

scenario. This latter result improves the previous state of the art bound Õ(
√

(d+m3)L∗) by Lykouris,
Sridharan and Tardos. We tighten these results by leveraging a recent insight of Zimmert and Lattimore con-
necting Thompson Sampling and online stochastic mirror descent, which allows us to replace the Shannon
entropy with more general mirror maps.
Keywords: Multi-armed bandit, Thompson Sampling.

1. Introduction

We first recall the general setting of online combinatorial optimization with both full feedback (full in-
formation game) and limited feedback (semi-bandit game). Let A ⊂ {0, 1}d be a fixed set of combina-
torial actions, and assume that m = ‖a‖1 for all a ∈ A. An (oblivious) adversary selects a sequence
`1, . . . , `T ∈ [0, 1]d of linear functions, without revealing it to the player. At each time step t = 1, . . . , T ,
the player selects an action at ∈ A, and suffers the instantaneous loss 〈`t, at〉. The following feedback on
the loss function `t is then obtained: in the full information game the entire loss vector `t is observed, and
in the semi-bandit game only the loss on active coordinates is observed (i.e., one observes `t � at where �
denotes the entrywise product). Importantly the player has access to external randomness, and can select
their action at based on the observed feedback so far. The player’s objective is to minimize its total expected
loss LT = E

[∑T
t=1〈`t, at〉

]
. The player’s perfomance at the end of the game is measured through the regret

RT , which is the difference between the achieved cumulative loss LT and the best one could have done with
a fixed action. That is, with L∗ = mina∈A

∑T
t=1〈`t, a〉, one has RT = LT − L∗. The optimal worst-case
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regret (sup`1,...,`T∈[0,1]d RT ) is known for both the full information and semi-bandit game. It is respectively
of order m

√
T ((KWK10)) and

√
mdT ((ABL14)).

1.1. First-order regret bounds

It is natural to hope for strategies with regret RT = o(L∗), for one can then claim that LT = (1 + o(1))L∗

(in other words the player’s performance is close to the optimal in-hindsight performance up to a smaller
order term). However, worst-case bounds fail to capture this behavior when L∗ � T . The concept of first-
order regret bound tries to remedy this issue, by asking for regret bounds scaling with L∗ instead of T . In
(KWK10) an optimal version of such a bound is obtained for the full information game:

Theorem 1 ((KWK10)) In the full information game, there exists an algorithm such that for any loss
sequence one has RT = Õ(

√
mE[L∗]).

The state of the art for first-order regret bounds in the semi-bandit game is more complicated. It is known
since (AAGO06) that for m = 1 (i.e., the famous multi-armed bandit game) one can have an algorithm with
regret RT = Õ(

√
dL∗). On the other hand for m > 1 the best bound due to (LST18) is Õ(

√
(d+m3)L∗).

A byproduct of our main result (Theorem 4 below) is to give the first optimal first-order regret bound for the
semi-bandit game1:

Theorem 2 In the semi-bandit game, there exists an algorithm such that for any loss sequence one has
RT = Õ(

√
dE[L∗]).

The above bound is optimal because the minimax regret in this setting is Θ̃(
√
mdT ) ((ABL14)) and

L∗ can be as large as mT . We derive this result2 using the recipe first proposed (in the context of partial
feedback) in (BDKP15). Namely, to show the existence of a randomized strategy with regret bounded by
BT for any loss sequence, it is sufficient to show that for any distribution over loss sequences there exists
a strategy with regret bounded by BT in expectation. Indeed, this equivalence is a simple consequence
of the Sion minimax theorem (BDKP15). In other words to prove Theorem 2 it is sufficient to restrict
our attention to the Bayesian scenario, where one is given a prior distribution ν over the loss sequence
(`1, . . . , `T ) ∈ [0, 1][d]×[T ] and aims for small expected regret with respect to that prior. Importantly note
that there is no independence whatsoever in such a random loss sequence, either across times or across co-
ordinates for a fixed time. Rather, the prior is completely arbitrary over the Td different values `t(i).

The rest of the paper is dedicated to the (first-order) regret analysis of a particular Bayesian strategy, the
famous Thompson Sampling ((Tho33)). In particular we will show that Thompson Sampling achieves both
the bounds of Theorem 1 and Theorem 2.

1.2. Thompson Sampling

In the Bayesian setting one has access to a prior distribution on the optimal action

a∗ = argmax
a∈A

T∑
t=1

〈`t, a〉.

1. By Õ(·) we suppress logarithmic terms, even log(T ). However all our bounds stated in the main body state explicitly the
logarithmic dependency.

2. In fact this bound can also be obtained more directly with mirror descent and an entropic regularizer as in (ABL14).
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In particular, one can update this distribution as more observations on the loss sequence are collected. More
precisely, denote pt for the posterior distribution of a∗ given all the information at the beginning of round t
(i.e., in the full information this is `1, . . . , `t−1 while in semi-bandit it is `1 � a1, . . . , `t−1 � at−1). Then
Thompson Sampling simply plays an action at at random from pt.

This strategy has recently regained interest, as it is both efficient and successful in practice for simple
priors ((CL11)) and particularly elegant in theory. A breakthrough in the understanding of Thompson Sam-
pling’s regret was made in (RVR16) where an information theoretic analysis was proposed. They consider
in particular the combinatorial setting for which they prove the following result:

Theorem 3 ((RVR16)) Assume that the prior ν is such that the sequence (`1, . . . , `T ) is i.i.d. Then in the
full information game Thompson Sampling satisfies E[RT ] = Õ(m3/2

√
T ), and in the semi-bandit game it

satisfies E[RT ] = Õ(m
√
dT ).

Assume furthermore that the prior ν is such that, for any t, conditionally on `1, . . . , `t−1 one has that
`t(1), . . . , `t(d) are independent. Then Thompson Sampling satisfies respectively Eν [RT ] = Õ(m

√
T ) and

Eν [RT ] = Õ(
√
mdT ) in the full information and semi-bandit game.

It was observed in (BDKP15) that the assumption of independence across times is immaterial in the in-
formation theoretic analysis of Russo and Van Roy. However it turns out that the independence across
coordinates (conditionally on the history) in Theorem 3 is key to obtain the worst-case optimal bounds
m
√
T and

√
mdT . One of the contributions of our work is to show how to appropriately modify the notion

of entropy to remove this assumption.

Most importantly, we propose a new analysis of Thompson Sampling that allows us to prove first-order
regret bounds. In various forms we show the following result:

Theorem 4 For any prior ν, Thompson Sampling satisfies in the full information game Eν [RT ] = Õ(
√
mE[L∗]).

Furthermore in the semi-bandit game, Eν [RT ] = Õ(
√
dE[L∗]).

To the best of our knowledge such guarantees were not known for Thompson Sampling even in the full-
information case with m = 1 (the so-called expert setting of (CBFH+97)). Our analysis can be combined
with recent work in (ZL19) which allows for improved estimates based on using mirror maps besides the
Shannon entropy.

Finally, we note that Thompson sampling against certain artificial prior distributions is also known to
obey frequentist regret bounds in the stochastic case ((AG12; LTW20)). However we emphasize that in
this paper, Thompson Sampling assumes access to the true prior distribution for the loss sequence and the
guarantees are for expected Bayesian regret with respect to that prior.

2. Information ratio and scale-sensitive information ratio

As a warm-up, and to showcase one of our key contributions, we focus here on the full information case
with m = 1 (i.e., the expert setting). We start by recalling the general setting of Russo and Van Roy’s
analysis (Subsection 2.1), and how it applies in this expert setting (Subsection 2.2). We then introduce a
new quantity, the scale-sensitive information ratio, and show that it naturally implies a first-order regret
bound (Subsection 2.3). We conclude this section by showing a new bound between two classical distances
on distributions (essentially the chi-squared and the relative entropy), and we explain how to apply it to
control the scale-sensitive information ratio (Subsection 2.4).
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2.1. Russo and Van Roy’s analysis

Let us denote Xt ∈ Rd for the feedback received at the end of round t. That is in full information one
has Xt = `t, while in semi-bandit one has Xt = `t � at. Let us denote Pt for the posterior distribution
of `1, . . . , `T conditionally on a1, X1, . . . , at−1, Xt−1. We write Et for the integration with respect to Pt
and at ∼ pt (recall that pt is the distribution of a∗ under Pt). Let It be the mutual information, under the
posterior distribution Pt, between a∗ and Xt, that is It = H(pt)− Et[H(pt+1)]. Let rt = Et[〈`t, at − a∗〉]
be the instantaneous regret at time t. The information ratio introduced by Russo and Van Roy is defined as:

Γt :=
r2
t

It
. (1)

The point of the information ratio is the following result:

Proposition 5 (Proposition 1, (RVR16)) Consider a strategy such that Γt ≤ Γ for all t. Then one has

E[RT ] ≤
√
T · Γ ·H(p1) ,

where H(p1) denotes the Shannon entropy of the prior distribution p1 (in particular H(p1) ≤ log(d)).

Proof The main calculation is as follows:

E[RT ] = E

[
T∑
t=1

rt

]
≤

√√√√T · E

[
T∑
t=1

r2
t

]
≤

√√√√T · Γ · E

[
T∑
t=1

It

]
. (2)

Moreover it turns out that the total information accumulation E
[∑T

t=1 It

]
can be easily bounded, by simply

observing that the mutual information can be written as a drop in entropy, yielding the bound:

E

[
T∑
t=1

It

]
≤ H(p1) .

2.2. Pinsker’s inequality and Thompson Sampling’s information ratio

We now describe how to control the information ratio (1) of Thompson Sampling in the expert setting.
First note that the posterior distribution pt of a∗ ∈ {e1, . . . , ed} satisfies (with a slight abuse of notation by
viewing pt as a vector in Rd): pt = Et[a∗]. In particular this means that:

rt = Et[〈`t, at − a∗〉] = Et [Et+1[〈`t, at − a∗〉]] =

Et [〈`t,Et+1[(at − a∗)]〉] = Et[〈`t, pt − pt+1〉] ≤
1

2
Et[‖pt − pt+1‖1]

(3)

where the inequality uses that ‖`t − (1
2 ,

1
2 , . . . ,

1
2)‖∞ ≤ 1

2 . Now combining (3) with Jensen followed by
Pinsker’s inequality yields:

r2
t ≤

1

2
· Et[Ent(pt+1, pt)] ,
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where we denote Ent(p, q) =
∑d

i=1 p(i) log(p(i)/q(i)) (recall that Pinsker’s inequality is simply ‖p −
q‖21 ≤ 2 · Ent(p, q)). Furthermore classical rewriting of the mutual information shows that the quantity
Et[Ent(pt+1, pt)] is equal to It (see [Proposition 4, (RVR16)] for more details). In other words r2

t ≤ It
2 and

thus:

Lemma 6 ((RVR16)) In the expert setting, Thompson Samping’s information ratio (1) satisfies Γt ≤ 1
2 for

all t.

Using Lemma 6 in Proposition 5 one obtains the following worst case optimal regret bound for Thompson
Sampling in the expert setting:

E[RT ] ≤
√
T log(d)

2
.

2.3. Scale-sensitive information ratio

The information ratio (1) was designed to derive
√
T -type bounds (see Proposition 5). To obtain

√
L∗-type

regret we propose the following quantity which we coin the scale-sensitive information ratio:

Λt :=
(r+
t )2

It · Et[〈`t, at〉]
, (4)

where r+
t := Et[〈`t, ReLU(pt − pt+1)〉]. With this new quantity we obtain the following refinement of

Proposition 5:

Proposition 7 Consider a strategy such that Λt ≤ Λ for all t. Then one has

E[RT ] ≤
√
E[L∗] · Λ ·H(p1) + Λ ·H(p1) .

Proof The main calculation is as follows:

E[RT ] ≤ E

[
T∑
t=1

r+
t

]
≤

√√√√E

[
T∑
t=1

Et[〈`t, at〉]

]
· E

[
T∑
t=1

(r+
t )2

Et[〈`t, at〉]

]

≤

√√√√E[LT ] · Λ · E

[
T∑
t=1

It

]
≤

√
E[LT ] · Λ ·H(p1) .

It only remains to use the fact that a− b ≤
√
ac implies that a− b ≤

√
bc+ c for non-negative a, b, c.

2.4. Reversed chi-squared/relative entropy inequality

We now describe how to control the scale-sensitive information ratio (4) of Thompson Sampling in the
expert setting. As we saw in Subsection 2.2, the two key inequalites in the Russo-Van Roy information ratio
analysis are a simple Cauchy-Schwarz followed by Pinsker’s inequality (recall (3)):

rt = Et[〈`t, pt − pt+1〉] ≤ Et[‖`t‖∞ · ‖pt − pt+1‖1] ≤
√
Et[Ent(pt+1, pt)] =

√
It .
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In particular, as far as first-order regret bounds are concerned, the “scale” of the loss `t is lost in the first
Cauchy-Schwarz. To control the scale-sensitive information ratio we propose to do the Cauchy-Schwarz
step differently and as follows (using the fact that `t(i)2 ≤ `t(i)):

rt = Et[〈`t, pt − pt+1〉] ≤

√√√√Et

[
d∑
i=1

`t(i)pt(i)

]
· Et

[
d∑
i=1

(pt(i)− pt+1(i))2

pt(i)

]
(5)

=
√
Et[〈`t, pt〉] · Et[χ2(pt, pt+1)] ,

where χ2(p, q) =
∑d

i=1
(p(i)−q(i))2

p(i) is the chi-squared divergence. Thus, to control the scale-sensitive infor-
mation ratio (4), it only remains to relate the chi-squared divergence to the relative entropy. Unfortunately
it is well-known that in general one only has Ent(q, p) ≤ χ2(p, q) (which is the opposite of the inequality
we need). Somewhat surprisingly we show that the reverse inequality in fact holds up to a factor of two true
for a slightly weaker form of the chi-squared divergence, which turns out to be sufficient for our needs:

Lemma 8 For p, q ∈ Rd+ define the positive chi-squared divergence χ2
+ by

χ2
+(p, q) =

∑
i:p(i)≥q(i)

(p(i)− q(i))2

p(i)
.

Also we denote Ent(p, q) =
∑d

i=1 (p(i) log(p(i)/q(i))− p(i) + q(i)) . Then one has

χ2
+(p, q) ≤ 2Ent(q, p) .

Proof Consider the function ft(s) = s log(s/t) − s + t, and observe that f ′′t (s) = 1/s. In particular ft is
convex, and for s ≤ t it is 1

t -strongly convex. Moreover one has f ′t(t) = 0. This directly implies:

ft(s) ≥
1

2t
(t− s)2

+ ,

which concludes the proof.

Combining Lemma 8 with (5) (where we replace rt by r+
t ) one obtains the following:

Lemma 9 In the expert setting, Thompson Samping’s scale-sensitive information ratio (4) satisfies Λt ≤ 2
for all t.

Using Lemma 9 in Proposition 7 we arrive at the following new regret bound for Thompson Sampling:

Theorem 10 In the expert setting Thompson Sampling satisfies for any prior distribution:

E[RT ] ≤
√

2E[L∗] ·H(p1) + 2H(p1) .

3. Combinatorial setting and coordinate entropy

We now return to the general combinatorial setting, where the action set A is a subset of {A ∈ {0, 1}d :
‖A‖1 = m}, and we continue to focus on the full information game. Recall that, as described in Theorem
3, Russo and Van Roy’s analysis yields in this case the suboptimal regret bound Õ(m3/2

√
T ) (the optimal

bound is m
√
T ). We first argue that this suboptimal bound comes from basing the analysis on the standard

Shannon entropy. We then propose a different analysis based on the coordinate entropy.
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3.1. Inadequacy of the Shannon entropy

Let us consider the simple scenario whereA is the set of indicator vectors for the sets ak = {1 + (k − 1) ·m, . . . , k ·m},
k ∈ [d/m]. In other words, the action set consists of d

m disjoint intervals of size m. This problem is equiva-
lent to a classical expert setting with d/m actions, and losses with values in [0,m]. In particular there exists
a prior distribution such that any algorithm must suffer regret m

√
T log(d/m) ≥ m

√
TH(p1) (the lower

bound comes from the fact that there is only d/m available actions).
Thus we see that, unless the regret bound reflects some of the structure of the action set A ⊂ {0, 1}d

(besides the fact that elements have m non-zero coordinates), one cannot hope for a better regret than
m
√
TH(p1). For larger action sets, H(p1) could be as large as m log(d/m). Thus, if we are to obtain

a (m,T ) dependent regret bound via the entropy of the optimal action set, the best possible bound will
be m3/2

√
T . However the optimal rate for this online learning problem is known to be Õ(m

√
T ). This

suggests that the Shannon entropy is not the right measure of uncertainty in this combinatorial setting, at
least if we expect Thompson Sampling to perform optimally.

Interestingly a similar observation was made in (ABL14) where it was shown that the regret for the
standard multiplicative weights algorithm is also lower bounded by the suboptimal rate m3/2

√
T . The

connection to the present situation is that standard multiplicative weights corresponds to mirror descent with
the Shannon entropy. To obtain an optimal algorithm, (KWK10; ABL14) proposed to use mirror descent
with a certain coordinate entropy. We show next that basing the analysis of Thompson Sampling on this
coordinate entropy allows us to prove optimal guarantees.

3.2. Coordinate entropy analysis

For any vector v = (v1, v2, . . . , vd) ∈ [0, 1]d, we define its coordinate entropy Hc(v) to simply be the sum
of the entropies of the individual coordinates:

Hc(v) =

d∑
i=1

H(vi) = −
d∑
i=1

vi log(vi) + (1− vi) log(1− vi).

For a {0, 1}d-valued random variable such as a∗, we define Hc(a∗) = Hc(E[a∗]). Equivalently, the
coordinate entropy Hc(a∗) is the sum of the (ordinary) entropies of the d Bernoulli random variables 1i∈a∗ .

This definition allows us to consider the information gain in each event [i ∈ a∗] separately in the
information-theoretic analysis via Ict = Hc

t (pt) − Et[Hc
t (pt+1)], denoting now pt = Et[at]. By inspecting

our earlier proof one easily obtains in the combinatorial setting

(r+
t )2 ≤ 2〈pt, `t〉 · Et[Ent(pt+1, pt)] = 2〈pt, `t〉 · Et[Ict ] . (6)

As a result, the scale-sensitive information ratio with coordinate entropy is Λct :=
(r+t )2)

Ict ·Et[〈`t,at〉]
≤ 2.

Therefore

E[RT ] ≤
√

2E[L∗]Hc(p1) + 2H(p1).

To establish the first half of Theorem 4 we just need to estimate H(p1). By Jensen’s inequality, we have

Hc(p1) ≤ Hc
(m
d
,
m

d
, . . . ,

m

d

)
= m log

(
d

m

)
+ (d−m) log

(
d

d−m

)
.

Using the inequality log(1 + x) ≤ x on the second term we obtain
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Hc(p1) ≤ m log

(
d

m

)
+m

This gives the claimed estimate

E[RT ] = O(
√
m log(d/m)E[L∗]).

Remark 11
The fact we use the coordinate entropy suggests that it is unnecessary to leverage information from

correlations between different arms, and we can essentially treat them as independent. In fact, our proofs
for Thompson Sampling apply to any algorithm which observes arm i at time t with probability pt(i ∈ a∗).
This remark extends to the thresholded variants of Thompson Sampling we discuss at the end of the paper.

4. Bandit

Now we return to the m = 1 setting and consider the case of bandit feedback. We again begin by recalling
the analysis of Russo and Van Roy, and then adapt it in analogy with the scale-sensitive framework. For
most of this section, we require that an almost sure upper bound L∗ ≤ L∗ for the loss of the best action
is given to the player. Under this assumption we show that Thompson Sampling obtains a regret bound
Õ(
√
H(p1)dL∗), by using a bandit analog of the method in the previous section. This estimate can be

improved with the method of (ZL19) which shows how to analyze Thompson Sampling based on online
stochastic mirror descent. By using a logarithmic regularizer, we obtain a regret bound depending only on
E[L∗], i.e. without the assumption L∗ ≤ L∗, matching the statement of Theorem 4.

4.1. The Russo and Van Roy Analysis for Bandit Feedback

In the bandit setting we cannot bound the regret by the movement of pt. Indeed, the calculation (3) relies on
the fact that `t is known at time t+ 1 which is only true for full feedback. However, a different information
theoretic calculation gives a good estimate.

Lemma 12 ((RVR16))
In the bandit setting, Thompson Sampling’s information ratio satisfies Γt ≤ d for all t. Therefore it has

expected regret E[RT ] ≤
√
dTH(p1).

Proof We set ¯̀
t(i) = Et[`t(i)] and ¯̀

t(i, j) = Et[`t(i)|a∗ = j]. Then we have the calculation

rt = pt · (¯̀
t(i)− ¯̀

t(i, i)) ≤

√√√√d ·

(∑
i

pt(i)2 · (¯̀
t(i)− ¯̀

t(i, i))2

)

≤

√√√√d ·

(∑
i

pt(i)2Ent[¯̀t(i, i), ¯̀
t(i)]

)
.

By Lemma 13 below, this means

rt ≤
√
d · It

which is equivalent to Γt ≤ d.
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The following lemma is a generalization of a calculation in (RVR16). We leave the proof to the Ap-
pendix.

Lemma 13
Suppose a Bayesian player is playing a semi-bandit game with a hidden subset S of arms. Each round

t, the player picks some subset at of arms and observes all their losses. Define pt(i ∈ S) = P[i ∈ S], and
p̂t(i) = P[i ∈ at]. Let ¯̀

t(i, i ∈ S) = E[`t(i)|i ∈ S]. Then with Ict (·) the coordinate information gain we
have ∑

i

p̂t(i)pt(i ∈ S)Ent[¯̀t(i, i ∈ S), ¯̀
t(i)] ≤ Ict [S].

The next lemma is a scale-sensitive analog of an information ratio bound for partial feedback. However,
getting from such a statement to a regret bound is a bit more involved in our small loss setting so we do not
try to push the analogy too far.

Lemma 14
In the setting of Lemma 13, we have:

∑
i

p̂t(i)pt(i ∈ S)

(
(¯̀
t(i)− ¯̀

t(i, i ∈ S))2
+

¯̀
t(i)

)
≤ 2 · Ict [S].

4.2. General Theorem on Perfectly Bayesian Agents

Here we state a theorem on the behavior of a Bayesian agent in an online learning environment. In the next
subsection we use it to give a nearly optimal regret bound for Thompson Sampling with bandit feedback.
This theorem is stated in a rather general way in order to encompass the semi-bandit case as well as the
thresholded version of Thompson Sampling discussed later. The proof goes by controlling the errors of
unbiased and negatively biased estimators for the losses using a concentration inequality. Then we argue
that because these estimators are accurate with high probability, a Bayesian agent will usually believe them
to be accurate, even though this accuracy circularly depends on the agent’s past behavior. We relegate the
detailed proof to the Appendix.

Theorem 15
Consider an online learning game with arm set [d] and random set of losses `t(i). Suppose also that the

player is given the distribution from which the loss sequence is sampled, i.e. an accurate prior distribution.
Assume there always exists an action with total loss at most L∗. Each round, the player plays some subset
at of actions, and pays/observes the loss for each of them. Let pt(i) = Pt[i ∈ a∗] be the time-t probability
that i is one of the optimal arms and p̂t(i) = Pt[i ∈ at] the probability that the player plays arm i in round
t. We suppose that there exist constants 1

L∗ ≤ γ1 ≤ γ2 and a time-varying partition [d] = Rt ∪ Ct of the
action set into rare and common arms such that:

1. If i ∈ Ct, then p̂t(i), pt(i) ≥ γ1.

2. If i ∈ Rt, then p̂t(i) ≤ pt(i) ≤ γ2.

Then the following statements hold for every i.
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A) The expected loss incurred by the player from rare arms is at most

E

[ ∑
t: i∈Rt

p̂t(i)`t(i)

]
≤ 2γ2L

∗ + 8 log(T ) + 4.

B) The expected total loss that arm i incurs while it is common is at most

E

[ ∑
t: i∈Ct

`t(i)

]
≤ L∗ + 2

(
log

(
1

γ1

)
+ 10

)√
L∗

γ1

4.3. First-Order Regret for Bandit Feedback

As Theorem 15 alluded to, we split the action set into rare and common arms for each round. Rare arms are
those with pt(i) ≤ γ for some constant γ > 0, while common arms have pt(i) > γ. Note that an arm can
certainly switch from rare to common and back over time. We correspondingly split the loss function into

`t(i) = `Rt (i) + `Ct (i)

via `Rt (i) = `t(i)1pt(i)≤γ and `Ct (i) = `t(i)1pt(i)>γ .
Now we are ready to prove the first-order regret bound for bandits.

Theorem 16
Suppose that the best expert almost surely has total loss at most L∗. Then Thompson Sampling with

bandit feedback obeys the regret estimate

E[RT ] ≤ O
(√

H(p1)dL∗ + d log2(L∗) + d log(T )
)
.

Proof Fix γ > 0 and define Rt and Ct correspondingly. We split off the rare arm losses at the start of the
analysis:

E[RT ] ≤ E

[∑
t

r+
t

]
= E

[∑
t

pt(i) · (¯̀
t(i)− ¯̀

t(i, i))+

]

≤ E

 ∑
(t,i):i∈Rt

pt(i)¯̀
t(i)

+ E

 ∑
(t,i):i∈Ct

pt(i) · (¯̀
t(i)− ¯̀

t(i, i))+

 .
The first term is bounded by Theorem 15A with the rare/common partition above, γ1 = γ2 = γ, and

p̂t(i) = pt(i). For the second term, again using Cauchy-Schwarz and then Lemmas 8 and 14 gives:

E

 ∑
(t,i):i∈Ct

pt · (¯̀
t(i)− ¯̀

t(i, i))+

 ≤
√√√√√E

 ∑
(t,i):i∈Ct

¯̀
t(i)

E

 ∑
(t,i):i∈Ct

pt(i)2 ·
(¯̀
t(i)− ¯̀

t(i, i))2
+

¯̀
t(i)



≤

√√√√√2 · E

 ∑
(t,i):i∈Ct

`t(i)

 ·H(p1).

10



Substituting in the conclusion of Theorem 15B gives:

E[RT ] ≤ d(2γL∗ + 8 log(T ) + 4) +

√√√√H(p1)

(
L∗ + 2

(
log

(
1

γ

)
+ 10

)√
L∗

γ

)
.

Taking γ = log2(L∗)
L∗ gives the desired estimate.

4.4. Improved Estimates Beyond Shannon Entropy

In recent work (ZL19), it is shown that Thompson sampling can be analyzed using any mirror map, with
the same guarantees as online stochastic mirror descent. (See also (LS19) which essentially improves the
Russo and Van Roy entropic bound using Tsallis entropy.) Their work is compatible with our methods for
first order analysis, allowing for further refinements. By using the Tsallis entropy we remove the H(p1)
dependence in Theorem 16, and also gain the potential for polynomial-in-d savings for an informative prior.
By using the log barrier we obtain a small loss bound depending only on E[L∗] instead of requiring an
almost sure upper bound L∗. The proofs follow a similar structure to that of Theorem 16 and we leave them
to the appendix.

Definition 17
For α ∈ (0, 1) we define the α-Tsallis entropy of a probability vector p to be

Hα(p) =
(
∑

i p
α
i )− 1

α(1− α)
.

Note that with d actions, Hα(p) ≤ d1−α

α(1−α) .

Theorem 18
Suppose that the best expert almost surely has total loss at most L∗. Then Thompson Sampling with

bandit feedback obeys the regret estimate

E[RT ] ≤ O
(√

Hα(p1)dαL∗ +Hα(p1)dα + d log2(L∗) + d log(T )
)
.

For any fixed α, this gives a worst-case over p1 upper bound of

E[RT ] ≤ Oα
(√

dL∗ + d log2(L∗) + d log(T )
)
.

Theorem 19
Thompson Sampling with bandit feedback obeys the regret estimate

E[RT ] = O(
√
dE[L∗] log(T ) + d log(T )

We observe that for a highly informative prior, Theorem 18 may be much tighter than a worst case bound.
For example if p1(i) . i−β for some β > 1, then for α ≥ 1

β we will have Hα(p1) bounded independently

of d. Hence the main term of the regret will be Oα(
√
dαL∗), meaning we save a multiplicative power of d!

We also note that Theorem 19 actually does not require Theorem 15 so its proof is somewhat simpler than
Theorem 18 given the connection to mirror descent. However the L∗ dependent results have the interesting
advantage of leading to fully T -independent regret with thresholded Thompson Sampling in the next section.
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5. Semi-bandit, Thresholding, and Graph Feedback

In this section, we consider three extensions of the previous results. We first combine the combinatorial
setting with bandit feedback, the so-called semi-bandit model. Next, we show how to obtain T -independent
regret with a thresholded version of Thompson Sampling when there is an almost sure upper boundL∗ ≤ L∗.
Finally we show that coordinate entropy allows for

√
T type regret bounds for Thompson sampling under

graph feedback.

5.1. Semi-bandit

We now consider semi-bandit feedback in the combinatorial setting, combining the intricacies of the previ-
ous two sections. We again have an action setA contained in the set {a ∈ {0, 1}d : ||a||1 = m}, but now we
observe the m losses of the arms we played. A natural generalization of the bandit m = 1 proof to higher
m yields a first-order regret bound of Õ(

√
mdL∗). However, we give a refined analysis using an additional

trick of ranking the m arms in a∗ by their total loss and performing an information theoretic analysis on a
certain set partition of these m optimal arms. This method allows us to obtain a Õ(

√
dL∗) regret bound for

the semi-bandit regret. The analyses based on other mirror maps extend as well. We leave the proofs to the
Appendix.

Theorem 20 Suppose that the best combinatorial action almost surely has total loss at most L∗. Then
Thompson sampling with semi-bandit feedback obeys the regret estimate

E[RT ] ≤ O
(

log(m)
√
dL∗ +md2 log2(L∗) + d log(T )

)
.

The upper bound with the log barrier is identical to the semibandit case.

Theorem 21 Thompson sampling with semi-bandit feedback obeys the regret estimate

E[RT ] ≤ O
(√

dE[L∗] log(T ) + d log(T )
)
.

5.2. Thresholded Thompson Sampling

Unlike in the full-feedback case, our first-order regret bound for bandit Thompson Sampling has an additive
O(d log(T )) term. Thus, even when an upper bound L∗ ≤ L∗ is known, the regret is T -independent. In
fact, some mild T -dependence is inherent - an example is given in the Appendix.

However, this mild T -dependence can be avoided by using Thresholded Thompson Sampling. In Thresh-
olded Thompson Sampling, the rare arms are never played, and the probabilities for the other arms are scaled
up correspondingly. More precisely, for γ < 1

d , the γ-thresholded Thompson Sampling is defined by letting
Rt = {i : pt(i) ≤ γ} and playing at time t from the distribution

p̂t(i) =

{
0 if i ∈ Rt

pt(i)
1−

∑
j∈Rt

pt(j)
if i ∈ Ct.

This algorithm parallels the work (LST18) which uses an analogous modification of the EXP3 algorithm
to obtain a first-order regret bound. Thresholded semi-bandit Thompson Sampling is defined similarly,
where we only allow action sets containing no rare arms.

12



Theorem 22
Suppose that the best action almost surely has total loss at most L∗. Thompson Sampling for bandit

feedback, thresholded with γ = log2(L∗)
L∗ ≤ 1

2d , has expected regret

E[RT ] = O
(√

dL∗ + d log2(L∗)
)

Theorem 23
Suppose that the best combinatorial action almost surely has total loss at most L∗. Thompson Sampling

for semi-bandit feedback, thresholded with γ = m log2(L∗)
L∗ ≤ 1

2d , has expected regret

E[RT ] = O
(

log(m)
√
dL∗ +md log2(L∗)

)
.

5.3. Graphical Feedback

Here we consider the problem of online learning with graphical feedback. This model interpolates between
full-feedback and bandits by embedding the actions as vertices of a (possibly directed) graph G with d
vertices. If there is an edge i→ j, then playing action i allows one to observe action j. We assume that all
vertices have self-loops, i.e. that we always observe the loss we pay. Without this assumption, the optimal
regret might be Θ̃(T 2/3) even if every vertex is observable, see (ACBDK15).

Previous work such as (LZS18; TDD17) analyzed the performance of Thompson Sampling for these
tasks, giving O(

√
T )-type regret bounds which scale with certain statistics of the graph. However, their

analyses only applied for stochastic losses rather than adversarial losses. In this section, we outline why
their analysis applies to the adversarial case as well.

5.3.1. ENTROPY FOR GRAPH FEEDBACK

Here we generalize the analysis of (LZS18) to the adversarial setting. As above, let G be a possibly di-
rected feedback graph on d vertices, with α = α(G) its independence number (the size of the maximum
independent set). A key point is:

Lemma 24 ((MS11), Lemma 3)
For any probability distribution π on V (G) we have (under the convention 0/0 = 0):∑

i

π(i)∑
j∈{i}∪N(i) π(j)

≤ α.

From this, following (LZS18) we obtain:

Proposition 25
The coordinate information ratio of Thompson Sampling on an undirected graph G is at most α(G).

Proof
Let pt(i) be as usual for a vertex i and qt(i) =

∑
j∈{i}∪N(i) pt(i) the probability to observe `t(i). Then:

α · Ict ≥

(∑
i

pt(i)

qt(i)

)(∑
i

p(i)q(i)(`t(i)− `t(i, i))2

)
≥ R2.

13



In the case of a directed graph, the natural analog of α(G) is the maximum value of∑
i

π(i)∑
j∈{i}∪N in(i) π(j)

which is equal tomas(G), the size of the maximal acyclic subgraph ofG. However, as noted in (LZS18),
if we assume πt(i) ≥ ε then (ACBDK15) gives the upper bound∑

i

π(i)∑
j∈{i}∪N in(i) π(j)

≤ 4

(
α · log

(
4d

αε

))
.

By using the fact that ε = o(T−2) additional exploration has essentially no effect on the expected regret
(as it induces o(T ) total variation distance betwen the two algorithms), we obtain a α-dependent bound for
directed graphs as well:

Theorem 26
Thompson Sampling on a sequence Gt of undirected graphs achieves expected regret

E[RT ] = O


√√√√Hc(p1)

T∑
t=1

α(Gt)

 .

Moreover Thompson Sampling on a sequence Gt of directed graphs achieves expected regret

E[RT ] = O


√√√√Hc(p1) log(dT )

T∑
t=1

α(Gt)

 .

As in (LZS18), this analysis applies even when the Thompson sampling algorithm does not know the
graphs Gt, but only observes the relevant neighborhood feedback after choosing each action at.

6. Negative Results for Thompson Sampling

In this section we give a few negative results. Theorem 27 states that Thompson Sampling against an
arbitrary prior may have Ω(T ) regret a constant fraction of the time (but will therefore also have −Ω(T )
regret a constant fraction of the time). By contrast, there exist algorithms which have low regret with
high probability even in the frequentist setting (ACBFS02). Bridging this gap with a variant of Thompson
Sampling would be very interesting.

Theorem 28 shows that the slight T dependence in our Thompson Sampling guarantees was necessary.
Recall that even in Theorem 18 there was an additive d log(T ) term in the expected regret. The lower
bound in Theorem 28 seems correspond to an additive d log∗(T ) term, where log∗ is the inverse to the tower
function.

Theorem 27
There exist prior distributions for which Thompson Sampling achieves Ω(T ) regret a constant fraction

of the time, with either full or bandit feedback.
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Theorem 28
There exist prior distributions against which Thompson Sampling achieves Ω(dL∗) expected regret for

very large T with bandit feedback, even given the value L∗.

6.1. Lower Bound for Contextual Bandit

Recall that contextual bandit is equivalent to graph feedback where:

• The graphs change from round to round.

• All graphs are vertex-disjoint unions of at most K cliques.

• The losses for a round are constant within cliques.

The existence of an algorithm achieving O(
√
L∗) regret for contextual bandits was posed in (AKL+17)

and resolved positively in (AZBL18). However the algorithm given is highly computationally intractable.
Here we show that Thompson Sampling does not match this guarantee.

Theorem 29
It is possible that Thompson Sampling achieves, with high probability, loss Ω(

√
T ) for a contextual

bandit problem with L∗ = 0 optimal loss, K = 2 cliques, and d = O(
√
T ) total arms.
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Appendix A.

A.1. Proof of Lemmas 13 and 14

Proof of Lemma 13:
We first claim that the relative entropy

Ent[¯̀t(i, i ∈ S), ¯̀
t(i)]

is at most the entropy decrease in the law Lt(`t(i)) of the random variable `t(i) from being given that i ∈ S.
Indeed, let ˜̀t(i) be a {0, 1}-valued random variable with expected value ¯̀

t(i) and conditionally independent
of everything else. By definition,

Ent[¯̀t(i, i ∈ S), ¯̀
t(i)]

is exactly the information gain in Lt(˜̀t(i)) upon being told that j ∈ S. Since ˜̀t(i) is a noisy realiza-
tion of `t(i), the data processing inequality implies that the information gain of Lt(`t(i)) is more than the
information gain in Lt(˜̀t(i)) which proves the claim.

Now, continuing, we have that

pt(i ∈ S)Ent[¯̀t(i, i ∈ S), ¯̀
t(i)]

is at most the entropy decrease in `t(i) from being given whether or not i ∈ S. Therefore

p̂t(i)pt(i ∈ S)Ent[¯̀t(i, i ∈ S), ¯̀
t(i)] ≤ I[`t(i)1i∈at , 1i∈S ]

≤ I[(at, `t(at)), 1i∈S ] = It[1i∈S ].

Proof of Lemma 14:
By Lemma 8 we have:

∑
i

p̂t(i)pt(i ∈ S)

(
(¯̀
t(i)− ¯̀

t(i, i ∈ S))2
+

¯̀
t(i)

)
≤ 2

∑
i

p̂t(i)pt(i)
(
Ent(¯̀

t(i, i ∈ S), ¯̀
t(i))−¯̀

t(i, i ∈ S)+¯̀
t(i)
)

and

∑
i

p̂t(i)pt(i /∈ S)

(
(¯̀
t(i)− ¯̀

t(i, i /∈ S))2
+

¯̀
t(i)

)
≤ 2

∑
i

p̂t(i)pt(i /∈ S)
(
Ent(¯̀

t(i, i /∈ S), ¯̀
t(i))−¯̀

t(i, i /∈ S)+¯̀
t(i)
)

Summing and noting that

pt(i ∈ S)¯̀
t(i, i ∈ S) + pt(i /∈ S)¯̀

t(i, i /∈ S) = pt(i ∈ S)¯̀
t(i) + pt(i /∈ S)¯̀

t(i) = ¯̀
t(i)

we obtain

∑
i

p̂t(i)pt(i ∈ S)

(
(¯̀
t(i)− ¯̀

t(i, i ∈ S))2
+

¯̀
t(i)

)
+
∑
i

p̂t(i)pt(i /∈ S)

(
(¯̀
t(i)− ¯̀

t(i, i /∈ S))2
+

¯̀
t(i)

)
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≤ 2
∑
i

p̂t(i)

(
pt(i ∈ S)Ent(¯̀

t(i, i ∈ S), ¯̀
t(i)) + pt(i /∈ S)Ent(¯̀

t(i, i /∈ S), ¯̀
t(i))

)
.

Since p̂t(i) is the chance to observe `t(i), and it is multiplied by a lower bound for the information gain
on the event {i ∈ S} from observing `t(i), the RHS is bounded by 2 · Ict [S]. The extra term we added is
non-negative so we conclude the lemma.

A.2. Proof of Theorem 15

Here we prove Theorem 15. Recall the statement:

Theorem 15
Consider an online learning game with arm set [d] and random set of losses `t(i). Suppose also that the

player is given the distribution from which the loss sequence is sampled, i.e. an accurate prior distribution.
Assume there always exists an action with total loss at most L∗. Each round, the player plays some subset
at of actions, and pays/observes the loss for each of them. Let pt(i) = Pt[i ∈ a∗] be the time-t probability
that i is one of the optimal arms and p̂t(i) = Pt[i ∈ at] the probability that the player plays arm i in round
t. We suppose that there exist constants 1

L∗ ≤ γ1 ≤ γ2 and a time-varying partition [d] = Rt ∪ Ct of the
action set into rare and common arms such that:

1. If i ∈ Ct, then p̂t(i), pt(i) ≥ γ1.

2. If i ∈ Rt, then p̂t(i) ≤ pt(i) ≤ γ2.

Then the following statements hold for every i.

A) The expected loss incurred by the player from rare arms is at most

E

[ ∑
t: i∈Rt

p̂t(i)`t(i)

]
≤ 2γ2L

∗ + 8 log(T ) + 4.

B) The expected total loss that arm i incurs while it is common is at most

E

[ ∑
t: i∈Ct

`t(i)

]
≤ L∗ + 2

(
log

(
1

γ1

)
+ 10

)√
L∗

γ1

The following notations will be relevant to our analysis. Some have been defined in the main body,
while some are only used in the Appendix.

`Rt (i) = `t(i) · 1i∈Rt uRt (i) =
`Rt (i)·1it=i

γ2
LRt (i) =

∑
s≤t `

R
s (i) URt (i) =

∑
s≤t u

R
s (i)

`Ct (i) = `t(i) · 1i∈Ct uCt (i) =
`Ct (i)·1it=i
p̂t(i)

LCt (i) =
∑

s≤t `
C
s (i) UCt (i) =

∑
s≤t u

C
s (i)

The `t variables are the instantaneous rare/common losses of an arm, while the Lt variables track the
total loss. The ut variables are underbiased/unbiased estimates of the `t while the Ut variables are under-
biased/unbiased estimates of the Lt.

To control the error of the estimators Ut we rely on Freedman’s inequality ((Fre75)), a refinement of
Hoeffding-Azuma which is more efficient for highly assymmetric summands.
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Theorem 30 (Freedman’s Inequality)
Let St =

∑
s≤t xs be a martingale sequence, so that

E[xs|Fs−1] = 0.

Suppose that we have a uniform estimate xs ≤M . Also define the conditional variance

Ws = V ar[Xs|Fs−1]

and set Vt =
∑

s≤tWs to be the total variance accumulated so far.

Then with probability at least 1− e−
a2

2b+Ma , we have St ≤ a for all t with Vt ≤ b.

The following extension to supermartingales is immediate by taking the Doob-Meyer decomposition of
a supermartingale as a martingale plus a decreasing predictable process.

Corollary 31 Let St =
∑

s≤t xs be a supermartingale sequence, so that E[xs|Fs−1] ≤ 0. Suppose that we
have a uniform estimate xs − E[xs|Fs−1] ≤M . Also define the conditional variance

Ws = V ar[Xs|Fs−1]

and set Vt =
∑

s≤tWs to be the total variance accumulated so far.

Then with probability at least 1− e−
a2

2b+Ma , we have St ≤ a for all t with Vt ≤ b.

Towards proving the two claims in Theorem 15 we first prove two lemmas. They follow directly from
proper applications of Freedman’s Theorem or its corollary.

Lemma 32 In the context of Theorem 15, with probability at least 1 − 2
T 2 , for all t with LRt (i) ≤ L∗ we

have
URt (i) ≤ 2L∗ +

8 log T

γ2
.

Lemma 33
In the context of Theorem 15, fix constants λ ≥ 2 and L̃ > 0 and assume γ1 ≥ 1

L̃
. With probability at

least 1− 2e−λ/2, for all t with LCt (i) ≤ L̃ we have

UCt (i) ≤ LCt (i) + λ

√
L̃

γ1
.

Remark 34
This second lemma has no dependence on L∗ and holds with L∗ =∞. For proving Theorem 15 we will

simply take L̃ = L∗. We will need to apply this lemma with L̃ 6= L∗ for the semi-bandit analog.

Proof of Lemma 32:

We analyze the (one-sided) error in the underestimate URt (i) for LRt (i). Define the supermartingale
St =

∑
s≤t xs for

19



xs = xs(i) :=
(
uRs (i)− `Rs (i)

)
.

We apply Corollary 31 to this supermartingale, taking

(a, b,M) =

(
4 log T

γ2
+ 4

√
L∗ log T

γ2
,
L∗

γ2
,

1

γ2

)
.

For the filtration, we take the loss sequence as known from the start so that the only randomness is from
the player’s choices. Equivalently, we act as the observing adversary - note that St is still a supermartingale
with respect to this filtration. Crucially, this means the conditional variance is bounded by Wt ≤ `Rt (i)

γ2
.

Therefore we have Vt ≤ LRt (i)
γ2

. We also note that with these parameters we have

e−
a2

2b+Ma ≤ e−
a2

4b + e−
a

2M ≤ 1

T 2
+

1

T 2
=

2

T 2
.

Therefore, Freedman’s inequality tells us that with probability 1 − 2
T 2 , for all t with LRt (i) ≤ L∗ we

have

St ≤ a =
4 log T

γ2
+ 4

√
L∗ log T

γ2

and hence

URt (i) ≤ LRt (i) +
4 log T

γ2
+ 4

√
L∗ log T

γ2
≤ L∗ +

4 log T

γ2
+ 4

√
L∗ log T

γ2
≤ 2L∗ +

8 log T

γ2
.

Proof of Lemma 33:

Similarly to the rare loss upper bound, we define an estimator for LCt (i):

UCt (i) :=
∑
s≤t

`Cs (i) · 1is=i
p̂s(i)

.

We will again apply Freedman’s inequality from the point of view of the adversary, this time to the
martingale sequence St =

∑
s≤t xs for

xs = xs(i) :=

(
uCs (i)

p̂s(i)
− `Cs (i)

)
.

We have xs ≤ 1
γ1

= M and Vt ≤ LCt (i)
γ1

. We use the parameters b = L̃
γ1

and a = λ
√

L̃
γ1

. Using γ ≥ 1

L̃
in

the penultimate inequality and then λ ≥ 2, we obtain the estimate:

e−
a2

2b+Ma ≤ e−
a2

4b + e−
a

2M ≤ e−
λ2

4 + e−
λ2
√
L̃γ1

2 ≤ e−
λ2

4 + e−
λ
2 ≤ 2e−

λ
2 .

Plugging into Freedman, we see that with probability at least 1 − 2e−λ/2, for all t with LCt (i) ≤ L̃ we
have
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UCt (i) ≤ LCt (i) + λ

√
L̃

γ1
.

Now we use these lemmas to prove Theorem 15. In both halves, the main idea is that if something holds
with high probability for any loss sequence, then the player must assign it high probability on average.
Proof of Theorem 15A:

Let E be the event that for all t with LRt (i) ≤ L∗ we have

URt (i) ≤ 2L∗ +
8 log T

γ2
.

By Lemma 32 we have P[E] ≥ 1 − 2
T 2 for any fixed loss sequence. The player does not know what the

true loss sequence is, but his prior is a mixture of possible loss sequences, and so the player also assigns
E a probability at least 1 − 2

T 2 at the start of the game. Let F denote the event that the player assigns
E probability Pt[E] ≥ 1 − 1

T at all times during the game. Since probabilities are martingales, F has
probability at least 1− 2

T by Doob’s inequality.
Assume that F holds, so that Pt[E] ≥ 1− 1

T at all times. After the first time τ thatURt (i) > 2L∗+ 8 log T
γ2

,
as long as E holds we must have LRt (i) > L∗ and so a∗ 6= i. Therefore, if F holds then after time τ we
always have pt(i) ≤ 1

T . So the expected number of additional times that arm i is pulled after this point is
less than 1.

On the complementary event where F does not hold we simply observe that this event has probability
at most 2

T and contributes loss at most T , therefore the expected loss from this event is at most 2.
To finish, we note that γ2U

R
t (i) is exactly the total loss paid by the player from arm i when i is rare.

Therefore τ is the first time t which satisfies

γ2U
R
t (i) > γ2

(
2L∗ +

8 log T

γ2

)
= 2γ2L

∗ + 8 log T.

Assuming that F holds, this means that at time τ we have∑
s≤τ

`Rs (i)1is=i = γ2U
R
t (i) ≤ 2γ2L

∗ + 8 log(T ) + 1.

It was just argued above that in this case i is pulled at most 1 additional time on average, and that the
case when F is false contributes at most 2 loss of i in expectation. Therefore the total expected loss from i
on rare rounds can be upper bounded by

2γ2L
∗ + 8 log T + 4.

Proof of Theorem 15B:

Let Eλ be the event that for all t with LCt (i) ≤ L∗ we have
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UCt (i) ≤ LCt (i) + λ

√
L∗

γ1
.

We apply Lemma 33 with L̃ = L∗ which says that for λ > 2 we have P[Eλ] ≥ 1− e−λ/2. Let τλ be the
first time that

UCt (i) > L∗ + λ

√
L∗

γ1
.

(If no such time exists, take τλ = +∞.) As before, note that at the beginning, the player must assign
probability at least 1 − 2e−λ/2 to E since his prior is some mixture of loss sequences. By definition, if E
holds then i 6= a∗ if time τλ is reached. Hence we see that E[pτλ(i)] ≤ 2e−λ/2 by optional stopping since
UCt (i) is computable (measurable) by the player. By Doob’s maximal inequality, the probability that there
exists t ≥ τλ with pt(i) > γ1 is at most

2e−λ/2

γ1
= 2e−

λ−2 log(1/γ1)
2 .

Now, let λ∗ be such that UCt (i) = L∗ + λ∗
√

L∗

γ1
at the last time t when pt(i) > γ1. We have just shown

an upper bound on the probability that there exists t with both

UCt (i) > L∗ + λ

√
L∗

γ1
and pt(i) > γ1.

So turning it the other way around, we see that

P[λ∗ > λ] ≤ 2e−
λ−2 log(1/γ1)

2 .

In other words, λ∗ has tail bounded above by an exponential random variable with half-life 2 log(2) starting
at 2 log(1/γ1) + 2 log(2), and therefore

E[λ∗] ≤ 2 log(1/γ1) + 10.

However, we always have UCT (i) = L∗ + λ∗
√

L∗

γ1
since after the last time t with pt(i) > γ1, the value of

UCt (i) cannot change. Recall also that UCT (i) is an unbiased estimator for LCT (i). Combining, we obtain:

E[LCT (i)] = E[UCT (i)] = L∗ + E[λ∗]

√
L∗

γ1
≤ L∗ + 2

(
log

(
1

γ1

)
+ 10

)√
L∗

γ1
.

A.3. Bandits with Better Mirror Maps

We begin by giving a re-interpretation of the work of (ZL19) for our setting. Call a function f : [0, 1]→ R+

admissible when it satisfies:

1. f ′(x) ≤ 0 for all x.
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2. f ′′(x) ≥ 0 for all x.

3. f ′′′(x) ≤ 0 for all x.

We then consider the potential function F (pt) =
∑

i f(pt(i)) for a probability vector pt. The ad-
missible functions we will consider are f(x) = x log(x) (negentropy), f(x) = −x1/2 (negative Tsallis
entropy), and f(x) = − log(Tx + 1) (log barrier). We define Max(F ) = maxp∈∆d

F (p) and Min(F ) =
minp∈∆d

F (p) where ∆d is the simplex of d-dimensional probability vectors. Note that convexity easily im-
plies Max(F ) = F (1) + (d−1)F (0) and Min(F ) = dF (1/d). We set diam(F ) = Max(F )−Min(F ).

The key point is that for any admissible f , we have:

Proposition 35

Et[F (pt+1)− F (pt)] ≥
∑
i

p̂t(i)pt(i)
2f ′′(pt(i))

(
¯̀
t(i)− ¯̀

t(i, i)
)2

+

2¯̀
t(i)

.

The proof is a one-sided quadratic estimate for f as in our reverse-chi-squared estimate.
Proof of Proposition 35:

We define (as in the proof of Lemma 13) ˜̀t(i) to be a {0, 1} variable with mean ¯̀
t(i) and conditionally

independent of everything else. We note that

P[a∗ = i|˜̀t(i) = 1] = pt(i|˜̀t(i) = 1) =
pt(i)¯̀

t(i, i)
¯̀
t(i)

by Bayes rule. Therefore

¯̀
t(i, i) =

pt(i|˜̀t(i) = 1)¯̀
t(i)

pt(i)

=⇒ ¯̀
t(i)− ¯̀

t(i, i) = ¯̀
t(i)

(
pt(i)− pt(i|˜̀t(i) = 1)

pt(i)

)
.

As a result, we have

∑
i

pt(i)
3f ′′(pt(i))

(
¯̀
t(i)− ¯̀

t(i, i)
)2

+

¯̀
t(i)

=
∑
i

pt(i)¯̀
t(i)f

′′(pt(i))
(
pt(i)− pt(i|˜̀t(i) = 1)

)2

+
.

Now, for any a, b we have by admissibility that

f(b)− f(a) ≥ f ′(a)(b− a) +
f ′′(a)

2
(a− b)2

+.

Indeed, as in the proof of Lemma 8, f(b) is convex on b ≥ a and f ′′(a)
2 -strongly convex on b ≤ a.

Therefore:

f(pt(i|`t(i))− f(pt(i)) ≥f ′(pt(i))(pt(i|`t(i))− pt(i)) +
f ′′(pt(i))

2
(pt(i)− pt(i|`t(i)))2

+

.
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Now we take the expectation over `t(i) and note that E[pt(i|`t(i))] = pt(i) by the martingale property.
We compute:

Et[f(pt(i|`t(i))− f(pt(i))] ≥E
[
f ′′(pt(i))

2
(pt(i)− pt(i|`t(i)))2

+

]
≥f
′′(pt(i))

2
¯̀
t(i)(pt(i)− pt(i|˜̀t(i) = 1))2

+.

Hence

E

[∑
i

p̂t(i)¯̀
t(i)f

′′(pt(i))
(
pt(i)− pt(i|˜̀t(i) = 1)

)2

+

]
≤ 2E

[∑
i

p̂t(i) (f(pt(i|`t(i)))− f(pt(i)))

]
.

Now note that f ′′ > 0 implies that f(X) is a submartingale for any martingale X , therefore

E[F (pt+1(i))− F (pt(i))] =
∑
i,j

p̂t(j)E[f(pt(i|`t(j)))− f(pt(j))]

≥
∑
i

p̂t(i)E[f(pt(i|`t(i)))− f(pt(i))]

≥
∑
i

p̂t(i)¯̀
t(i)

f ′′(pt(i))

2
(pt(i)− pt(i|˜̀t(i) = 1))2

+

=
∑
i

p̂t(i)pt(i)
2f ′′(pt(i))

((
¯̀
t(i)− ¯̀

t(i, i)
)2

+

2¯̀
t(i)

)
.

Cauchy-Schwarz and the rare/common decomposition gives the corollary:

Corollary 36
For any admissible f , and Ct,Rt generated by a parameter γ > 0, Thompson Sampling satisfies

E[RT ] ≤ E

 ∑
(t,i):i∈Rt

pt(i)`t(i)

+ E

 ∑
(t,i):i∈Rt

pt(i)(`t(i)− `t(i, i))


and the two terms are bounded by

E

 ∑
(t,i):i∈Rt

pt(i)`t(i)

 ≤ min
(
γT, d · (2γL∗ + 8 log(T ) + 4)

)

E

 ∑
(t,i):i∈Rt

pt(i)(`t(i)− `t(i, i))

 ≤√√√√2(Max(F )− F (p1)) · E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i))
.

24



Proof of Corollary 36:
As in the proof of Theorem 16 we have

E[RT ] ≤ E

 ∑
(t,i):i∈Rt

pt(i)¯̀
t(i)

+ E

 ∑
(t,i):i∈Ct

pt(i) · (¯̀
t(i)− ¯̀

t(i, i))+

 .
For the first term, the upper bound of γ is immediate while Theorem 15 says

E

 ∑
(t,i):i∈Rt

pt(i)¯̀
t(i)

 ≤ d · (2γL∗ + 8 log(T ) + 4).

For the second term, we have

E

 ∑
(t,i):i∈Ct

pt(i) · (¯̀
t(i)− ¯̀

t(i, i))+


≤

√√√√√E
∑

(i,t):i∈Ct

pt(i)3f ′′(pt(i))

(
¯̀
t(i)− ¯̀

t(i, i)
)2

+

¯̀
t(i)

·

√√√√E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i))

≤

√√√√E
∑
i,t

pt(i)3f ′′(pt(i))

(
¯̀
t(i)− ¯̀

t(i, i)
)2

+

¯̀
t(i)

·

√√√√E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i))

≤
√

2
∑
t

Et[F (pt+1)− F (pt)] ·

√√√√E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i))

≤
√

2 · E[F (pT )− F (p1)] ·

√√√√E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i))

≤

√√√√2 · (Max(F )− F (p1)) · E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i))
.

Now we can prove the refined bandit estimates.
Proof of Theorem 18:

We apply Corollary 36 with f(x) = −xα. Then f ′′(x) = α(1−α)xα−2 andMax(F ) = −1,Min(F ) =
−d1−α. So the resulting bound is

25



E[RT ] ≤d · (2γL∗ + 8 log(T ) + 4) +

√
2(−1 +

∑
i

p1(i)α)

√√√√E
∑

(i,t):i∈Ct

¯̀
t(i)pt(i)1−α

α(1− α)

≤d · (2γL∗ + 8 log(T ) + 4) +O(
√
Hα(p1))

E
∑

(i,t):i∈Ct

¯̀
t(i)

α/2E
∑

(i,t):i∈Ct

¯̀
t(i)pt(i)

(1−α)/2

≤d · (2γL∗ + 8 log(T ) + 4) +O(
√
Hα(p1))

(
L∗ + 2

(
log

(
1

γ

)
+ 10

)√
L∗

γ

)α/2
(E[LT ])(1−α)/2

Taking γ = log2(L∗)
L∗ and assuming E[RT ] ≥ 0 (else any regret statement is vacuous) we get

E[RT ] ≤d · (2 log2(L∗) + 8 log(T ) + 4) +O(
√
Hα(p1)) (dL∗)α/2 (E[LT ])(1−α)/2

≤d · (2 log2(L∗) + 8 log(T ) + 4) +O(
√
Hα(p1)) · dα/2 (L∗ + E[RT ])1/2 .

We apply the Lemma 37 below with:

• R = E[RT ]

• X = d · (2γL∗ + 8 log(T ) + 4)

• Y = O(
√
Hα(p1)dα)

• Z = L∗.

This gives the final regret bound

E[RT ] = O
(√

Hα(p1)dαL∗ +Hα(p1)dα + d log2(L∗) + d log(T )
)
.

Lemma 37
We have the general implication

R ≤ X + Y
√
Z +R =⇒ R ≤ X + Y 2 + Y

√
Z.

Proof

R ≤ X + Y
√
Z +R

=⇒ R2 − 2RX +X2 ≤ Y 2Z + Y 2R

=⇒ R2 − (2X + Y 2)R ≤ Y 2Z −X2

=⇒
(
R−

(
X +

Y 2

2

))2

≤ Y 4

4
+ Y 2Z −X2

=⇒ R ≤ X +
Y 2

2
+

√
Y 4

4
+ Y 2Z −X2 ≤ X + Y 2 + Y

√
Z.
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Proof of Theorem 19:
We apply Corollary 36 with f(x) = − log(Tx + 1). We have diam(F ) ≈ d log(T ) and f ′′(x) =
1

(x+T−1)2
. We also define Ct,Rt using γ = T−1. The Rt part of the bound in the Corollary is at most

γT = 1 so it remains to estimate the Ct sum.

To do this we observe that for pt(i) ≥ γ = 1
T we have

f ′′(pt(i))
−1 = (pt(i) + T−1)2 ≤ pt(i)2 + 3pt(i)T

−1.

Plugging in this estimate gives

∑
t,i:i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i))
≤
∑
t,i

(
pt(i)¯̀

t(i) +
3¯̀
t(i)

T

)
≤ E[LT ] + 6d.

Going back to the beginning and combining, we have shown

E[RT ] = O
(√

d log(T )(E[LT ] + d) + 1
)

= O
(√

dE[LT ] log(T ) + d
√

log(T )
)
.

Again, a− b ≤
√
ac implies a− b ≤

√
bc+ c for non-negative a, b, c. We take

• a = E[LT ]

• b = E[L∗] +O(d
√

log(T ))

• c = O(d log(T ))

Therefore we obtain

E[RT ] = O
(√

dE[L∗] log(T ) + d log(T )
)

A.4. Semi-bandit Proof

We first illustrate why the naive extension of the m = 1 case fails to be tight in the semi-bandit case. Then
we introduce the rank ordering of arms and explain how to define rare arms in this context. Finally, we prove
Theorem 20.

A.4.1. NAIVE ANALYSIS AND INTUITION

We let a∗ ∈ A be the optimal set of m arms, and assume that it has loss at most L∗. We let `t(i, i) =
E[`t(i)|i ∈ a∗]. Ignoring the issue of exactly how to assign arms as rare/common, we have

E[RT ] = E

∑
t,i

pt(i)(`t(i)− `t(i, i))

 ≤ E

 ∑
(t,i):i∈Rt

pt(i)`t(i)

+E

 ∑
(t,i):i∈Ct

pt(i) · (¯̀
t(i)− ¯̀

t(i, i))+


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The first term is again small due to Theorem 15 and the second term can be estimated as

E

 ∑
(t,i):i∈Ct

pt(i) · (¯̀
t(i)− ¯̀

t(i, i))+

 ≤ E

 ∑
(t,i):i∈Ct

`t(i)

 ·Hc(a∗).

The main difference is that now the coordinate entropy Hc(a∗) can be as large as Õ(m). So the result is

E[RT ] ≤ Õ(
√
Hc(a∗)dL∗) = Õ(

√
mdL∗).

This argument is inefficient because it allows every arm to have loss L∗ before becoming rare. However
only j optimal arms can have loss more than L∗

j . So although the coordinate entropy of a∗ can be as large as

Õ(m), the coordinate entropy on the arms with large loss so far is much smaller. This motivatives the rank
ordering we introduce below.

A.4.2. RARE ARMS AND RANK ORDER

In this subsection we give two notions needed for the semi-bandit proof. First, analogously to our definition
of rare and common arms in the bandit m = 1 case, we split the action set A into rare and common arms.
We start with an empty subset Rt = ∅ ⊆ [d] of rare arms and grow it as follows. As long as there exists i
so that Pt[(i ∈ a∗) and (Rt ∩ a∗ = ∅)] ≤ γ, we add arm i toRt. Note that we must perform this procedure
recursively because the actions have overlapping arms. The result is a time-varying partition of the arm set
[d] = Rt ∪ Ct which at any time satisfies:

1. For any i ∈ Ct we have

pt(i) ≥ Pt [(i ∈ a∗) and (Rt ∩ a∗ = ∅)] > γ.

2. For any i ∈ Rt we have
pt(i) ≤ P[a∗ 6⊆ Ct] ≤ dγ.

As a result of this construction, for semi-bandit situations we will take (γ1, γ2) = (γ, dγ) in applying
Theorem 15.

The next step is to implement a rank ordering of them coordinates. We let a∗ = {a∗1, a∗2, . . . , a∗m}where
LT (a∗1) ≥ LT (a∗2) ≥ · · · ≥ LT (a∗m) and ties are broken arbitrarily. Crucially, we observe that

LT (a∗j ) ≤
L∗

j
.

We further consider a general partition of [m] into disjoint subsets S1, S2, . . . , Sr. Define a∗Sk = {a∗s :
s ∈ Sk}. We will carry out an information theoretic argument on the events {i ∈ a∗Sk} and see that taking
a dyadic partition allows a very efficient analysis. Our naive analysis corresponds to the trivial partition
S1 = [m].
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A.4.3. PROOF OF THEOREM 20

We first prove a suboptimal Shannon entropy version of the Theorem to guide the intuition for parts of the
construction. The only difference is a multiplicative

√
log(d) in the main term.

Theorem 38 The expected regret of Thompson Sampling in the semi-bandit case is

O
(

log(m)
√
dL∗ log(d) +md2 log2(L∗) + d log(T )

)
.

Proof
First, we define:

pt(i, Sk) := P[i ∈ a∗Sk ]

¯̀(i, Sk) = E[`t(i) : i ∈ aSk ]

We explain the changes from the m = 1 case, and then give the precise results. We again begin by
bounding the regret by the total loss from rare arms plus the regret from common arms. We pick a threshold
γ and apply the recursive procedure from the previous section. This means that Theorem 15 will apply with
(γ1, γ2) = (γ, dγ) for any γ. We set

(γ1, γ2) =

(
m log2(L∗)

L∗
,
md log2(L∗)

L∗

)
.

Now for the analysis:

E[RT ] ≤ E

 ∑
(t,i):i∈Rt

pt(i)¯̀
t(i)

+ E

 ∑
(t,i):i∈Ct

pt(i)(¯̀
t(i)− ¯̀

t(i, i))


= E

 ∑
(t,i):i∈Rt

pt(i)¯̀
t(i)

+ E

 ∑
(t,i,k):i∈Ct

pt(i, Sk)(¯̀
t(i)− ¯̀

t(i, Sk))

 .
The first term is bounded by O

(
md2 log2(L∗) + d log(T )

)
as a direct application of Theorem 15. For

the second term we have by Cauchy-Schwarz that

E

 ∑
(t,i,k):i∈Ct

pt(i, Sk)(`t(i)− `t(i, Sk))



≤
∑
k

E

∑
(t,i)

pt(i)pt(i, Sk)

(
(¯̀
t(i)− ¯̀

t(i, Sk))
2
+

¯̀
t(i)

)1/2

E

 ∑
(t,i):i∈Ct

pt(i, Sk)`t(i)

pt(i)

1/2
 .

By Lemma 14 the first expectation can be estimated information theoretically by Hc(a∗Sk):

E

∑
(t,i)

pt(i)pt(i, Sk)

(
(¯̀
t(i)− ¯̀

t(i, Sk))
2
+

¯̀
t(i)

) ≤ 2
∑
t

Ict [Sk] ≤ 2 ·Hc(a∗Sk).
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Substituting this estimate, we have upper-bounded the common-arm regret term by

∑
k

√√√√√2 ·Hc(a∗Sk)E

 ∑
(t,i):i∈Ct

pt(i, Sk)`t(i)

pt(i)

.
The key reason for introducing the sets Sk now appears, which is to give a separate estimate for the

inner expectation. Let sk = min(Sk). Observe that if Lt(i) >
L∗

sk
, then we cannot have i ∈ a∗Sk because

Lt(a
∗
j ) ≤ LT (a∗j ) ≤

L∗

j < Lt(i) for any j ∈ Sk. So roughly, for each fixed i the sum

∑
t: i∈Ct

pt(i, Sk)¯̀
t(i)

pt(i)

will usually stop growing significantly once Lt(i) >
L∗

sk
because pt(i, Sk) will be very small while

pt(i) ≥ γ. Before this starts to happen, we have the simple estimate pt(i,Sk)
pt(i)

≤ 1. Therefore the sum should

be bounded by approximately L∗

sk
. In fact Lemma 39 below guarantees:

E

[ ∑
t: i∈Ct

pt(i, Sk)¯̀
t(i)

pt(i)

]
≤

(
L∗

sk
+O

(
log

(
1

γ1

)√
L∗

skγ1

))
.

Therefore using the fact that Hc(a∗Sk) = O(|Sk| log(d)) and multiplying by d to account for the d arms,
we have an estimate of the common arm regret contribution of

O

∑
k

√
2d log(d)|Sk|L∗

(
1

sk
+O

(
log

(
1

γ1

)√
1

skγ1L
∗

)) .

Since γ1 = m log2 L∗

L∗ we have

log

(
1

γ1

)√
1

skγ1L
∗ = O

(√
1

skm

)
.

Substituting, and observing that√
1

sk
+O

(√
1

skm

)
=

√
1

sk
+O

(√
1

m

)

we have that the common arm regret is at most

O

∑
k

√
2d log(d)|Sk|L∗

(
1

sk
+O

(√
1

skm

)) =
√
d log(d)L∗ ·O

∑
k

√
|Sk|
sk

 .

We are left with finding a partition (S1, . . . , Sr) that makes this last sum small. Taking the whole set
S1 = [m] as in the naive analysis gives

√
m, while taking d singleton subsets Sk = {k} gives

∑m
k=1 k

−1/2 =
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Θ(
√
m). But taking a dyadic decomposition does much better! Letting Sk = {2k−1, . . . , 2k − 1} gives a

sum of ∑
k≤dlog2(m)e

√
2 = O(logm).

This yields a common arm regret estimate of

O(log(m)
√
d log(d)L∗.

Combining with the estimate for rare arms, we have the claimed result.

Lemma 39 Fix a subset Sk ⊆ [m], let sk = min(Sk), and let γ1 be a constant satisfying m
L∗ ≤ γ1 ≤ 1

2 .
Thompson Sampling satisfies

E

[ ∑
t: i∈Ct

pt(i, Sk)¯̀
t(i)

pt(i)

]
≤ L∗

sk
+O

(
log

(
1

γ1

)√
L∗

skγ1

)
.

Proof of Lemma 39: We first apply Lemma 33 with γ1 = γ and

L̃ =
L∗

sk
.

The lemma says that for λ ≥ 2 and γ1 ≥ sk
L∗ , with probability at least 1 − 2e−λ/2, for all t with

LCt (i) ≤ L∗

sk
we have

UCt (i) ≤ LCt (i) + λ

√
L∗

skγ1
≤ L∗

sk
+ λ

√
L∗

skγ1
.

We note that since pt(i, Sk) ≤ pt(i) and γ ≤ pt(i) we have

E

[ ∑
t: i∈Ct

pt(i, Sk)¯̀
t(i)

pt(i)

]
≤ A+ 1 +

(
1

γ

)
E

 ∑
t: i∈Ct,LCt (i)≥A

pt(i, Sk)¯̀
t(i)

 .
for any A. We rewrite the latter expectation, then essentially rewrite it again as a Riemann-Stieltjes

integral (where pt(i, Sk) = pbtc(i, Sk) for any positive real t):

E

 ∑
t: i∈Ct,LCt (i)≥A

pt(i, Sk)¯̀
t(i)

 = E

 ∑
LCt (i)≥A

pt(i, Sk)`
C
t (i)


≤ E

[∫ ∞
A

pt(i, Sk)dL
C
t (i)

]
.

Define τx to be the first value of t satisfying

LCt (i) ≥ x
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and set τx = ∞ if LCT (i) < x. Since losses are bounded by 1 we always have t ≥ τLCt (i)−1. Therefore,
changing variables from t to LCt (i) gives

E
[∫ ∞

A
pt(i, Sk)dL

C
t (i)

]
≤ E

[∫ ∞
A

max
t≥τx−1

(pt(i, Sk)) · 1τx<∞dx
]

≤ E
[∫ ∞

A
max
t≥τx−1

(pt(i, Sk)) · 1τx−1<∞dx

]
≤ 1 + E

[∫ ∞
A

max
t≥τx

(pt(i, Sk)) · 1τx<∞dx
]

Translating the result of Lemma 33 shows that when x = L∗

sk
+ λ

√
L∗

skγ1
for λ > 2 we have

E[pτx(i, Sk)1τx<∞] ≤ 2e−λ/2.

Now, the average maximum of a martingale started at p and bounded in [0, 1] is seen by Doob’s inequality
to be at most p(1− log p). Therefore

E[max
t≥τx

pt(i, Sk)1τx<∞|Fτx ] ≤ pτx(i, Sk) · (1− log (pt(i, Sk))) · 1τx<∞.

The function f(x) = x(1− log x) is concave, so by Jensen’s we have

E[max
t≥τx

pt(i, Sk)1τx<∞] ≤ 2(1 + λ/2)e−λ/2 = (λ+ 2)e−λ/2

where λ is such that x = L∗

sk
+ λ
√

L∗

skγ1
.

So taking A = L∗

sk
+ 10 log

(
1
γ

)√
L∗

skγ1
and changing variables to integrate over λ gives an estimate of

A+

√
L∗

skγ1

∫ ∞
10 log(1/γ)

(λ+ 2)e−λ/2dλ.

This integral is bounded since γ1 ≤ 1
2 (and also 10 log(1/γ) ≥ 2, which is needed since only λ > 2 is

allowed in Lemma 33) so we get a bound of

L∗

sk
+O

(
log

(
1

γ1

)√
L∗

skγ1

)
.

We now explain how to modify the above analysis to use the Tsallis entropy and the log barrier instead
of the Shannon entropy. Because the prior-dependence now requires the rank ordering to state, we suppress
it for simplicity and obtain bounds depending on diam(F ). Similar to Corollary 36 we have the following
lemma.

Lemma 40
For any admissible f , and Ct,Rt generated by (γ1, γ2), Thompson Sampling for a semibandit problem

satisfies

E[RT ] ≤ E

 ∑
(t,i):i∈Rt

pt(i)¯̀
t(i)

+ E

 ∑
(t,i,k):i∈Ct

pt(i, Sk)(¯̀
t(i)− ¯̀

t(i, Sk))


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where

E

 ∑
(t,i):i∈Rt

pt(i)¯̀
t(i)

 ≤ min
(
γ2T,md

2 log2(L∗) + d log(T )
)

E

 ∑
(t,i,k):i∈Ct

pt(i, Sk)(¯̀
t(i)− ¯̀

t(i, Sk))

 ≤∑
k

√√√√2 · diam|Sk|(F ) · E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i, Sk))
.

Here diamj(F ) is the diameter of F =
∑d

i=1 f(xi) restricted to {x ∈ [0, 1]d,
∑d

i=1 xi = j}.

Proof
Everything is clear except the final statement. Denote pt(Sk) the vector with (pt(Sk))i = Pt[i ∈ Sk].

Then the calculation (whose justification is completely analogous to the m = 1 setting) goes:

E

 ∑
(t,i):i∈Ct

pt(i, Sk) · (¯̀
t(i)− ¯̀

t(i, Sk))+


≤

√√√√√E
∑

(i,t):i∈Ct

pt(i)pt(i, Sk)2f ′′(pt(i, Sk))

(
¯̀
t(i)− ¯̀

t(i, Sk)
)2

+

¯̀
t(i)

·

√√√√E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i, Sk))

≤

√√√√E
∑
i,t

pt(i)pt(i, Sk)2f ′′(pt(i, Sk))

(
¯̀
t(i)− ¯̀

t(i, Sk)
)2

+

¯̀
t(i)

·

√√√√E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i, Sk))

≤
√

2
∑
t

Et[F (pt+1(Sk))− F (pt(Sk))] ·

√√√√E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i, Sk))

≤
√

2(F (pT (Sk))− F (p1(Sk))) ·

√√√√E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i, Sk))

≤

√√√√2 · diam|Sk|(F ) · E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i, Sk))
.

Proof of Theorem 20:
We apply the preceding lemma with f(x) = −x1/2 and Sk the dyadic partition of [m] and (γ1, γ2) =

(m log2(L∗)
L∗ , md log2(L∗)

L∗ ). Then f ′′(x) = 1
4x3/2

. We have diamj(F ) ≤
√
jd. Therefore the common arm

regret is at most
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E

 ∑
(t,i,k):i∈Ct

pt(i, Sk)(¯̀
t(i)− ¯̀

t(i, Sk))

 ≤O
∑

k

√√√√2k/2d1/2 · E
∑

(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i, Sk))


≤O

∑
k

√√√√2k/2d1/2 · E
∑

(i,t):i∈Ct

pt(i, Sk)3/2 ¯̀
t(i)

pt(i)

 .

Now from Cauchy-Schwarz and pt(i, Sk) ≤ pt(i) we have

E
∑

(i,t):i∈Ct

pt(i, Sk)
3/2`t(i)

pt(i)
≤

E
∑

(i,t):i∈Ct

pt(i, Sk)`t(i)

pt(i)

1/2

·

E
∑

(i,t):i∈Ct

pt(i, Sk)`t(i)

1/2

.

By Lemma 39 (with an extra factor of d for summing over all arms) and using γ1 = m log2(L∗)
L∗ we obtain

E
∑

(i,t):i∈Ct

pt(i, Sk)`t(i)

pt(i)
= d ·O

(
L∗

2k
+ log

(
1

γ1

)√
L∗

2kγ1

)
= O

(
dL∗

2k/2

)
.

Also it is clear by definition that

E
∑

(i,t):i∈Ct

pt(i, Sk)`t(i) ≤ E[LT ].

Combining we have a common arm regret of at most

O

∑
k

√
2k/2d1/2 ·

√
dL∗

2k
· E[LT ]

 = O

(∑
k

√
dLT

)
= O

(
log(m)

√
dLT

)
.

Adding in the rare arm regret gives:

E[RT ] ≤ O
(
md2 log2(L∗) + d log(T ) + log(m)

√
d · (L∗ + E[RT ])

)
Now we apply Lemma 37 with:

• R = E[RT ]

• X = O(md2 log2(L∗) + d log(T ))

• Y = O(log(m)
√
d)

• Z = L∗

The result is as claimed:

E[RT ] ≤ O
(

log(m)
√
dL∗ +md2 log2(L∗) + d log(T )

)
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We now prove the analogous result with the log barrier.
Proof of Theorem 21:

We apply the lemma with f(x) = − log(Tx + 1) and (γ1, γ2) = ( 1
T ,

d
T ) with no partitioning scheme,

i.e. S1 = [m]. Then f ′′(x)−1 = (x + T−1)2 ≤ x2 + 3x
T when x ≥ T−1. We have diamj(F ) ≤ d log(T ).

Therefore the common arm regret is at most

E

 ∑
(t,i):i∈Ct

pt(i)(¯̀
t(i)− ¯̀

t(i, i))

 ≤O
√√√√d log(T ) · E

∑
(i,t):i∈Ct

¯̀
t(i)

pt(i)f ′′(pt(i))


≤O

√d log(T ) · E
∑

(i,t):i∈Ct

(pt(i) + 3T−1)¯̀
t(i)


≤O

(√
d log(T ) · (E[LT ] + 3d)

)
≤O

(√
d log(T ) · E[LT ] + d

√
log(T ))

)
The rare arm regret is at most d which is absorbed in the O(d

√
log(T )). The result now follows from

the same computation as the end of the proof of Theorem 19.

A.5. Thresholded Thompson Sampling

Here we prove Theorems 22 and 23. First we precisely define thresholded Thompson Sampling. For some
parameter γ > 0, we have already described how to generate a partition [d] = Rt ∪ Ct into common and
rare actions. In the bandit case, we define Thompson Sampling thresholded at γ as a Bayesian algorithm
playing from the following distribution:

p̂t(i) =

{
0 if i ∈ Rt

pt(i)
1−

∑
j∈Rt

pt(j)
if i ∈ Ct.

.

In the semi-bandit case, we use the following definition which generalizes the above:

p̂t(at = a) =

{
0 if a ∩Rt 6= ∅

pt(a)
1−

∑
a′∩Rt 6=∅

pt(a′)
if a ∩Rt = ∅.

Note that in the semi-bandit case, for i ∈ Ct we may have p̂t(i) < pt(i). However we always have
p̂t(i) ≥ γ, so Theorem 15 still applies.

Theorem 22
Suppose that the best action almost surely has total loss at most L∗. Thompson Sampling for bandit

feedback, thresholded with γ = log2(L∗)
L∗ ≤ 1

2d , has expected regret

E[RT ] = O
(√

dL∗ + d log2(L∗)
)
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Theorem 23
Suppose that the best combinatorial action almost surely has total loss at most L∗. Thompson Sampling

for semi-bandit feedback, thresholded with γ = m log2(L∗)
L∗ ≤ 1

2d , has expected regret

E[RT ] = O
(

log(m)
√
dL∗ +md log2(L∗)

)
.

Proof of Theorem 22:

Note that we always have

p̂t(i) ≤
pt(i)

1− γd
.

We therefore have the calculation

E[RT ] = E

∑
i,t

p̂t(i)¯̀
t(i)− pt(i)`t(i, i)


= E

[
(p̂t(i)− pt(i))¯̀

t(i, i)
]

+ E
[
p̂t(i)(¯̀

t(i)− ¯̀
t(i, i)

]

≤
(

γd

1− γd

)
· E

∑
i,t

pt(i)¯̀
t(i, i)

+ E

 ∑
(i,t):i∈Ct

p̂t(i)(¯̀
t(i)− ¯̀

t(i, i))

 .
The former expectation is at most L∗ while the second can be bounded in the same way as the non-

thresholded results. Indeed, since p̂t(i)/pt(i) ≈ 1 whenever i ∈ Ct there is no issue in adapting any of the
proofs.

The result is that we get the same common arm regret as in the proof of Theorem 18 but with only an
additive d log2(L∗) from the rare arms. From here it is easy to conclude as in that proof.

Proof of Theorem 23:

If we threshold at γ, we remove at most γd probability of actions, so we still have

p̂t(i) ≤
pt(i)

1− γd
.

The corresponding calculation is

E[RT ] = E

∑
i,t

p̂t(i)¯̀
t(i)− pt(i)`t(i, i)


= E

[
(p̂t(i)− pt(i))¯̀

t(i, i)
]

+ E
[
p̂t(i)(¯̀

t(i)− ¯̀
t(i, i)

]

≤
(

γd

1− γd

)
· E

∑
i,t

pt(i)¯̀
t(i, i)

+ E

 ∑
(i,t):i∈Ct

p̂t(i)(¯̀
t(i)− ¯̀

t(i, i))

 .
36



≤
(

γd

1− γd

)
L∗ +

∑
k

E

 ∑
(i,t):i∈Ct

p̂t(i)pt(i, Sk)

pt(i)
(¯̀
t(i)− ¯̀

t(i, Sk))

 .
We take the sets Sk to be the same dyadic partition of [m] as in the non-thresholded case. Thresholding

at γ = m log2(L∗)
L∗ makes the first term md log2(L∗), and the second term again satisfies the same estimates

as in the non-thresholded case up to a 1 + γd = O(1) multiplicative factor. So again we get the same
estimates as in the proof of Theorem 20 but with no rare arm terms, which easily gives the result.

A.6. Proofs of Negative Results

A.6.1. THOMPSON SAMPLING DOES NOT SATISFY HIGH-PROBABILITY REGRET BOUNDS

It is natural to ask for high-probability regret bounds. Here we point out that against a worst-case prior,
Thompson Sampling does not satisfy any high-probability regret bound even with full feedback.

Theorem 27
There exist prior distributions for which Thompson Sampling achieves Ω(T ) regret a constant fraction

of the time, with either full or bandit feedback.

Proof
We construct such a prior distribution with 2 arms. First, arm 1 sees loss 1 for each the first T/3 rounds

while arm 2 sees none. Then with probability 50%, both arms see no more loss, while with probability 50%,
arm 2 sees loss 1 for the last 2T/3 rounds but arm 1 still sees no more loss.

In this example, Thompson Sampling will pick arm 1 half the time for the first T/3 rounds, hence has a
50% chance to have a linear regret from the case that there no further loss.

A.6.2. THOMPSON SAMPLING DOES NOT ACHIEVE FULL T -INDEPENDENCE

Our first-order regret bounds for non-thresholded Thompson Sampling in the (semi)bandit cases had d log(T )
terms. Here we show that mild T -dependence is inherent to the algorithm.

Theorem 28
There exist prior distributions against which Thompson Sampling achieves Ω(dL∗) expected regret for

very large T with bandit feedback, even given the value L∗.

Proof
An example prior distribution for at least 3 arms is as follows. First pick a uniformly random “good”

arm. For the others, flip a coin to decide if they are “bad” or “terrible”.
We insist that the good arm have loss 0 on the first round and the other arms have loss 1. For the good

arm, every subsequent loss is a fair coin flip until the total loss reaches L∗. For each bad arm we do the same
but stop when the loss reaches L∗ + 1. The terrible arms receive fair coin flip losses forever.

Assume that the player does not pick the good arm on the first time-step. We claim that given infinite
time, the player will pay loss L∗ + 1 on each terrible arm, which implies the desired result.
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Indeed, suppose the player played a terrible arm i most recently at time t̂, did not play i on the first
round, and has observed loss less than L∗ on this arm. Then we claim that the player’s probability for arm i
to be good must be bounded away from 0 for any fixed t̂. Indeed, the initialization with i as the good arm
and the good arm to be bad must be uniformly positive. The only Bayesian evidence for the truth over this
alternative hypothesis is the player’s observed losses on arm i. But these observations are inconclusive and
since t is fixed their Bayes factor stays bounded.

Additionally, with probability 1 the player’s probability assigned to the true arm configuration is bounded
away from 0 uniformly in time. Indeed, being a martingale, if this were false then the probability would have
to converge to 0. But the player’s subjective probability of a true statement cannot converge to 0, because
the player after an infinite amount of time would assign the true statement probability 0.

Since for fixed t̂ the Bayes factor between the truth and the alternative is bounded, we see that this
alternative with arm i as the good arm has probability bounded away from 0 uniformly in time.

We have just argued that Thompson Sampling with this prior will have a uniformly positive probability
to play such an arm i until it plays i again. Thus, with probability d−1

d (for the first arm not to be good),
Thompson Sampling accumulates loss L∗+ 1 on every terrible arm except the first arm it plays. This results
in Ω(dL∗) regret.

Theorem 29
It is possible that Thompson Sampling achieves, with high probability, loss Ω(

√
T ) for a contextual

bandit problem with L∗ = 0 optimal loss, K = 2 cliques, and d = O(
√
T ) total arms.

Proof
Set S =

√
T and fix d ≥ 2S. Form S distinct small cliques, with random but disjoint sets of d

2S
arms each. Call these cliques C1, . . . , CS . Also generate independent random bits b1, . . . , bS . Then for
j ∈ {0, 1, . . . ,

√
T − 1}make the loss bi on the small clique Cj for rounds {jS+ 1, . . . , (j+ 1)S} and 0 on

the complement [d]\Cj . (So the feedback graphs are cliques on Cj and [d]\Cj .) Finally, in the last round
pick at random a single arm ak with no loss so far and make the loss 0 for ak and 1 for all other arms.

Then clearly L∗ = 0 for this arm ak. However Thompson Sampling will incur a constant expected loss
for each clique Cj hence pays total expected cost Θ(S) = Θ(

√
T ).
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