
Proceedings of Machine Learning Research vol 117:1–18, 2020 31st International Conference on Algorithmic Learning Theory

Interactive Learning of a Dynamic Structure

Ehsan Emamjomeh-Zadeh∗ EHSANEZ@FB.COM
Facebook, Seattle, WA USA

David Kempe DAVID.M.KEMPE@GMAIL.COM
Department of Computer Science, University of Southern California, Los Angeles, CA USA

Mohammad Mahdian MAHDIAN@GOOGLE.COM
Google Research, New York, NY USA

Robert E. Schapire SCHAPIRE@MICROSOFT.COM

Microsoft Research, New York, NY USA

Editors: Aryeh Kontorovich and Gergely Neu

Abstract
We propose a general framework for interactively learning combinatorial structures, such as (binary
or non-binary) classifiers, orderings/rankings of items, or clusterings, when the underlying struc-
ture changes over time. Inspired by Angluin’s equivalence query model, the algorithm proposes a
structure in each round, and it either learns that its proposal is the true structure in this round, or it
observes a specific mistake in the proposal. The feedback is correct only with probability 1 − p,
and adversarially incorrect with probability p. The algorithm’s goal is to minimize its number of
mistakes over the course of R rounds.

Our general framework is based on a graph representation of the structures and feedback in
a static environment, proposed by Emamjomeh-Zadeh and Kempe (2017). To be able to learn
efficiently, it is sufficient that there be a graph G whose nodes are the candidate structures and
whose (weighted) edges capture the possible feedback, satisfying a certain natural shortest paths
property.

To model the evolution of the underlying structure, we consider two natural models, which we
term the Shifting Target model and Drifting Target model. In the former, the true structure always
belongs to a small pool of candidate structures. In the latter, the structure can change only by
transitioning along the edges of a known evolution graph. In order to achieve non-trivial results, we
bound the total number of times the underlying structure can change, denoted by B. We provide
upper and lower bounds on the number of mistakes, which depend on the total number of changes
B, the total number of structures n, and natural measures of complexity of the dynamic models:
the size of the pool of candidate structures in the Shifting Target model, and the maximum degree
of the evolution graph in the Drifting Target model.

1. Introduction

We consider the task of interactively learning a combinatorial structure, such as a classifier, ranking,
or clustering, when the structure itself evolves over time. The point of departure for our work is the
equivalence query model of Angluin (1988), and its recent generalization to learning combinatorial
structures by Emamjomeh-Zadeh and Kempe (2017). In this generalized framework, the learner
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repeatedly proposes a structure, and receives feedback in the form of a “local correction” that makes
the structure more similar to the ground truth, called target structure by Emamjomeh-Zadeh and
Kempe (2017). The goal in the static model is to minimize the number of rounds of interactions
(which is equal to the number of mistakes) until the learner has identified the target structure.

As a concrete example, consider a search engine interacting repeatedly with a user or popula-
tion of users. With each interaction (in the form of a concrete query), the search engine proposes a
ranking of a fixed set of items (with respect to the query); it then receives feedback in the form of a
user clicking on a lower-ranked page instead of (or before) clicking on a higher-ranked one. The im-
plication of this interaction is that the item which was clicked preferentially should be ranked ahead
of all the items the user skipped (Joachims, 2002; Radlinski and Joachims, 2005); this constitutes a
“local” correction that would improve the learner’s ranking. In the general model of Emamjomeh-
Zadeh and Kempe (2017) (described in more detail in Section 2), there is a known graph G whose
nodes are all structures (i.e., the search space), and whose edges capture the possible responses. For
the concrete example of the search engine, the nodes are all rankings (permutations) of the pages,
and there is an edge from a permutation π to µ if and only if µ can be obtained by moving one
element of π ahead by one or more positions.

Emamjomeh-Zadeh and Kempe (2017) show that as long as the graph G satisfies a certain
shortest-path property with respect to the responses the learner may receive, a learner can interac-
tively find the target structure in a number of rounds that is logarithmic in the number of possible
candidate structures. This result holds even when each response is, with probability p < 1

2 , adver-
sarially incorrect. Subsequently, Dereniowski et al. (2019) generalized this result to fully adversarial
noise. Applied to the concrete example of rankings, these results imply that under the given feed-
back model, a learner can identify the target ranking in O(n log n) rounds, even in the presence of
random or adversarial noise. In addition, the framework naturally recovers past results on learning
a classifier or a clustering (Balcan and Blum, 2008; Awasthi and Zadeh, 2010; Awasthi et al., 2017).

The main novel aspect of our work is that we consider the general interactive learning problem
in a setting where the target may evolve over time. Such changes in the target may naturally occur
due to a number of reasons.

First, the learner may be interacting with a population of users (such as multiple people sharing
the same computer and thus the same search engine or recommendation system) rather than a single
user. In this case, there will be a (small) set of target structures, and each user response — when
not noisy — is consistent with one of the structures, but the specific structure may change between
rounds. We call the resulting model (defined formally in Section 2.2.1) the Shifting Target Model.
As we discuss more in Section 6, this model resembles the Shifting Expert Advice problem (see,
e.g., Bousquet and Warmuth (2002)).

Second, the target structure may gradually evolve. For instance, a user’s preferred ranking of
web pages or pieces of music may change over time. While the overall set of candidate structures
may be large, in each round, the structure will only change slightly. We can model such a gradual
evolution by assuming that there is an evolution graph G′ on all structures; from one round to the
next, the target structure can only change from a structure to a neighboring structure in G′. We call
this model (defined in Section 2.2.2) the Drifting Target Model.
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1.1. Our Contribution

We provide learning algorithms for both the Shifting Target and Drifting Target models, in the
general interactive learning framework of Emamjomeh-Zadeh and Kempe (2017). The algorithms
should minimize the number of mistakes over the R rounds, and ideally, each prediction should be
computed efficiently in the size of the graph (independently of the number of rounds).

Here, we informally state the main results of our work; see Sections 4 and 5 for formal state-
ments and proofs. In the theorem statements, n is the number of candidate structures, B is an upper
bound on the number of times that the underlying target structure changes, and p is the probability
of receiving incorrect answers to queries.

Theorem 1 (Informal) Consider the Shifting Target model in which the target structure can shift
only within an (unknown) set of at most k structures. There exists an “almost efficient” deterministic
learning algorithm1 that makes at most 1

1−H(p) ·
(
k · log n+B · log k +R ·H(B/R)

)
mistakes in

expectation, where H(p) = p log 1
p + (1− p) log 1

1−p denotes the entropy.
In the worst case, every algorithm for this problem (including inefficient or randomized algo-

rithms) makes at least 1
1−H(p) ·

(
k · log n+B · log k

)
mistakes in expectation.

Theorem 2 (Informal) Consider the Drifting Target model in which the target structure moves
along the edges of an evolution graph G′ with maximum degree ∆. There exists an efficient deter-
ministic algorithm that makes at most 1

1−H(p) ·
(

log n + B · log ∆ + R · H(B/R)
)

mistakes in
expectation. Every algorithm for this problem (even inefficient or randomized ones) makes at least

1
1−H(p) ·

(
log n+B · log ∆

)
mistakes in expectation.

In order to prove our lower bounds, in Appendix A, we show a lower bound on the expected
query complexity of the classic binary search problem on a sorted array. While Ben-Or and Has-
sidim (2008) show a lower bound that holds with high probability, that bound does not exactly
provide the kind of bounds that we need.

1.2. Related Work

The model of Emamjomeh-Zadeh and Kempe (2017), and by extensions ours, is based on the equiv-
alence query model of Angluin (1988). The equivalence query model is known to be equivalent to
the Online Learning model of Littlestone (1988). Both models focus on learning a (binary) classi-
fier; a large amount of follow-up work has studied this problem.

Interactive learning of a combinatorial structure can be considered as a version of the Multi-
Armed Bandit problem or the Expert Advice problem. Each candidate structure corresponds to one
arm (or expert). In every round, the loss associated with the target structure is 0, while the loss of
every other arm is 1. Then, the total loss of any algorithm is the number of mistakes it makes. In
our model, the learner does not receive full information about all the experts; rather, it observes the
loss of its prediction as well as “directional” feedback to the good expert of this round, both through
a noisy channel.

A model with superficially similar flavor, which lies between the Expert Advice problem and the
Multi-Armed Bandit problem, is the Graph Feedback model (see, e.g., (Alon et al., 2015, 2017)).

1. The running time is exponential in k, but no other parameters.
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In this model, the arms/experts are also the nodes of a graph. In each round, the learner observes
the loss of the chosen arm as well as the loss of each of its neighbors. Notice that the graph plays
very different roles in the Graph Feedback model and in our model: in the Graph Feedback model,
it captures observability of rewards, while in our model, it provides directional information.

Active learning of a permutation which evolves throughout the learning process has been studied
in a closely related model by Anagnostopoulos et al. (2011); Besa Vial et al. (2018b,a). In their
models, the learner actively chooses pairs of items to compare. In contrast, in our model, the
mistake in the permutation that is revealed to the learner is chosen by an adversary. Furthermore,
we treat the problem in the more general setting of learning a general combinatorial structure.

A model very similar to our Shifting Target model was considered by Deligkas et al. (2017).
In their model, however, a target is chosen randomly from a small pool with respect to a fixed
distribution. They show that if one node is more likely to be the target than all other nodes combined,
one can identify this specific target in a logarithmic number of rounds. Their focus is on learning the
identity of one target (or more targets, under extra assumptions), rather than minimizing the number
of mistakes over a long sequence.

2. Preliminaries, Definitions, and Models

We let H(X ) denote the entropy of the random variable X . We also overload this notation and for
every 0 < α < 1, we define H(α) = α log 1

α + (1 − α) log 1
1−α as the entropy of a coin flip with

probability α. For convenience, we define H(0) = H(1) = 0. All logarithms are base 2 unless
explicitly stated otherwise.

Weighted graphs (directed or undirected) are denoted by G = (V,E, ω), where ω : E → R+

denotes the edge weights, which will always be strictly positive here. For unweighted graphs, we
omit ω.

For every undirected graph G and every node v in G, NG(v) denotes the set of neighbors
of v in G. If G is a directed graph, N in

G (v) and Nout
G (v) are the set of nodes with an edge to v

and the set of nodes with an edge from v, respectively. For an undirected connected and possibly
weighted graph G = (V,E, ω) and a pair of adjacent nodes u, v in G, SG(u, v) denotes the set
of all nodes in G with a shortest path from u that starts with the edge (u, v). More formally,
SG(u, v) = {w ∈ V | dG(u,w) = ωG(u, v) + dG(v, w)}, where dG(u, v) denotes the distance
from u to v in G. For notational convenience, we define SG(u, u) = {u}. When the graph G is
clear from the context, we will omit the subscript G from the preceding notation.

2.1. The Basic Interactive Learning Framework

Our algorithms and analysis are cast in the framework of Emamjomeh-Zadeh and Kempe (2017),
which generalizes Angluin’s Equivalence Query model (Angluin, 1988) from learning a classifier to
learning more general discrete structures, such as permutations, clusterings, and others. We begin
with a description of this framework for the case of a static structure and no noise.

In the framework of Emamjomeh-Zadeh and Kempe (2017), all candidate structures comprise
the vertices of an undirected, connected, and possibly weighted, graph G = (V,E, ω). The edges
E exactly capture the possible corrections that a learner can receive in response to a prediction, and
the weights ω can be chosen by the algorithm designer. The graph G is known to the learner, but
the structure to be learned, called the target and denoted by t, is an unknown node in G. In each
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round r, the learner predicts (or queries)2 a node qr. If the prediction is not the target, the learner
observes the first edge of one of the shortest paths from qr to t. If there are multiple shortest paths
from qr to t, the response is chosen adversarially. More formally, the response in round r is a node
zr ∈ {qr} ∪N(qr) such that t ∈ S(qr, zr). We say that a node v is consistent with this response in
round r if v ∈ S(qr, zr), i.e., the response alone does not rule out the possibility that v is the target.

In order to apply this framework to a concrete learning problem, the algorithm designer gets to
design the weights ω such that the “natural” responses that a user would provide satisfy the preced-
ing definition of the process. Emamjomeh-Zadeh and Kempe (2017) show how to define suitable
weights for learning classifiers, permutations, or clusterings, under several natural models of inter-
action. As a particularly straightforward illustration, consider Angluin’s original task of learning a
binary classifier of m items (Angluin, 1988), when in each round, the learner observes a label cor-
rection for exactly one wrongly classified item. Then, a suitable graph structure is the unweighted
m-dimensional hypercube: each correction exactly corresponds to an edge of the hypercube along
the corresponding dimension, and lies on one of the shortest paths to the fully corrected classifier.

A more interesting application of the framework of Emamjomeh-Zadeh and Kempe (2017) is
learning a ranking, as discussed in Section 1. Consider a recommendation system that presents
a list of m items to a user in each round. If the user skips an item and clicks on the next one,
the learner infers that the two items are in incorrect order. Emamjomeh-Zadeh and Kempe (2017)
showed that the following undirected and unweighted graph satisfies the shortest-path property: the
nodes of G are the permutations over the m items, and two nodes are connected if one permutation
is obtained from the other one by an adjacent swap. The graph structure can be naturally extended,
using non-uniform edge weights, to an interaction model where a user may be skipping more than
one item.

Let L : V → R≥0 be a function that assigns a non-negative “likelihood” to every node.3 Let
Λ =

∑
v∈V L(v) be the total likelihood of all nodes. A median of the graph G with respect to

L is a node u that minimizes
∑

v∈V L(v)d(u, v). Because G is connected and all edge weights
are positive, there always is at least one median. The following proposition is immediate from the
definition.

Proposition 3 If L(u) > Λ
2 for a node u, then u is the unique median.

The following Lemma 4 is the key result in (Emamjomeh-Zadeh et al., 2016) (utilized by
Emamjomeh-Zadeh and Kempe (2017)). The lemma basically states that if a median of the graph
is queried and the response is one of its neighbors, then the total likelihood of the nodes consistent
with this response is at most Λ

2 .

Lemma 4 (Lemma 4 of (Emamjomeh-Zadeh et al., 2016)) Let u be a median of G and v 6= u a
neighbor of u. Then

∑
w∈S(u,v) L(w) ≤ Λ

2 .

2.2. The Learning Model for Dynamic Structures

In the (static) model of Emamjomeh-Zadeh and Kempe (2017), the target node t never changes. The
main modeling contribution in the present work is that we allow the target to change. The learning

2. We use the two terms interchangeably.
3. Informally speaking, the likelihoods indicate the learner’s belief about the target, but they do not necessarily capture

likelihood in a precise mathematical sense.
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process proceeds over the course of R rounds. For every round 1 ≤ r ≤ R, there is a target node
tr ∈ V . We assume that during the R rounds, the target changes at most B times. More formally,
|{1 ≤ r < R | tr+1 6= tr}| ≤ B.

As in the static model, the graph G is known to the learner, but the targets are not. In every
round r, the learner predicts/queries a node qr ∈ V . In response, it either learns that its prediction
in this round is correct (i.e., qr = tr) or, if this is not the case, it observes the first edge of a
shortest path from qr to tr in G. As in the static model, if there are multiple edges incident on qr
that lie on shortest paths from qr to tr, any of them could be returned; in particular, the response
can be adversarial. Formally, the response in round r, denoted by zr, is an adversarial node in
{qr} ∪NG(qr) such that tr ∈ SG(qr, zr). If qr 6= tr, we say that the algorithm has made a mistake
in round r.

If we place no assumptions on the way in which the target can move in G, only trivial bounds
on the number of mistakes are possible. We therefore next present two natural restrictions on the
moves of tr, which will allow us to prove stronger mistake bounds.

2.2.1. THE SHIFTING TARGET MODEL

The Shifting Target model aims to model scenarios where the learner interacts with a small popu-
lation of users (or a population with only a small number of types of users), each of whom has a
possibly different structure. The learner does not know between consecutive rounds whether it is
still interacting with the same user or a different one.

More formally, there exists an unknown set T ⊆ V of (known) size at most k, such that tr ∈ T
for every 1 ≤ r ≤ R. In other words, the target only moves within the set T .

2.2.2. THE DRIFTING TARGET MODEL

The Drifting Target model models scenarios where there is only one user (or the users share the
same structure), but the structure slowly evolves over time. As an example, think about a ranking
capturing a user’s music preferences or preferred order of search results; either is wont to evolve
over time.

We model the slow evolution as follows. There exists a known directed unweighted evolution
graph G′ = (V,E′) (on the same set of nodes V ), such that for every 1 < r ≤ R, tr ∈ {tr−1} ∪
Nout
G′ (tr−1). In other words, the target can only move along the edges of G′. G′ need not be

connected. We assume that G′, like G, is known to the learner; however, we explicitly allow for
G′ 6= G.4 We write ∆ = maxv∈V |{Nout

G′ (v)} ∪ {v}| for the maximum out-degree of any node in
G′ (implicitly assuming that every node has at least a self-loop).

2.3. Noise

To model the possibility that a user simply provides a wrong answer in response to a query, we
follow Emamjomeh-Zadeh and Kempe (2017) and allow for noisy responses. Each query response
is incorrect with probability p, independently of the responses for all other rounds. In the case
when the response is (randomly) chosen to be incorrect, the actual response is adversarial. That is:
whether a query response is noisy or not is random, but conditioned on being incorrect, the query
response itself is adversarially altered. We assume that p is a constant known to the learner. It is

4. The case G′ = G raises a lot of interesting questions for future work, and is discussed in Section 6.
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easy to see (as pointed out by Emamjomeh-Zadeh et al. (2016)) that if p ≥ 1
2 , it is impossible to

achieve any non-trivial result, even if the target does not move. Hence, we assume throughout that
p < 1

2 .

3. A Generic Mistake Bound

In this section, we present a generic result that is applicable to both the Shifting Target and Drifting
Target models, as well as more general models of moving targets. The generic learning algorithm,
however, is not computationally efficient. In later sections, we show how the more specific Shifting
Target and Drifting Target models facilitate efficient implementations of the algorithm.

Let G = (V,E, ω) be an undirected connected and weighted graph and a∗ = 〈t1, . . . , tR〉 the
unknown true sequence of targets throughout the R rounds. Recall that p denotes the probability of
incorrect responses.

Theorem 5 Let A = V R be the set of all node sequences of length R. Let λ : A → R≥0 be a
function that assigns non-negative weights to these sequences, such that

∑
a∈A λ(a) ≤ 1.

There is an online learning algorithm which makes at most 1
1−H(p) · log 1

λ(a∗) mistakes in expec-
tation.

Each sequence a ∈ A can be considered as “recommending” a node to query in each of the
R rounds. Inspired by the classic Hedge algorithm, we consider each sequence as a meta-expert
and keep track of a weight for each. However, in contrast to the standard Hedge analysis, simply
drawing a random meta-expert in every round according to their weights and outputting its rec-
ommendation does not guarantee the bound of Theorem 5. Instead, we utilize the “directional”
information in G provided by the shortest-path pointers which the algorithm receives. We adapt
an idea from (Emamjomeh-Zadeh et al., 2016) to guarantee that after each mistake the algorithm
makes, the relative weight of a∗ increases significantly. Unlike the Hedge algorithm, our algorithm
is deterministic.

A direct adaptation of the analysis of Emamjomeh-Zadeh et al. (2016) results in a mistake bound
of 1

λ(a∗) + R · H(B/R) for our problem. We modify this analysis in order to prove the bound of
Theorem 5; this bound is tight in general (e.g., for the case when the target does not move), as
pointed out by Emamjomeh-Zadeh et al. (2016).
Proof For every 1 ≤ r ≤ R + 1, the algorithm assigns a weight λr(a) to every sequence a ∈ A.
Initially, λ1(a) = λ(a) as given in the input. Define Λr =

∑
a∈A λr(a) to be total weight of all

sequences in round r. For the purpose of analysis, we define λ̂r(a) = log λr(a) for every sequence
a ∈ A and similarly, Λ̂r = log Λr. Moreover, we assign a “likelihood” Lr(v) to every node v in
every round r, which is essentially the total weight of the sequences which recommend v in round
r. Formally, Lr(v) =

∑
a∈A(λr(a) · 1[ar = v]).

In every round 1 ≤ r ≤ R, the algorithm’s prediction is a median of G with respect to Lr(·).
Let qr and zr denote the prediction of the algorithm and the response it receives, respectively.
The algorithm then computes the weights of the sequences for the next round as follows. If the
recommendation of the sequence a in round r is consistent with the response zr, the weight of a is
multiplied by 1 − p. Otherwise, it is multiplied by p. More formally, λr+1(a) = (1− p) · λr(a) if
ar ∈ S(qr, zr), and λr+1(a) = p · λr(a) otherwise. Recall that if qr = zr, then qr itself is the only
node that is consistent with the response, i.e., S(v, v) = {v}.
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Lemma 6 For every 1 ≤ r ≤ R, E[λ̂r+1(a∗)− λ̂r(a∗)] ≥ −H(p).

Proof. In every round r, the response is correct with probability at least 1 − p. In this case, the
recommendation of a∗ is consistent with the response; hence, λr+1(a∗) = (1 − p) · λr(a∗), which
implies that λ̂r+1(a∗) = λ̂r(a

∗)+log(1−p). In the other case, due to the noise, the recommendation
of a∗ may or may not be consistent with the response. Because at worst, the weight is multiplied
with p, we obtain the bound that λr+1(a∗) ≥ p · λr(a∗), i.e., λ̂r+1(a∗) ≥ λ̂r(a

∗) + log p. By
combining both cases, we get that

E[λ̂r+1(a∗)] ≥ (1− p) ·
(
λ̂r(a

∗) + log(1− p)
)

+ p ·
(
λ̂r(a

∗) + log p
)

= λ̂r(a
∗)− H(p).

Now, summing over all R rounds, we obtain that

E[λ̂R+1(a∗)] ≥ log λ(a∗)−R · H(p). (1)

Having obtained a lower bound on the weight of a∗ at the end of the R rounds, we now prove
an upper bound on Λ̂R+1. For each round 1 ≤ r ≤ R, one of the following three scenarios happens.

(a) In round r, each node v has Lr(v) ≤ Λr
2 . By Lemma 4 and because of the way the algorithm

updates the weights (as in the analysis of Emamjomeh-Zadeh et al. (2016)), Λr+1 ≤ Λr
2 and

thus, Λ̂r+1 − Λ̂r ≤ −1.

(b) In round r, there is a node v 6= a∗r with Lr(v) > Λr
2 . By Proposition 3, v is the unique median

and hence the algorithm’s prediction. However, v 6= a∗r , so v is not the correct target in this
round. Define β = Lr(v)/Λr. By the assumption, 1

2 < β ≤ 1. With probability (1− p), the
response is correct. In this case, v is not consistent with the response, and therefore

Λr+1 ≤ p · Lr(v) + (1− p) · (Λr − Lr(v)) = Λr ·
(
p · β + (1− p) · (1− β)

)
.

Taking logarithms, this implies that Λ̂r+1 − Λ̂r ≤ log
(
p · β + (1 − p) · (1 − β)

)
. With the

remaining probability, the response is adversarially incorrect. Importantly, it is impossible
that both node v and some other node in the graph are consistent with the response. Because
both (1 - p) and β are larger than 1

2 , the smallest reduction in Λ is achieved by having v be
consistent with the response. Hence, in this case, we obtain the following upper bound:

Λr+1 ≤ (1− p) · Lr(v) + p · (Λr − Lr(v)) = Λr

(
(1− p) · β + p · (1− β)

)
.

By taking logarithms, we obtain the bound Λ̂r+1 − Λ̂r ≤ log
(

(1 − p) · β + p · (1 − β)
)

.
Combining the two cases, we get that

E[Λ̂r+1 − Λ̂r] ≤ (1− p) · log
(
p · β + (1− p) · (1− β)

)
+ p · log

(
(1− p) · β + p · (1− β)

)
.

For every 0 < p < 1
2 and 1

2 ≤ β ≤ 1, the derivative with respect to β is always negative,
meaning that the expression is maximized when β = 1

2 . Plugging this value of β into the
inequality, we get that E[Λ̂r+1 − Λ̂r] ≤ −1.
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(c) The final case is that in round r, Lr(a∗r) > Λr
2 . By Proposition 3, a∗r is the unique median and

hence, the algorithm’s prediction. In this case, the algorithm does not make a mistake (i.e., its
prediction is the true target). Define β = Lr(a∗r)/Λr. Similar to scenario (b), we consider two
cases, based on whether the response is correct or not. With probability 1− p, the response is
correct; it then confirms that the algorithm’s prediction is correct, and we have

Λr+1 = (1− p) · Lr(a∗r) + p · (Λr − Lr(a∗r)) = Λr ·
(

(1− p) · β + p · (1− β)
)
.

If the response is incorrect, we can again reason as in the scenario (b), and obtain that

Λr+1 ≤ p · Lr(a∗r) + (1− p) · (Λr − Lr(a∗r)) = Λr

(
p · β + (1− p) · (1− β)

)
.

Taking logs and combining both cases, we get that

E[Λ̂r+1 − Λ̂r] ≤ p · log
(
p · β + (1− p) · (1− β)

)
+ (1− p) · log

(
(1− p) · β + p · (1− β)

)
.

This time, for every 0 < p < 1
2 and 1

2 ≤ β ≤ 1, the derivative with respect to β is positive;
therefore, the expression is maximized at β = 1. Thus, E[Λ̂r+1 − Λ̂r] ≤ −H(p).

Let M denote the number of rounds in which either scenario (a) or (b) happens. M is an upper
bound on the number of mistakes of the algorithm, and our preceding analysis shows that

E[Λ̂R+1] ≤ −M − (R−M) · H(p). (2)

Combining Inequalities (1) and (2) and using the fact that Λ̂R+1 ≥ λ̂R+1(a∗) (hence, E[Λ̂R+1] ≥
E[λ̂R+1(a∗)]), we can now complete the proof by bounding

−M − (R−M) · H(p) ≥ log λ(a∗)−R · H(p),

which can be rearranged to M ≤ 1
1−H(p) log 1

λ(a∗) .

The algorithm we presented in this section explicitly keeps track of weights for all sequences
in A. If the target does not move, the number of valid sequences cannot exceed the number of
the nodes, which allows for an efficient implementation. However, with a moving target, there
may be exponentially many sequences. In Sections 4 and 5, we discuss how to implement this
algorithm more efficiently for the Shifting Target and Drifting Target models, by carefully choosing
the function λ(·). Here, we say that an algorithm is computationally efficient if it computes its
prediction in each round computationally efficiently.

4. Results for the Shifting Target Model

In this section, we provide a more efficient implementation of the learning algorithm for the Shifting
Target Model, as well as a lower bound on the number of mistakes that any learning algorithm must
make in this model.

Theorem 7 Under the Shifting Target model, there is a deterministic algorithm that runs in time
O(nk poly(n)) and makes at most 1

1−H(p) ·
(
k log n + (B + 1) log k + R · H(B/R)

)
mistakes in

expectation.

9
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Proof We adapt the algorithm of Theorem 5. Let Sk denote the collection of all subsets of V of size
k. Consider the following random procedure to generate a sequence a of length R. In the following
description, b ∈ [0, 1] is a constant, to be determined momentarily.

1. Pick a set X in Sk uniformly at random.

2. Pick an initial node a1 ∈ X uniformly at random.

3. For every 2 ≤ r ≤ R, let ar = ar−1 with probability (1− b); with the remaining probability,
ar is chosen uniformly at random from X .

For a sequence a, let Θ(a) ⊆ Sk denote the collection of all sets of (exactly) k nodes that are
supersets of the support of a. If the support size of a is larger than k, then Θ(a) = ∅; if it is k, then
|Θ(a)| = 1. If the sequence’s support is smaller than k, then |Θ(a)| > 1. Notice that the random
procedure can only generate a when it chooses X ∈ Θ(a).

As in Theorem 5, let A = V R. For every sequence a ∈ A, let λ(a) be the probability that a is
generated by the random procedure described above. In particular, if a has support larger than k, the
probability is λ(a) = 0. Because λ(·) is a probability distribution,

∑
a∈A λ(a) = 1. And because

the true sequence a∗ shifts at most B times, λ(a∗) ≥
(
n
k

)−1 · 1
k · (

b
k )B · (1− b)R−B . Letting b = B

R
and applying Theorem 5 gives us the mistake bound of Theorem 7.

In order to bound the running time, we present a more efficient way to implement the algorithm
of Theorem 5. The key insight is that in order to run the algorithm, one only needs to compute, in
each round, the likelihood of each node. Fix some set U ∈ Sk of k nodes, and let AU denote the
set of all length-R sequences with support U . For every node u ∈ U and every round 1 ≤ r ≤ R,
let Lr,U (u) =

∑
a∈AU

λr(a)
|Θ(a)|1[ar = u] be the “contribution” of sequences in AU in round r to the

likelihood of node u. Our faster implementation of the algorithm does not keep track of λr(a) for
every sequence a ∈ A. Instead, in every round 1 ≤ r ≤ R, it computes Lr,U (u) for every U ∈ Sk
and u ∈ U . This is sufficient to compute the cumulative likelihood Lr(u) =

∑
U3u Lr,U (u) for

every node u. In turn, the Lr(u) are sufficient for computing the median of the graph.
We now show how to inductively compute the Lr,U (u) for a fixed set U and every u ∈ U . For

the base case, because the first node is picked uniformly at random, L1,U (u) =
(
n
k

)−1 · 1
k . Now

assume that for some round r, the algorithm has already computed Lr,U (u) for all nodes u. As
explained above, it can then compute the median qr. As before, let zr denote the response. For each
u ∈ U , if u is consistent with the response, then, according to the description of the algorithm, the
weight of every sequence a ∈ AU with ar = u is multiplied by 1−p. Otherwise, the weight of every
such sequence is multiplied by p. Define intermediate variables L′r,U (u) = Lr,U (u)·

(
(1−p)·1[u ∈

S(qr, zr)]+p ·1[u /∈ S(qr, zr)]
)
. By the definition of the random generative process for sequences,

each sequence stays at the same node with probability 1− b, and shifts to a uniformly random node
in U with the remaining probability b. Therefore, the likelihood of the nodes for the next round can
be computed as follows: Lr+1,U (u) = (1− b) · L′r,U (u) +

∑
v∈U

b
k · L

′
r,U (v). This implementation

of the algorithm requires memory of size
(
n
k

)
∈ O(nk), and the running time is O(nk poly n), as

claimed.

Remark 8 Notice a perhaps interesting feature of our analysis. While the shifts of the target are
entirely adversarial (subject to the bound on the support size and the total number of shifts), our

10
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analysis essentially “pretends” that the target performs a random walk over a uniformly random
target set of size k. Despite this “incorrect” shifting model, it achieves the same mistake bound as
Theorem 5.

Remark 9 This algorithm needs to know k ahead of time in order to properly keep track of the
likelihoods. When k is not known ahead of time, there is a slightly different random procedure for
generating random sequences which results in essentially the same bound as that of Theorem 7.
This random procedure is similar to the one we explained in this section. Instead of picking X
from Sk, X is a random set such that each node belongs to X independently with probability 1

n .
The naı̈ve implementation of our algorithm using this new random procedure, however, requires
explicitly enumerating all sequences of length R. We do not know of any more computationally
efficient implementation at this time.

Next, we state a lower bound on the number of mistakes for any algorithm (deterministic or
randomized, efficient or not) in the Shifting Target model. The proof of Theorem 10 is presented in
Appendix A.

Theorem 10 For every pair of positive integers k andm, there exists an undirected, connected and
unweighted graph G on a set of n = km nodes such that under the Shifting Target model, every
(possibly randomized and/or computationally inefficient) algorithm makes at least

min{R− o(R),
1

1− H(p)
·
(
k log n+ (B − 2k + 1) · (log k)

)
− o(log n)−B · o(log k)}

mistakes, in expectation.

The lower bound of Theorem 10 does not quite match the upper bound of Theorem 7; there is
an additive gap of essentially R·H(B/R)

1−H(p) . This gap is most relevant when k is small. Whether our
upper bound is tight or not remains open.

5. Results for the Drifting Target Model

In this section, we state a theorem regarding an improved implementation of the learning algorithm
from Section 3 for the Drifting Target Model. The theorem is proved in Appendix B. Unlike the
implementation in Section 4, here, we actually achieve a polynomial-time implementation. Recall
that ∆ is the maximum degree of the evolution graph G′.

Theorem 11 Under the Drifting Target model, there is a polynomial-time deterministic learning
algorithm which makes at most 1

1−H(p) ·
(

log n+B · log ∆+R ·H(B/R)
)

mistakes in expectation.

Similar to Section 4, we also state a lower bound, which leaves an additive gap of R·H(B/R)
1−H(p) .

The proof is given in Appendix A.

Theorem 12 For every pair of positive integers ∆ andm, there exist undirected unweighted graphs
G and G′ over the same set of n = ∆ · m nodes such that G is connected, the evolution graph
G′ is ∆-regular (with a self-loop for every node), and every (possibly randomized or inefficient)
algorithm under the Drifting Target model makes at least min{R − o(R), 1

1−H(p) ·
(

log n + B ·

log ∆
)
− o(log n)−B · o(log ∆)} mistakes in expectation.

11
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6. Conclusions and Future Work

In this work, we presented algorithms for learning a structure (such as a classifier, permutation, or
clustering) which evolves over time. For the Shifting Target and the Drifting Target models, we
showed how to produce more efficient implementations. Under both models, our bounds are off
from each other by an additive gap of essentially R · H(B/R). Closing this gap is an interesting
direction for future work. We conjecture that the upper bound is tight.

The computational complexity of the algorithm for the Shifting Target model is not polynomial
in the size of the graph, and it is an interesting direction to find an efficient implementation. The
algorithm of Theorem 7 is similar to the “direct” algorithm discussed by Bousquet and Warmuth
(2002) (attributed there to Yoav Freund). It is worth mentioning that in the noiseless setting, we can
develop a polynomial-time algorithm by essentially reducing this problem to a two-player game in
which the first player’s choices are the nodes and the second player’s choices are the edges (technical
details of the reduction and the algorithm are skipped). For the noisy setting, however, it is more
complex: the “loss” of the learner depends on whether it queries the target or not; a predicate whose
true value is not observed by the learner.

In this work, we focused on 0-1 loss: the algorithm’s loss is 1 in a round if it does not guess the
correct target. One can consider other natural loss functions. For example, a natural measure of loss
would be the distance dG(qr, tr) in G from qr to the target. This loss function is well-motivated in
the context of interactive learning: the further the guess is from the true target, the more unsatisfied
a user will be. It is not clear whether our techniques carry over to this or other loss functions.

One particularly interesting direction for future work arises when the two graphsG andG′ in the
Drifting Target model are the same; that is, the notion of “similarity” governing a user’s responses
is the same as the notion of “similarity” governing the structure’s evolution over time. If we relax
the notion of a “mistake” to count a guess as correct whenever it is within some small distance
(such as O(log n)) of the target, one can achieve mistake bounds that are independent of the total
number of rounds: once the target has been approximately found, the algorithm can always follow
the responses it receives and stay within the same distance. However, it is not clear how quickly
an algorithm can get within distance O(log n) of a moving target for the first time. Designing an
algorithm for this case is a very intriguing question that may have to draw on deeper insights into
the graph’s structure.
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Appendix A. Lower Bound Proofs

In this section, we prove Theorems 10 and 12. Both proofs are based on the lower bound of Theo-
rem 13 for the noisy classic binary search problem with a uniform target.

A.1. A Lower Bound on Noisy Standard Binary Search

In the classic binary search problem, the algorithm has to find a target t ∈ {1, . . . ,m} using binary
comparisons. Formally, we define the noisy standard binary search problem as follows. A target t
is chosen uniformly at random from the set {1, . . . ,m}, and the learner’s goal is to identify t. In
each round r, the learner queries an element qr. If qr = t, the process ends. Otherwise, the response
is a single bit, stating whether qr > t or not. The response is noisy, meaning that the bit is correct
with probability 1− p, and incorrect with the remaining probability.

We now prove a theorem which we utilize later to prove Theorems 10 and 12.

Theorem 13 Every (possibly randomized) algorithm for the noisy standard binary search problem
requires at least logm

1−H(p) − o(logm) queries in expectation.

Proof Because the input and responses are not adversarial, but drawn from a known distribution,
there is a deterministic optimal algorithm, so it suffices to prove the theorem for deterministic algo-
rithms.

Let A′ be a deterministic algorithm for the noisy standard binary search problem, and assume
that it finds the target in at most Q − 1 rounds in expectation. (Q may depend on p and m, but the
dependencies are omitted to simplify the notation.) We first show that at a small additional cost, we
can assume that the algorithm never uses too many queries.

Lemma 14 If there is a deterministic algorithm A′ that uses at most Q− 1 rounds in expectation,
then there is a deterministic algorithm A that finds the target in at most Q rounds in expectation
and never uses more than (Q+ 1)m queries.

Proof The algorithm A consists of running A′ for no more than Qm rounds. If the target has not
been found yet, then A′ is terminated, and A queries all the elements in {1, . . . ,m} sequentially.

This algorithm never uses more than Qm + m queries. Moreover, the probability that A′ is
terminated is, by Markov’s inequality, no more than 1

m . Thus, the query complexity ofA is bounded
by Q− 1 + 1

m ·m = Q.

In order to prove Theorem 13, we show that for every fixed ε > 0, if m is large enough, then A
requires at least 1−ε

1−H(p) logm queries in expectation. Throughout this proof, p is a fixed constant.
Moreover, we assume that m is a (large enough) fixed constant and (without loss of generality) a
power of 2. We later discuss how large m should be (as a function of ε).

We reduce the standard noisy binary search problem to a coding problem. Let T1 and T2 be
two positive integers, depending on m and p, which we will specify later. Consider the following
random procedure R which generates a sequence of length T1 + T2: The first T1 elements of the
sequence are drawn independently and uniformly at random from the set {1, . . . ,m}. The final
T2 elements of the sequence are drawn i.i.d. from {0, 1}; each of them is 1 with probability p. The
entropy of the sequence generated from this procedure is T1 ·logm+T2 ·H(p), implying Lemma 15.

14
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Lemma 15 Every algorithm that constructs a binary encoding of the string generated from the
random procedureR has to use at least T1 logm+ T2H(p) bits, in expectation.

We show that using a deterministic algorithm A for standard noisy binary search, we can con-
struct a good binary encoding algorithm B for sequences generated by R. By Lemma 14, we can
assume w.l.o.g. that A finds the target in at most Q rounds in expectation and never uses more than
(Q + 1)m queries. The construction works as follows: Let s = 〈t1, . . . , tT1 , b1, . . . , bT2〉 be a se-
quence generated from the random procedureR, i.e., the ti for 1 ≤ i ≤ T1 are drawn independently
uniformly at random from the set {1, . . . ,m}, and each bi for 1 ≤ i ≤ T2 is 1 independently with
probability p and 0 otherwise.

For every 1 ≤ i ≤ T1, the algorithm B simulates the algorithm A, assuming that the target is
ti. The ith simulation of A is as follows. In each round, if A queries ti, B terminates; otherwise, it
uses a fresh bit among b1, . . . , bT2 sequentially to determine whether to feed an incorrect or correct
response to A. Notice that the algorithm terminates if and when the response to a query confirms
that the queried node is the target ti. Up until that event, the response to each query is either “left”
or “ right.” Therefore, the responses can be encoded into a binary string ci. By the assumption on
A, E[|ci|] ≤ Q, and |ci| ≤ (Q+ 1)m always. Let c′i be a binary string encoding of the length of ci.
Thus, |c′i| ≤ 1 + log |ci|. Define a binary string c′′i of length |c′′i | = 2|c′i|, by adding a 1 after the last
digit of c′i and adding a 0 after each of its other digits.

Finally, define the binary string ci as the concatenation of c′′i with ci. From any string with prefix
ci, one can first extract c′′i , by finding the first digit ‘1’ in an even position. From this, one obtains c′i
from the leading odd digits; after learning the length of ci, one can uniquely reconstruct ci. In turn,
from ci, one can uniquely recover the target ti because A is deterministic. Moreover, having ci and
ti, it is uniquely determined which responses were noisy. Because E[|ci|] ≤ Q and log is a concave
function, E[|c′′i |] ≤ 2(logQ+ 1) ≤ O(logQ).

Define c = c1 · · · cT1 as the binary string obtained by sequentially concatenating c1, . . . , cT1 .
Based on the previous paragraph, given c, one can recover every ti as well as the bits b1, . . . , bL,
where L = |c| =

∑
1≤i≤T1 |ci|. Notice that E[L] ≤ T1 ·Q and L ≤ T1 · (Q+ 1) ·m always.

Let ε1, ε2 > 0 be real numbers, which we will let go to 0 later. Let T1 be large enough so that
Pr[L ≥ T1Q · (1 + ε1)] < ε2. The existence of T1 follows from Chebyshev’s Inequality because
E[|ci|] ≤ Q, and the variance of |ci| is bounded by its maximum, which is at most (Q+ 1) ·m. Let
T2 = T1 · Q · (1 + ε1). By definition of T2, with probability at least 1 − ε2, the T2 random bits in
the second part of the sequence s are sufficient for the T1 executions of A. In this case, the binary
string c, concatenated with the bits bL+1, . . . , bT2 which had been left unused in the simulations of
A, is sufficient to uniquely determine s. The length of this binary string is

(T2 − L) +

T1∑
i=1

|ci| ≤ T2 +

T1∑
i=1

O(log |ci|).

With the remaining probability, i.e., with probability at most ε2, the T2 bits at the end of s may
not be sufficient for B’s T1 simulations of A In this case, B simply encodes s by encoding each
ti using logm bits, and appends the final T2 bits. In this case, the length of the binary code is
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T1 logm+ T2. The expected length of the code, denoted by Q′, is upper-bounded as follows:

E[Q′] ≤ ε2 · (T1 logm+ T2) + (1− ε2) · (T1 ·O(logQ) + T2)

≤ T1 · (ε2 logm+O(logQ)) + T2

≤ T1 · (ε2 logm+O(logQ) +Q(1 + ε1)) .

Lemma 15 implies that

E[Q′] ≥ T1 logm+ T2 · H(p) = T1 · (logm+Q · H(p) · (1 + ε1)).

Combining both inequalities and canceling out the T1 factor,

logm+Q · H(p) · (1 + ε1) ≤ ε2 logm+O(logQ) +Q · (1 + ε1).

Rearranging this inequality gives us that

1− ε2
1 + ε1

· 1

1− H(p)
· logm ≤ Q+O(logQ).

By letting ε1, ε2 → 0, we obtain the claimed lower bound on the expected number of rounds
Q for any algorithm to find a random target. Notice that we require m to be large enough so that
O(logQ) = O(log logm) is negligible (absorbed in the logm term).

A.2. Proof of Theorem 10

We next show how to use Theorem 13 to prove Theorem 10, which we restate here for convenience.

Theorem 10 For every pair of positive integers k andm, there exists an undirected, connected and
unweighted graph G on a set of n = km nodes such that under the Shifting Target model, every
(possibly randomized and/or computationally inefficient) algorithm makes at least

min{R− o(R),
1

1− H(p)
·
(
k log n+ (B − 2k + 1) · log k

)
− o(log n)−B · o(log k)}

mistakes, in expectation.
Proof Let the graph G be a k ×m grid. Formally, V = {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ m} is the set
of n = k ·m nodes. Two nodes (i, j) and (i′, j′) are connected if and only if |i− i′|+ |j − j′| = 1.
Visualizing the grid, we call the first coordinate of a node its row number and the second coordinate
its column number.

For each row i, the adversary draws a column ji independently and uniformly at random. Let
t(i) = (i, ji) be the resulting node in row i. These k nodes t(1), . . . , t(k) are the targets.

The first stage consists of k phases, each lasting until the learner has identified the target in a
particular row. In phase i, the adversary lets t(i) be the target. Identifying t(i) is tantamount to iden-
tifying ji, and therefore equivalent to the classic binary search problem on m integers. Therefore,
by Theorem 13, every learner must make at least logm

1−H(p) − o(logm) mistakes in expectation until it

identifies the target t(i) for the first time. As soon as the learner does, phase i ends, and phase i+ 1
begins. In total over the k phases, the learner must thus make at least k·logm

1−H(p) −k ·o(logm) mistakes
in expectation.
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The second stage consists of B − k − 1 phases. In each phase, the adversary picks one of
the k targets uniformly at random, independently of past choices. A phase ends when the learning
algorithm identifies the target correctly. Consider any one phase in the second stage. Unless the
learner queried the correct row, the adversary will always provide feedback in the vertical direction,
i.e., it identifies whether the target is above or below the queried node. Then, the learner’s task in
each phase is equivalent to identifying the target’s row, and therefore to the classic binary search
problem on a path of length k. By Theorem 13, it takes the learner at least log k

1−H(p) − o(log k) rounds
to identify the target in expectation. The total number of mistakes across all B − k − 1 phases of
the second stage is therefore at least (B−k−1)·(log k)

1−H(p) −B · o(log k) in expectation.
Combining both stages, we obtain the claimed bound. Notice that if R is “small,” the adversary

may not have enough time to finish this strategy. However, the same strategy results in R − o(R)
mistakes in expectation, corresponding to the first term in min{. . .}.

A.3. Proof of Theorem 12

Next, we prove Theorem 12, also restated here for convenience.

Theorem 12 For every pair of positive integers ∆ andm, there exist undirected unweighted graphs
G and G′ over the same set of n = ∆ · m nodes such that G is connected, the evolution graph
G′ is ∆-regular (with a self-loop for every node), and every (possibly randomized or inefficient)
algorithm under the Drifting Target model makes at least min{R − o(R), 1

1−H(p) ·
(

log n + B ·

log ∆
)
− o(log n)−B · o(log ∆)} mistakes in expectation.

Proof Let G be the ∆ ×m grid. Formally, V = {(i, j) | 1 ≤ i ≤ ∆, 1 ≤ j ≤ m} is the set of
n = ∆ ·m nodes. Two nodes (i, j) and (i′, j′) are connected inG if and only if |i−i′|+ |j−j′| = 1.
The undirected graph G′ is defined on the same set of nodes: in G′, two nodes (i, j) and (i′, j′) are
connected if and only if j = j′, i.e., they are in the same column. In other words, G′ is a disjoint
(and disconnected) collection of complete graphs, each comprising the nodes of one of the grid’s
columns. Thus, each node of G′ has degree ∆, counting the self-loop.

The adversary’s strategy proceeds in B + 1 phases s = 1, . . . , B + 1. Each phase s has a
designated target ts which stays fixed for the duration of the phase.5 Phase s ends when the learner
queries a node in the same row as ts. Until then, the adversary only reveals vertical information,
i.e., it reveals an edge pointing up or down, depending on whether the learner’s guess was below or
above the target. The initial target t1 is a uniformly random node inG. Whenever a new phase s+1
starts, the target ts+1 is chosen as a uniformly random node in the same column as ts (and thus also
t1, . . . , ts−1). Because the learner had only learned the row of ts, when the row is changed to a new
uniformly random one, the target is again uniformly random as far as the learner is concerned.

By Theorem 13, each phase lasts for at least log ∆
1−H(p) − o(log ∆) rounds in expectation. Once

the adversary has exhausted the B moves, the target stays fixed. At this point, in order to identify
the target’s column (about which nothing has been revealed so far), the learner still requires at least

logm
1−H(p) − o(logm) queries in expectation. Hence, we obtain a lower bound of (B + 1) · log ∆

1−H(p) +
logm

1−H(p) − (B+ 1) · o(log ∆)− o(logm). Substituting that m = n/∆ now gives the claimed bound.

5. Notice that we slightly change the meaning of the notation ts, which referred to the target for a given round s
throughout the body of the paper.
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As in the proof of Theorem 10, ifR is “small,” the adversary may not have enough time to finish this
strategy. However, the same strategy results in R− o(R) mistakes in expectation, corresponding to
the first term in min{. . .}.

Appendix B. Proof of Theorem 11

In this section, we prove Theorem 11, restated here for convenience.

Theorem 11 Under the Drifting Target model, there is a polynomial-time deterministic learning
algorithm which makes at most 1

1−H(p) ·
(

log n+B · log ∆+R ·H(B/R)
)

mistakes in expectation.
Proof As in the proof of Theorem 7, we will prescribe specific choices of weights λ(a) for se-
quences a; these weights facilitate efficient computation of the median node to query. As before,
let A = V R denote the set of all sequences of length R. Consider a uniformly random walk on G′

with stalling probability 1− b (which will be determined below), starting from a uniformly random
vertex a1 ∈ V . That is, in each round r, with probability 1 − b, the walk stays at ar+1 = ar; with
the remaining probability, it moves to a uniformly random neighbor of ar in G′. Without loss of
generality, we assume that every node has a self-loop in G′. For each sequence a ∈ A, define λ(a)
to be the probability that a occurs as the result of this random walk process.

Because λ(·) is a probability distribution,
∑

a∈A λ(a) = 1. And because the ground truth
sequence a∗ moves at mostB times, it has initial weight λ(a∗) ≥ 1

n ·(
b
∆)B ·(1−b)R−B . Setting b =

B
R , we apply Theorem 5, which gives a mistake bound of at most −1

1−H(p) ·log
(

1
n ·(

b
∆)B ·(1−b)R−B

)
,

which is exactly the claimed bound.
It remains to show how to implement this algorithm to run efficiently. We again define “likeli-

hoods” Lr(u) — this time for individual nodes u — and show how to inductively compute them.
For the base case, because the first node is chosen uniformly at random, L1(u) = 1

n for every node
u. Let qr and zr denote the prediction of the algorithm and the response in round r, respectively.
Consider a node u.

• If u is consistent with the response, i.e., u ∈ SG(qr, zr), then the weight of every sequence
a which predicts u in round r (i.e., ar = u) is multiplied by (1 − p); as a result, so is the
likelihood of u.

• Similarly, if u is inconsistent with the response, i.e., u /∈ SG(qr, zr), then the weight of every
sequence a which predicts u in round r is multiplied by p, and so is the likelihood of u.

Similar to the proof of Theorem 7, we define intermediate variables

L′r(u) = Lr(u) ·
(

(1− p) · 1[u ∈ S(qr, zr)] + p · 1[u /∈ S(qr, zr)]
)
.

Because the weights of sequences correspond to the random walk with stalling probability 1−b, the
new likelihoods areLr+1(u) = (1−b)·L′r(u)+

∑
v∈S

b
|Nout

G′ (v)| ·L
′
r(v).Notice that the algorithm only

needs to keep track of one variable per node and per round, and the computations are straightforward
linear combinations. Hence, we obtain an efficient implementation.
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