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Abstract
Over recent years, devising classification algorithms that are robust to adversarial perturbations has
emerged as a challenging problem. In particular, deep neural nets (DNNs) seem to be susceptible to
small imperceptible changes over test instances. However, the line of work in provable robustness,
so far, has been focused on information theoretic robustness, ruling out even the existence of any
adversarial examples. In this work, we study whether there is a hope to benefit from algorithmic
nature of an attacker that searches for adversarial examples, and ask whether there is any learning task
for which it is possible to design classifiers that are only robust against polynomial-time adversaries.
Indeed, numerous cryptographic tasks (e.g. encryption of long messages) can only be secure against
computationally bounded adversaries, and are indeed impossible for computationally unbounded
attackers. Thus, it is natural to ask if the same strategy could help robust learning.

We show that computational limitation of attackers can indeed be useful in robust learning by
demonstrating the possibility of a classifier for some learning task for which computational and
information theoretic adversaries of bounded perturbations have very different power. Namely, while
computationally unbounded adversaries can attack successfully and find adversarial examples with
small perturbation, polynomial time adversaries are unable to do so unless they can break standard
cryptographic hardness assumptions. Our results, therefore, indicate that perhaps a similar approach
to cryptography (relying on computational hardness) holds promise for achieving computationally
robust machine learning. On the reverse directions, we also show that the existence of such learning
task in which computational robustness beats information theoretic robustness requires computational
hardness by implying (average-case) hardness of NP.

1. Introduction

Designing classifiers that are robust to small perturbations to test instances has emerged as a
challenging task in machine learning. The goal of robust learning is to design classifiers h that still
correctly predicts the true label even if the input x is perturbed minimally to a “close” instance x′.
In fact, it was shown (Szegedy et al., 2014; Biggio et al., 2013; Goodfellow et al., 2015) that many
learning algorithms, and in particular DNNs, are highly vulnerable to such small perturbations and
thus adversarial examples can be successfully found. Since then, the machine learning community
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has been actively engaged to address this problem with many new defenses (Papernot et al., 2016;
Madry et al., 2018; Biggio and Roli, 2018) and novel and powerful attacks (Carlini and Wagner,
2017; Athalye et al., 2018).

Do adversarial examples always exist? This state of affairs suggest that perhaps the existence of
adversarial example is due to fundamental reasons that might be inevitable. A sequence of work
(Gilmer et al., 2018; Fawzi et al., 2018; Diochnos et al., 2018; Mahloujifar et al., 2019; Shafahi et al.,
2018; Dohmatob, 2018) show that for natural theoretical distributions (e.g., isotropic Gaussian of
dimension n) and natural metrics over them (e.g., `0, `1 or `2), adversarial examples are inevitable.
Namely, the concentration of measure phenomenon (Ledoux, 2001; Milman and Schechtman, 1986)
in such metric probability spaces imply that small perturbations are enough to map almost all the
instances x into a close x′ that is misclassified. This line of work, however, does not yet say anything
about “natural” distributions of interest such as images or voice, as the precise nature of such
distributions are yet to be understood.

Can lessons from cryptography help? Given the pessimistic state of affairs, researchers have
asked if we could use lessons from cryptography to make progress on this problem (Madry, 2018;
Goldwasser, 2018; Mahloujifar and Mahmoody, 2018). Indeed, numerous cryptographic tasks (e.g.
encryption of long messages) can only be realized against attackers that are computationally bounded.
In particular, we know that all encryption methods that use a short key to encrypt much longer
messages are insecure against computationally unbounded adversaries. However, when restricted to
computationally bounded adversaries this task becomes feasible and suffices for numerous settings.
This insight has been extremely influential in cryptography. Nonetheless, despite attempts to build
on this insight in the learning setting, we have virtually no evidence on whether this approach is
promising. Thus, in this work we study the following question:

Could we hope to leverage computational hardness for the benefit of adversarially robust
learning by rendering successful attacks computationally infeasible?

Taking a step in realizing this vision, we provide formal definitions for computational variants
of robust learning. Following the cryptographic literature, we provide a game based definition of
computationally robust learning. Very roughly, a game-based definition consists of two entities: a
challenger and an attacker, that interact with each other. In our case, as the first step the challenger
generates independent samples from the distribution at hand, use those samples to train a learning
algorithm, and obtain a hypothesis h. Additionally, the challenger samples a fresh challenge sample x
from the underlying distribution. Next, the challenger provides the attacker with oracle access to h(·)
and x. At the end of this game, the attacker outputs a value x′ to the challenger. The attacker declares
this execution as a “win” if x′ is obtained as a small perturbation of x and leads to a misclassification.
We say that the learning is computationally robust as long as no attacker from a class of adversaries
can “win” the above game with a probability much better than some base value. (See Definition 1.)
This definition is very general and it implies various notions of security by restricting to various
classes of attackers. While we focus on polynomially bounded attackers in this paper, we remark that
one may also naturally consider other natural classes of attackers based on the setting of interest (e.g.
an attacker that can only modify certain part of the image).

What if adversarial examples are actually easy to find? Mahloujifar and Mahmoody (2019)
studied this question, and showed that as long as the input instances come from a product distribu-
tion, and if the distances are measured in Hamming distance, adversarial examples with sublinear
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perturbations can be found in polynomial time. This result, however, did not say anything about
other distributions or metrics such as `∞. Thus, it was left open whether computational hardness
could be leveraged in any learning problem to guarantee its robustness.

1.1. Our Results

From computational hardness to computational robustness. In this work, we show that com-
putational hardness can indeed be leveraged to help robustness. In particular, we present a learning
problem P that has a classifier hP that is only computationally robust. In fact, let Q be any learning
problem that has a classifier with “small” risk α, but that adversarial examples exist for classifier
hQ with higher probability β � α under the `0 norm (e.g., Q could be any of the well-studied
problems in the literature with a vulnerable classifier hQ under norm `0). Then, we show that there
is a “related” problem P and a related classifier hP that has computational risk (i.e., risk in the
presence of computationally bounded tampering adversaries) at most α, but the risk of hP will go up
all the way to ≈ β if the tampering attackers are allowed to be computationally unbounded. Namely,
computationally bounded adversaries have a much smaller chance of finding adversarial examples of
small perturbations for hP than computationally unbounded attackers do. (See Theorem 6.)

The computational robustness of the above construction relies on allowing the hypothesis to
sometimes “detect” tampering and output a special symbol ?. The goal of the attacker is to make
the hypothesis output a wrong label and not get detected. Therefore, we have proved, along the
way, that allowing tamper detection can also be useful for robustness. Allowing tamper detection,
however, is not always an option. For example a real-time decision making classifier (e.g., classifying
a traffic sign) that has to output a label, even if it detects that something might be suspicious about
the input image. We prove that even in this case, there is a learning problem P with binary labels and
a classifier h for P such that computational risk of h is almost zero, while its information theoretic
risk is ≈ 1/2, which makes classifiers’ decisions under attack meaningless. (See Theorem 8).

Extension: existence of learning problems that are computationally robust. Our result above
applies to certain classifiers that “separate” the power of computationally bounded vs. that of
computationally unbounded attackers. Doing so, however, does not rule out the possibility of finding
information theoretically robust classifiers for the same problem. So, a natural question is: can we
extend our result to show the existence of learning tasks for which any classifier is vulnerable to
unbounded attackers, while computationally robust classifiers for that task exist? At first, it might
look like an impossible task, in “natural” settings, in which the ground truth function c itself is robust
under the allowed amount of perturbations. (For example, in case of image classification, Human is
the robust ground truth). Therefore, we cannot simply extend our result in this setting to rule out
the existence of robust classifiers, since they might simply exist (unless one puts a limits on the
complexity of the learned model, to exclude the ground truth function as a possible hypothesis).

However, one can still formulate the question above in a meaningful way as follows: Can we
have a learning task for which any polynomial time learning algorithm (with polynomial sample
complexity) is forced to produce (with high probability) hypotheses with low robustness against
unbounded attacks? Indeed, in this work we also answer this question affirmatively, as a corollary to
our main result, by also relying on recent results proved in recent exciting works of (Bubeck et al.,
2018c,a; Degwekar and Vaikuntanathan, 2019).
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In summary, our work provides credence that perhaps restricting attacks to computationally
bounded adversaries holds promise for achieving computationally robust machine learning that relies
on computational hardness assumptions as is currently done in cryptography.

From computational robustness back to computational hardness. Our first result shows that
computational hardness can be leveraged in some cases to obtain nontrivial computational robustness
that beats information theoretic robustness. But how about the reverse direction; are computational
hardness assumptions necessary for this goal? We also prove such reverse direction and show that
nontrivial computational robustness implies computationally hard problems in NP. In particular, we
show that a non-negligible gap between the success probability of computationally bounded vs. that
of unbounded adversaries in attacking the robustness of classifiers implies strong average-case hard
distributions for class NP. Namely, we prove that if the distribution D of the instances in learning
task is efficiently samplable, and if a classifier h for this problem has computational robustness α,
information theoretic robustness β, and α < β, then one can efficiently sample from a distribution S
that generates Boolean formulas φ← S that are satisfiable with overwhelming probability, yet no
efficient algorithm can find the satisfying assignments of φ← S with a non-negligible probability.
(See Theorem 10 for the formal statement.)

What world do we live in? As explained above, our main question is whether adversarial examples
could be prevented by relying on computational limitations of the adversary. In fact, even if
adversarial examples exist for a classifier, we might be living in either of two completely different
worlds. One is a world in which computationally unbounded adversaries can find adversarial
examples (almost) whenever they exist and they would be as powerful as information-theoretic
adversaries. Another world is one in which machine learning could leverage computational hardness.
Our work suggests that computational hardness can potentially help robustness for certain learning
problems; thus, we are living in the better world. Whether or not we can achieve computational
robustness for practical problems (such as image classification) that beats their information-theoretic
robustness remains an intriguing open question. A related line of work (Bubeck et al., 2018c,a;
Degwekar and Vaikuntanathan, 2019) studied other “worlds” that we might be living in, and studied
whether adversarial examples are due to the computational hardness of learning robust classifiers.
They designed learning problems demonstrating that in some worlds, robust classifiers might exist,
while they are hard to be obtained efficiently. We note however, that the goal of those works and
our work are quite different. They deal with how computational constraints might be an issue and
prevent the learner from reaching its goal, while our focus is on how such constraints on adversaries
can help us achieve robustness guarantees that are not achievable information theoretically.

What does our result say about robustifying other natural learning tasks? Our results only
show the existence of a learning task for which computational robustness is very meaningful. So,
one might argue that this is an ad hoc phenomenon that might not have an impact on other practical
problems (such as image classification). However, we emphasize that prior to our work, there was no
provable evidence that computational hardness can play any positive role in robust learning. Indeed,
our results also shed light on how computational robustness can potentially be applied to other,
perhaps more natural learning tasks. The reason is that the space of all possible ways to tamper a
high dimensional vector is exponentially large. Lessons from cryptography, and the construction
of our learning task proving our main result, suggest that, in such cases, there is potentially a huge
gap between the power of computationally bounded vs. unbounded search algorithms. On the other
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hand, there are methods proposed by researchers that seem to resist attacks that try to find adversarial
examples (Madry et al., 2018), while the certified robustness literature is all focused on modeling the
adversary as a computationally unbounded entity who can find adversarial examples within a certain
distance, so long as they exist (Raghunathan et al., 2018; Wong and Kolter, 2018; Sinha et al., 2018;
Wong et al., 2018). Our result shows that, perhaps we shall start to consider computational variants
of certification methods that focus on computationally bounded adversaries, as by doing so we might
be able to prove better robustness bounds for methods that are designed already.

Other related work. In another line of work (Raghunathan et al., 2018; Wong and Kolter, 2018;
Sinha et al., 2018; Wong et al., 2018) the notion of certifiable robustness was developed to prove
robustness for individual test instances. More formally, they aim at providing robustness certificates
with bounds εx along with a decision h(x) made on a test instance x, with the guarantee that any x′

at distance at most εx from x is correctly classified. However, these guarantees, so far, are not strong
enough to rule out attacks completely, as larger magnitudes of perturbation (than the levels certified)
still can fool the classifiers while the instances look the same to the human.

1.1.1. TECHNIQUES

We prove our main result about the possibility of computationally robust classifiers (Theorem 6) by
“wrapping” an arbitrary learning problem Q with a vulnerable classifier by adding computational
certification based on cryptographic digital signatures to test instances. A digital signature scheme
(see Definition 12) operates based on two generated keys (vk, sk), where sk is private and is used for
signing messages, and vk is public and is used for verifying signatures. Such schemes come with
the guarantee that a computationally bounded adversary with the knowledge of vk cannot sign new
messages on its own, even if it is given signatures on some previous messages. Digital signature
schemes can be constructed based on the assumption that one-way functions exist.1 Below we
describe the ideas behind this result in two steps.

Initial Attempt. Suppose DQ is the distribution over X × Y of a learning problem Q with
input space X and label space Y . Suppose DQ had a hypothesis hQ that can predict correct
labels reasonably well, Pr(x,y)←DQ

[h(x) 6= y] ≤ α. Suppose, at the same time, that a (perhaps
computationally unbounded) adversary A can perturb test instances like x into a close adversarial
example x′ that is now likely to be misclassified by hQ,

Pr
(x,y)←DQ

[h(x′) 6= y;x′ = A(x)] ≥ β � α.

Now we describe a related problem P, its distribution of examples DP, and a classifier hP for P. To
sample an example from DP, we first sample (x, y) ← DQ and then modify x to x = (x, σx) by
attaching a short signature σx = Sign(sk, x) to x. The label y of x remains the same as that of x.
Note that sk will be kept secret to the sampling algorithm of DP. The new classifier hP will rely on
the public parameter vk that is available to it. Given an input x = (x, σx), hP first checks its integrity
by verifying that the given signature σx is valid for x. If the signature verification does not pass, hP
rejects the input as adversarial without outputting a label, but if this test passes, hP outputs hQ(x).

1. Here, we need signature schemes with “short” signatures of poly-logarithmic length over the security parameter.
They could be constructed based on exponentially hard one-way functions (Rompel, 1990) by picking the security
parameter sub-exponentially smaller that usual and using universal one-way hash functions to hash the message to
poly-logarithmic length..
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To successfully find an adversarial example x′ for hP through a small perturbation of x = (x, σ)
sampled as (x, y) ← DP , an adversary A can pursue either of the following strategies. (I) One
strategy is that A tries to find a new signature σ′ 6= σx for the same x, which will constitute as
a sufficiently small perturbation as the signature is short. Doing so, however, is not considered a
successful attack, as the label of x′ remains the same as that of the true label of the untampered
point x. (II) Another strategy is to perturb the x part of x into a close instance x′ and then trying
to find a correct signature σ′ for it, and outputting x′ = (x′, σ′). Doing so would be a successful
attack, because the signature is short, and thus x′ would indeed be a close instance to x. However,
doing this is computationally infeasible, due to the very security definition of the signature scheme.
Note that (x′σ′) is a forgery for the signature scheme, which a computationally bounded adversary
cannot construct because of the security of the underlying signature scheme. This means that the
computational risk of hP would remain at most α.

We now observe that information theoretic (i.e., computationally unbounded) attackers can
succeed in finding adversarial examples for hP with probability at least β � α. In particular, such
attacks can first find an adversarial example x′ for x (which is possible with probability β over
the sampled x), construct a signature σ′ for x′, and then output (x′, σ′). Recall that an unbounded
adversary can construct a signature σ′ for x′ using exhaustive search.

Actual construction. One main issue with the above construction is that it needs to make vk
publicly available, as a public parameter to the hypothesis (after it is sampled as part of the description
of the distribution DP). Note that it is computationally hard to construct the hypothesis described
above without knowing vk. The problem with revealing vk to the learner is that the distribution of
examples should come with some extra information other than samples. However, in the classical
definition of a learning problem, the learner only has access to samples from the distribution. In
fact, if we were allowed to pass some extra information to the learner, we could pass the description
of a robust classifier (e.g. the ground truth) and the learning task becomes trivial. The other issue
is that the distribution DP is not publicly samplable in polynomial time, because to get a sample
from DP one needs to use the signing key sk, but that key is kept secret. We resolve these two
issues with two more ideas. The first idea is that, instead of generating one pair of keys (vk, sk)
for DP and keeping skD secret, we can generate a fresh pair of keys (vkx, skx) every time that we
sample (x, y) ← DQ and attach vkx also to the actual instance x = (x, σx, vkk). The modified
hypothesis hP also uses this key and verifies (x, σx) using vkx. This way, the distribution DP is
publicly samplable, and moreover, there is no need for making vk available as a public parameter.
However, this change of the distribution DP introduces a new possible way to attack the scheme
and to find adversarial examples. In particular, now the adversary can try to perturb vkx into a close
string vk′ for which it knows a corresponding signing key sk′, and then use sk′ to sign an adversarial
example x′ for x and output (x′, σ′, vk′). However, to make this attack impossible for the attacker
under small perturbations of instances, we use error correction codes and employ an encoding [vkx]
of the verification key (instead of vkx) that needs too much change before one can fool a decoder to
decode to any other vk′ 6= vkx. But as long as the adversary cannot change vkx, the adversary cannot
attack the robustness computationally. (See Construction 5.)

To analyze the construction above (see Theorem 6), we note that the computationally bounded
adversary would need to change Ω(|x|) number of bits in (x, σ, [vk]) to get (x′, σ′, [vk′]) where
x 6= x′. This is because the encoded [vk] would need Ω(|x|) number of perturbations to change the
encoded vk, and if vk remains the same it is hard computationally to find a valid signature. On the
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other hand, a computationally unbounded adversary can focus on perturbing x into x′ and then forge
a short signatures for it, which could be as small as poly(log(|x|)) perturbations.

Extension to problems, rather than specific classifiers for them. Note that the construction
above could be wrapped around any learning problem. In particular, we can pick an original problem
that is not (information theoretically) robustly learnable in polynomial time. These problems,
which we call them robust-hard are studied recently in (Bubeck et al., 2018c) and (Degwekar
and Vaikuntanathan, 2019) where they construct such robust-hard problems to show the effect of
computational limitation in robust learning (See Definition 14 and 15) . Here, using their construction
as the original learning problem, and wrapping it with our construction, we can strengthen our result
and construct a learning problem that is not robustly learnable by any polynomial time learning
algorithm, yet it has a classifier that is computationally robust. See Corollary 7 for more details.

Computational robustness without tamper detection. The computational robustness of the con-
structed classifier relies on sometimes detecting tampering attacks and not outputting a label. We
give an alternative construction for a setting that the classifier always has to output a label. We again
use digital signatures and error correction codes as the main ingredient of our construction but in a
different way. The main difference is that we have to repeat the signature multiple times to prevent
the adversary from changing all of the signatures. The caveat of this construction is that it is no
longer a wrapper around an arbitrary learning problem. See Construction 19 for more details.

2. Defining Computational Risk and Computationally Robust Learning

Notation. We use calligraphic letters (e.g., X ) for sets and capital non-calligraphic letters (e.g.,
D) for distributions. By d← D we denote sampling d from D. For a randomized algorithm R(·),
y ← R(x) denotes the randomized execution of R on input x outputting y. A classification problem
P = (X ,Y, D,H) is specified by the following components: set X is the set of possible instances,
Y is the set of possible labels, D ∈ D is a joint distribution over X × Y , and H is the space of
hypothesis. For simplicity we work with problems that have a single distribution D (e.g., D is the
distribution of labeled images from a data set like MNIST or CIFAR-10). A learner L for problem
P is an algorithm that takes a dataset S ← Dm as input and outputs a hypothesis h ∈ H. We did
not state the loss function explicitly, as we work with classification problems and use the zero-one
loss by default. For a learning problem P = (X ,Y, D,H), the risk or error of a hypothesis h ∈ H is
RiskP(h) = Pr(x,y)←D[h(x) 6= y]. We are usually interested in learning problems P = (X ,Y, D,H)
with a specific metric d defined over X for the purpose of defining adversarial perturbations of
bounded magnitude controlled by d. In that case, we might simply write P = (X ,Y, D,H), but
d is implicitly defined over X . Finally, for a metric d over X , we let db(x) = {x′ | d(x, x′) ≤ b}
be the ball of radius b centered at x under the metric d. By default, we work with Hamming
distance HD(x, x′) = |{i : xi 6= x′i}|, but our definitions can be adapted to any other metrics. We
usually work with families of problems Pn where n determines the length of x ∈ Xn (and thus input
lengths of h ∈ Hn, c ∈ Cn,dn). We sometimes use a special notation Pr[x← X;E(x)] to define
Prx←X [E(x)] that is the probability of and event E over a random variable X . We also might use a
combination of multiple random variables, for examples Pr[x← X; y ← Y ;E(x, y)] denotes the
same thing as Prx←X,y←Y [E(x, y)]. Order of sampling of X and Y matters Y might depend on X .

Allowing tamper detection. In this work, we expand the standard notion of hypotheses and allow
h ∈ H to output a special symbol ? as well (without adding ? to Y), namely we have h : X 7→ Y∪{?}.
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This symbol can be used by the classifier h to denote “out of distribution” points, or any form of
tampering, without outputting an actual label. In natural scenarios, h(x) 6= ? when x is not an
adversarially tampered instance. However, we allow this symbol to be output by h even in no-attack
settings as long as its probability is small enough.

We follow the tradition of game-based security definitions in cryptography (Naor, 2003; Shoup,
2004; Goldwasser and Kalai, 2016; Rogaway and Zhang, 2018). Games are the most common way
that security is defined in cryptography. These games are defined between a challenger Chal and an
adversary A. Consider the case of a signature scheme. In this case the challenger Chal is a signature
scheme Π and an adversary A is given oracle access to the signing functionality (i.e. adversary can
give a message mi to the oracle and obtains the corresponding signature σi). Adversary A wins the
game if he can provide a valid signature on a message that was not queried to the oracle. The security
of the signature scheme is then defined informally as follows: any probabilistic polynomial time/size
adversary A can win the game by probability that is bounded by a negligible n−ω(1) function on the
security parameter. We describe a security game for tampering adversaries with bounded tampering
budget in HD, but the definition is more general and can be used for other adversary classes.

Definition 1 (Security game of adversarially robust learning) Let Pn = (Xn,Yn, Dn,Hn) be a
classification problem where the components are parameterized by n. Let L be a learning algorithm
with sample complexity m = m(n) for Pn. Consider the following game between a challenger Chal,
and an adversary A with tampering budget b = b(n).

1. Chal samples m i.i.d. examples S ← Dm
n and gets hypothesis h← L(S) where h ∈ Hn.

2. Chal then samples a test example (x, y)← Dn and sends (x, y) to the adversary A.

3. Having oracle access (or oracle gates, in case of circuits) to hypothesis h and a sampler for
Dn, the adversary obtains the adversarial instance x′ ← Ah(·),Dn(x) and outputs x′.

Winning conditions: In case x = x′, the adversary A wins if h(x) 6= y,2 and in case x 6= x′, the
adversary wins if all the following hold: (1) HD(x, x′) ≤ b, (2) h(x′) 6= y, and (3) h(x′) 6= ?.

Why separating winning conditions for x = x′ from x 6= x′? One might wonder why we
separate the winning condition for the two cases of x = x′ and x 6= x′. The reason is that ? is
supposed to capture tamper detection. So, if the adversary does not change x and the hypothesis
outputs h(x) = ?, this is an error, and thus should contribute to the risk. More formally, when we
evaluate risk, we have RiskP(h) = Pr(x,y)←D[h(x) 6= y], which implicitly means that outputting ?
contributes to the risk. However, if adversary’s perturbs to x′ 6= x leads to h(x′) = ?, it means the
adversary has not succeeded in its attack, because the tampering is detected. In fact, if we simply
require the other 3 conditions to let adversary win, the notion of “adversarial risk” (see Definition 2)
might be even less than the normal risk, which is counter intuitive.

Alternative definitions of winning for the adversary. The winning condition for the adversary
could be defined in other ways as well. In our Definition 1, the adversary wins if d(x, x′) ≤ b and
h(x′) 6= y. This condition is inspired by the notion of corrupted input (Feige et al., 2015), is extended
to metric spaces in (Madry et al., 2018), and is used in and many subsequent works. An alternative
definition for adversary’s goal, formalized in (Diochnos et al., 2018) and used in (Gilmer et al., 2018;

2. Note that, if h(x) 6= y, without loss of generality, the adversary A can output x′ = x

8



ADVERSARIALLY ROBUST LEARNING COULD LEVERAGE COMPUTATIONAL HARDNESS

Diochnos et al., 2018; Bubeck et al., 2018a; Degwekar and Vaikuntanathan, 2019) requires h(x′) to
be different from the true label of x′ (rather than x). This condition requires the misclassification of
x′, and thus, x′ would belong to the “error-region” of h. Namely, if we let c(x) = y be the ground
truth function, the error-region security game requires h(x′) 6= c(x′). Another stronger definition of
adversarial risk is given by Suggala et al. (2018) in which the requirement condition requires both
conditions: (1) the ground truth should not change c(x) = c(x′), and that (2) x′ is misclassified. For
natural distributions like images or voice, where the ground truth is robust to small perturbations, all
these three definitions for adversary’s winning are equivalent.

Stronger attack models. In the attack model of Definition 1, we only provided the label y of x
to the adversary and also give her the sample oracle from Dn. A stronger attacker can have access
to the “concept” function c(x) which is sampled from the distribution of y given x (according to
Dn). This concept oracle might not be efficiently computable, even in scenarios that Dn is efficiently
samplable. In fact, even if Dn is not efficiently samplable, just having access to a large enough
pool of i.i.d. sampled data from Dn is enough to run the experiment of Definition 1. In alternative
winning conditions (e.g., the error-region definition) for Definition 1 discussed above, it makes more
sense to also include the ground truth concept oracle c(·) given as oracle to the adversary, as the
adversary needs to achieve h(x′) 6= c(x′). Another way to strengthen the power of adversary is
to give him non-black-box access to the components of the game (see Papernot et al. (2017)). In
definition 1, by default, we model adversaries who have black-box access to h(·), Dn, but one can
define non-black-box (white-box) access to each of h(·), Dn, if they are polynomial size objects.

Diochnos et al. (2018) focused on bounded perturbation adversaries that are unbounded in their
running time and formalized notions of of adversarial risk for a given hypothesis h with respect to
the b-perturbing adversaries. Using Definition 1, in Definition 2, we retrieve the notions of standard
risk, adversarial risk, and its (new) computational variant.

Definition 2 (Adversarial risk of hypotheses and learners) Suppose L is a learner for a problem
P = (X ,Y, D,H). For a class of attackers A we define

AdvRiskP,A(L) = sup
A∈A

Pr[A wins]

where the winning is in the experiment of Definition 1. When the attacker A is fixed, we simply
write AdvRiskP,A(L) = AdvRiskP,{A}(L). For a trivial attacker I who outputs x′ = x, it holds that
RiskP(L) = AdvRiskP,I(L). WhenA includes attacker that are only bounded by b perturbations, we
use notation AdvRiskP,b(L) = AdvRiskP,A(L), and when the adversary is further restricted to all s-
size (oracle-aided) circuits, we use notation AdvRiskP,b,s(L) = AdvRiskP,A(L). When L is a learner
that outputs a fixed hypothesis h, by substituting h with L, we obtain the following similar notions
for h, which will be denoted as RiskP(h), AdvRiskP,A(h), AdvRiskP,b(h), and AdvRiskP,b,s(h).

Definition 3 (Computationally robust learners and hypotheses) Let Pn = (Xn,Yn, Dn,Hn) be
a family of classification parameterized by n. We say that a learning algorithm L is a computationally
robust learner with risk at most R = R(n) against b = b(n)-perturbing adversaries, if for any
polynomial s = s(n), there is a negligible function negl(n) = n−ω(1) such that

AdvRiskPn,b,s(L) ≤ R(n) + negl(n).

Note that the size of circuit used by the adversary controls its computational power and that is
why we are enforcing it to be a polynomial. Again, when L is a learner that outputs a fixed hypothesis

9
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hn for each n, we say that the family hn is a computationally robust hypothesis with risk at most
R = R(n) against b = b(n)-perturbing adversaries, if L is so. In both cases, we might simply say
that L (or h) has computational risk at most R(n).

Remark 4 (Alternative definition without the negligible term for concrete adversary runtime)
We remark that, when the class of adversary is a finite set, and when we work with a concrete setting
of parameter (as opposed to the asymptotic setting of Definition 2) one can opt to work with concrete
bounds and a version that drops the negligible probability negl on the right hand side of the inequality
and asks for the probability of winning to be simply stated as AdvRiskPn,b,s(L) ≤ R(n) for s-sized
oracle-aided circuit adversaries or s-time oracle-aided Turing machines. However, in the asymptotic
setting, one can work with very large polynomials for small security parameters, in which case there
is little difference between information theoretic adversaries versus computationally bounded ones.
In that case, the negligible additive term will subsume any large advantage that such adversaries
might have for small security parameters. In this work, we opt to work with the above asymptotic
definition together with the negligible additive term. Moreover, the negligible probability usually
comes up in computational reductions, and hence it simplifies the statement of our theorems, but we
emphasize that both forms of the definition of computational risk (for concert as well as asymptotic
settings) are equally appealing and valid on their own.

PAC learning under computationally bounded tampering adversaries. Recently, several works
studied generalization under adversarial perturbations from a theoretical perspective (Bubeck et al.,
2018b; Cullina et al., 2018; Feige et al., 2018; Attias et al., 2018; Khim and Loh, 2018; Yin et al.,
2018; Montasser et al., 2019; Diochnos et al., 2019), and hence they implicitly or explicitly revisited
the “probably approximately corect” (PAC) learning framework of Valiant (2013) under adversarial
perturbations. Here we comment that, one can derive variants of those definitions for computationally
bounded attackers, by limiting their adversaries as done in our Definition 3. In particular, we
call a learner L an (ε, δ) PAC learner for a problem P and computationally bounded b-perturbing
adversaries, if with probability 1− δ, L outputs a hypothesis h that has computational risk at most ε.

Discussion on falsifiability of computational robustness. If the learner L is polynomial time,
and that the distribution Dn is samplable in polynomial time (e.g., by sampling y first and then
using a generative model to generate x for y), then the the computational robustness of learners as
defined based on Definitions 3 and 1 is a “falsifiable” notion of security as defined by Naor (2003).
Namely, if an adversary claims that it can break the computational robustness of the learner L, it can
prove so in polynomial time by participating in a challenge-response game and winning in this game
with a noticeable (non-negligible) probability more than R(n). This feature is due to the crucial
property of the challenger in Definition 1 that is a polynomial time algorithm itself, and thus can be
run efficiently. Not all security games have efficient challengers (e.g., see Pandey et al. (2008)).

3. From Computational Hardness to Computational Robustness

In this section, we will first prove our main result that shows the existence of a learning problem
with classifiers that are only computationally robust. We first prove our result by starting from
any hypothesis that is vulnerable to adversarial examples; e.g., this could be any of the numerous
algorithms shown to be susceptible to adversarial perturbations. Our constructions use error correction
codes and cryptographic signatures. For definitions of these notions refer to section A.

10
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3.1. Computational Robustness with Tamper Detection

Our first construction uses hypothesis with tamper detection (i.e, output ? capability). This construc-
tion is based on cryptographic signature schemes with short (polylogarithmic) signatures.

Construction 5 Let Q = ({0, 1}d,Y, D,H) be a learning problem and h ∈ H a classifier for
Q. We construct a family of learning problems Pn (based on the fixed problem Q) with a family
of classifiers hn. In our construction we use signature scheme (KGen, Sign,Verify) for which the
bit-length of vk is λ and the bit-length of signature is `(λ) = polylog(λ) 3. We also use an error
correction code (Encode,Decode) with code rate cr = Ω(1) and error rate er = Ω(1).

1. The space of instances for Pn is Xn = {0, 1}n+d+`(n).

2. The set of labels is Yn = Y .

3. The distribution Dn is defined by the following process: first sample (x, y)← D, (sk, vk)←
KGen(1n·cr), σ ← Sign(sk, x), then encode [vk] = Encode(vk) and output ((x, σ, [vk]), y).

4. The classifier hn : Xn → Yn is defined as

hn(x, σ, [vk]) =

{
h(x) if Verify (Decode([vk]), x, σ) ,

? otherwise.

Theorem 6 For family Pn of Construction 5, the family of classifiers hn is computationally robust
with adversarial risk at most RiskQ(h) = α against adversaries with budget er · n. (Recall that er is
the error rate of the error correction code.) On the other hand hn is not robust against information
theoretic adversaries of budget b+ `(n), if h itself is not robust to b perturbations:

AdvRiskPn,b+`(n)(hn) ≥ AdvRiskQ,b(h).

Theorem 6 means that, the hn is computationally robust for adversarial budget as large as Ω(n)
(if we choose a code with constant error correction rate) while it has small information theoretic
adversarial robustness for budget value as small as b + polylog(n) ≤ polylog(n) (note that b is a
constant here) if we choose a signature scheme with short signatures of poly-logarithmic length.

For proof of the above theorem, see Appendix B. Now we state the following corollary about
robust-hard learning problems that are defined in Appendix A.

Corollary 7 If the underlying problem Q in Construction 5 is robust-hard w.r.t sublinear budget
b(n), then for any polynomial learning algorithm L for Pn we have

AdvRiskPn,b+`(n)(L) ≥ 1− negl(n).

On the other hand, the family of classifiers hn for Pn is computationally robust with risk at most α
against adversaries with linear budget.

The above corollary follows from Theorem 6 and definition of robust-hard learning problems.
The significance of this corollary is that it provides an example of a learning problem that could not
be learnt robustly with any polynomial time algorithm. However, the same problem has a classifier
that is robust against computationally bounded adversaries. This construction uses a robust-hard
learning problem that is proven to exist based on cryptographic assumptions (Bubeck et al., 2018c;
Degwekar and Vaikuntanathan, 2019).

3. Such signatures exist assuming exponentially hard one-way functions (Rompel, 1990).
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3.2. Computational Robustness without Tamper Detection

The following theorem shows an alternative construction that is incomparable to Construction 5, as it
does not use any tamper detection. See Construction 19 in Appendix B for more details.

Theorem 8 For family Pn of Construction 19, the family of classifiers hn has risk 0 and is compu-
tationally robust with risk at most 0 against adversaries of budget er · n. On the other hand hn is not
robust against information theoretic adversaries of budget `(n):

AdvRiskPn,`(n)(hn) ≥ 1/2.

Note that reaching adversarial risk 1/2 makes the classifier’s decisions meaningless as a random
coin toss achieves this level of accuracy.

4. Average-Case Hardness of NP from Computational Robustness

In this section, we show a converse result to those in Section 3, going from useful computational
robustness to deriving computational hardness. Namely, we show that if there is a learning problem
whose computational risk is noticeably more than its information theoretic risk, then NP is hard
even on average.

Definition 9 (Hard samplers for NP) For the following definition, A Boolean formula φ over some
Boolean variables x1, . . . , xk is satisfiable, if there is an assignment to x1, . . . , xk ∈ {0, 1}, for
which φ evaluates to 1 (i.e, TRUE). We use some standard canonical encoding of such Boolean
formulas and fix it, and we refer to |φ|, the size of φ, as the bit-length of this representation for
formula φ. Let SAT be the language/set of all satisfiable Boolean formulas. Suppose S(1n, r) is a
polynomial time randomized algorithm that takes 1n and randomness r, runs in time poly(n), and
outputs Boolean formulas of size poly(n). We call S a hard (instance) sampler for NP if,

1. For a negligible function negl it holds that Prφ←S [φ ∈ SAT] = 1− negl(n).

2. For every poly-size circuit A, there is a negligible function negl, such that

Pr
φ←S,t←A(φ)

[φ(t) = 1] = negl(n).

The following theorem is stated for computationally robust learning, but the same proof holds for
computationally robust hypotheses as well. See Appendix C for proof of the theorem.

Theorem 10 (Hardness of NP from computational robustness) Let Pn = (Xn,Yn, Dn,Hn)
be a learning problem. Suppose there is a (uniform) learning algorithm L for Pn such that:

1. L is computationally robust with risk at most α under b(n)-perturbations.

2. AdvRiskPn,b(n)(L) ≥ β(n); i.e., information-theoretic adversarial risk of L is at least β(n).

3. β(n)− α ≥ ε for ε = 1/poly(n).

4. Dn is efficiently samplable by algorithm S.

5. For any x, x′ ∈ Xn checking d(x, x′) ≤ b(n) is possible in polynomial time.

Then, there is a hard sampler for NP.
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Appendix A. Useful Tools

Here, we define the notions of one-way function, one-time signature and error correcting code.

Definition 11 (One-way function) A function f : {0, 1}∗ → {0, 1}∗ is one-way if it can be com-
puted in polynomial time and the inverse of f is hard to compute. Namely, there is a polynomial time
algorithm M such that

Pr[x← {0, 1}n;M(x) = f(x)] = 1

and for any polynomial time algorithm A there is a negligible function negl(·) such that we have,

Pr[x← {0, 1}n; y = f(x); f(A(y)) = x] ≤ negl(|x|).

The assumption that one-way functions exist is standard and omnipresent in cryptography as a
minimal assumption, as many cryptographic tasks imply the existence of OWFs (Goldreich, 2007;
Katz and Lindell, 2014).

Definition 12 (One-time signature schemes) A one-time signature scheme S = (KGen, Sign,Verify)
consists of three probabilistic polynomial-time algorithms as follows:

• KGen(1λ)4 → (sk, vk)

• Sign(sk,m)→ σ

• Verify(vk, σ,m)→ {0, 1}

which satisfy the following properties:

1. Completeness: For every m

Pr[(sk, vk)← KGen(1λ);σ ← Sign(sk,m);

Verify(vk, σ,m) = 1] = 1.

4. By 1λ we mean an string of bits of size λ that is equal to 1 at each location. Note that λ is the security parameter that
controls the security of the scheme. As λ increases the task of finding a forgery for a signature becomes harder.
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2. Unforgeability: For every positive polynomial s, for every λ and every pair of circuits
(A1, A2) with size s(λ) the following probability is negligible in λ:

Pr[(sk, vk)← KGen(1λ);

(m, st)← A1(1
λ, vk);

σ ← Sign(sk,m);

(m′, σ′)← A2(1
λ, vk, st,m, σ);

m 6= m′ ∧ Verify(vk, σ′,m′) = 1] ≤ negl(λ).

Definition 13 (Error correction codes) An error correction code with code rate α and error rate
β consists of two algorithms Encode and Decode as follows.

• The encode algorithm Encode takes a Boolean string m and outputs a Boolean string c such
that |c| = |m|/α.

• The decode algorithm Decode takes a Boolean string c and outputs either ⊥ or a Boolean
string m. It holds that for all m ∈ {0, 1}∗, c = Encode(m) and c′ where HD(c, c′) ≤ β · |c|,
it holds that Decode(c′) = m.

Bellow we formally define the notion of robust-hard learning problems which captures the
inherent vulnerability of a learning problem to adversarial attacks due to computational limitations
of the learning algorithm. This definition are implicit in works of (Degwekar and Vaikuntanathan,
2019; Bubeck et al., 2018c). In Section 3, we use these robust-hard problems to construct learning
problems that are inherently non-robust in presence of computationally unbounded adversaries but
have robust classifiers against computationally bounded adversaries.

Definition 14 (Robust-hard learning problems) A learning problem Pn = (Xn,Yn, Dn,Hn) is
robust-hard w.r.t budget b(n) if for any learning algorithm L that runs in poly(n) we have

AdvRiskPn,b(L) ≥ 1− negl(n).

Theorem 15 (Degwekar and Vaikuntanathan (2019); Bubeck et al. (2018c)) There exist a Learn-
ing problem Pn = (Xn,Yn, Dn,Hn) and a sub-linear budget b(n) such that Pn is robust-hard w.r.t
b unless one-way functions do not exist.

Appendix B. Proof of Theorems 6 and 8 and Constrcution 19

Proof (of Theorem 6) We first prove the following claim about the risk of hn.

Claim 16 For problem Pn we have

RiskPn(hn) = RiskQ(h) = α.

Proof The proof follows from the completeness of the signature scheme. We have,

RiskPn(hn) = Pr[((x, σ, [vk]) , y)← Dn; hn(x, σ, [vk]) 6= y]

= Pr[(x, y)← D; h(x) 6= y] = RiskQ(h).

Now we prove the computational robustness of hn.

17



ADVERSARIALLY ROBUST LEARNING COULD LEVERAGE COMPUTATIONAL HARDNESS

Claim 17 For family Pn, and for any polynomial s(·) there is a negligible function negl such that
for all n ∈ N

AdvRiskPn,er·n,s(hn) ≤ α+ negl(n).

Proof Let A{n∈N} be the family of circuits maximizing the adversarial risk for hn for all n ∈ N. We
build a sequence of circuits A1

{n∈N}, A
2
{n∈N} such that A1

n and A2
n are of size at most s(n) + poly(n).

A1
n just samples a random (x, y) ← D and outputs (x, y). A2

n gets x, σ and vk, calls An to get
(x′, σ′, vk′) ← An((x, σ, [vk]), y) and outputs (x′, σ′). Note that A2

n can provide all the oracles
needed to run An if the sampler from D, h and c are all computable by a circuit of polynomial size.
Otherwise, we need to assume that our signature scheme is secure with respect to those oracles and
the proof will follow. We have,

AdvRiskPn,er·n,s(hn) = Pr[((x, σ, [vk]), y)← Dn; (x′, σ′, vk′)← A((x, σ, [vk]), y));

(x′, σ′, vk′) ∈ HDer·n(x, σ, [vk]) ∧ hn(x′, σ′, vk′) 6= ? ∧ hn(x′, σ′, vk′) 6= y].

Note that (x′, σ′, vk′) ∈ HDer·n(x, σ, [vk]) implies that Decode(vk′) = vk based on the error rate of
the error correcting code. Also hn(x′, σ′, vk′) 6= ? implies that σ′ is a valid signature for x′ under
verification key vk. Therefore, we have,

AdvRisker·n,s(hn)

≤ Pr[(sk, vk)← KGen(1n); (x, y)← A1(1
n); σ ← Sign(sk, x); (x′, σ′)← A2(x, σ, vk);

Verify(vk, x′, σ′) ∧ hn(x′, σ′, [vk]) 6= y]

≤ Pr[(sk, vk)← KGen(1n); x← A1(1
n); σ ← Sign(sk, x); (x′, σ′)← A2(x, σ, vk);

Verify(vk, x′, σ′) ∧ x′ 6= x] + RiskPn(hn).

Thus, by the unforgeability of the one-time signature scheme we have

AdvRiskPn,er·n,s(hn) ≤ RiskPn(hn) + negl(n),

which by Claim 16 implies
AdvRisker·n,s(hn) ≤ α+ negl(n).

Now we show that hn is not robust against computationally unbounded attacks.

Claim 18 For family Pn and any n, b ∈ N we have

AdvRiskPn,b+`(n)(hn) ≥ AdvRiskQ,b(h).

Proof For any ((x, σ, [vk]), y) define A(x, σ, [vk]) = (x′, σ′, [vk]) where x′ is the closes point to
x where h(x) 6= y and σ′ is a valid signature such that Verify(vk, x∗, σ′) = 1. Based on the fact
that the size of signature is `(n), we have HD(A(x, σ, [vk]), (x, σ, [vk])) ≤ `(n) + HD(x, x′). Also,
it is clear that hn(A(x, σ, [vk])) 6= ? because σ′ is a valid signature. Also, hn(A(x, σ, [vk])) 6=

18



ADVERSARIALLY ROBUST LEARNING COULD LEVERAGE COMPUTATIONAL HARDNESS

cn(A(x, σ, [vk])). Therefore we have

AdvRiskPn,b+`(n)(hn)

= Pr[((x, σ, [vk]), y)← Dn;

∃(x′, σ′) ∈ HDb+`(n)(x, σ), h(x′) 6= y ∧ h(x′) 6= ? ∧ Verify(vk, σ′, x′)]

≥ Pr[((x, σ, [vk]), y)← Dn; ∃x′ ∈ HDb(x), h(x′) 6= y ∧ h(x′) 6= ?]

= AdvRiskQ,b(h).

This concludes the proof of Theorem 6.

Construction 19 (Computational robustness without tamper detection) LetD be a distribution
over {0, 1}cr·n × {0, 1} with a balanced “label” bit: Pr(x,y)←D[y = 0] = 1/2. We construct a
family of learning problems Pn with a family of classifiers hn. In our construction we use a signature
scheme (KGen, Sign,Verify) for which the bit-length of vk is λ and the bit-length of signature is
`(λ) = polylog(λ) and an error correction code (Encode,Decode) with code rate cr = Ω(1) and
error rate er = Ω(1).

1. The space of instances for Pn is Xn = {0, 1}2n+n·`(n).

2. The set of labels is Yn = {0, 1}.

3. The distribution Dn is defined as follows: first sample (x, y)← D, then sample (sk, vk)←
KGen(1n·cr) and compute [vk] = Encode(vk). Then compute [x] = Encode(x). If y = 0
sample a random σ ← {0, 1}`(n) that is not a valid signature of x w.r.t vk. Then output
(([x], σn, [vk]), 0). Otherwise compute σ ← Sign(sk, x) and output (([x], σn, [vk]), 1).

4. The classifier hn : Xn → Yn is defined as

hn(x′, σ1, . . . , σn, vk
′) =

{
1 if ∃i ∈ [n];Verify

(
Decode(vk′),Decode(x′), σi

)
,

0 otherwise.

Proof (of Theorem 8) First it is clear that for problem Pn we have RiskPn(hn) = 0. Now we prove
the computational robustness of hn.

Claim 20 For family Pn, and for any polynomial s(·) there is a negligible function negl such that
for all n ∈ N

AdvRiskPn,er·n,s(hn) ≤ negl(n).

Proof Similar to proof of Claim 17 we prove this based on the security of the signature scheme.
Let A\∈N be the family of circuits maximizing the adversarial risk for hn for all n ∈ N. We build a
sequence of circuits A1

\∈N and A2
\∈N such that A1

n and A2
n are of size at most s(n) + poly(n). A1

n

just asks the signature for 0cr·n. A2
n gets vk and does the following: It first samples (x, y) ← D,

computes encodings [x] = Encode(x) and [vk] = Encode(vk) and if y = 0, it samples a random σ ←
{0, 1}`(n) then calls An on input ([x], σn, [vk]) to get (x′, (σ1, . . . , σn), vk′)← An(([x], σn, [vk]), y).
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Then it checks all σi’s and if there is any of them that Verify(vk, σi, x) = 1 it outputs (x, σi),
otherwise it aborts and outputs ⊥. If y = 0 it aborts and outputs ⊥. Note that A2

n can provide all the
oracles needed to run An if the sampler from D, h and c are all computable by a circuit of polynomial
size. Otherwise, we need to assume that our signature scheme is secure with respect to those oracles
and the proof will follow. We have,

AdvRiskPn,er·n,s(hn)

= Pr[(([x], σn, [vk]), y)← Dn; (x′, (σ1, . . . , σn), vk′)← An(([x], σn, [vk]), y));

(x′, (σ1, . . . , σn), vk′) ∈ HDer·n([x], σn, [vk]) ∧ hn(x′, (σ1, . . . , σn), vk′) 6= y].

Because of the error rate of the error correcting code, (x′, (σ1, . . . , σn), vk′) ∈ HDer·n(x, σn, [vk])
implies that Decode(vk′) = vk and Decode(x′) = x. Also hn(x′, (σ1, . . . , σn), vk′) 6= y implies
that y = 0. This is because if y = 1, the adversary has to make all the signatures invalid which
is impossible with tampering budget cr · n. Therefore y must be 1 and one of the signatures in
(σ1, . . . , σn) must pass the verification because the prediction of hλ should be 1. Therefore we have

AdvRiskPn,er·n,s(hn) ≤ Pr[((x, σn, [vk]), y)← Dn; (x′, (σ1, . . . , σn), vk′)← A((x, σ, [vk]), y));

y = 0 ∧ ∃iVerify(vk, σi, x)]

≤ Pr[(sk, vk)← KGen(1n); 0cr·n ← A1(1
n, vk); σ ← Sign(sk, 0cr·n);

(x, σi)← A2(vk); Verify(vk, x, σi)]

Thus, by the unforgeability of the one-time signature scheme we have

AdvRiskPn,er·n,s(hn) ≤ negl(n).

Now we show that hn is not robust against computationally unbounded attacks.

Claim 21 For family Pn and any n ∈ N we have

AdvRiskPn,`(n)(hn) = 0.5.

Proof For any (([x], σn, [vk]), y) define A([x], σn, [vk]) as follows: If y = 1, A does nothing
and outputs ([x], σn, [vk]). If y = 0, A search all possible signatures to find a signature σ′ such
that Verify(vk, σ′, x) = 1. It then outputs ([x], (σ′, σn−1), [vk]). Based on the fact that the size
of signature is `(n), we have HD((x, (σ′, σn−1), [vk]), (x, σn, [vk])) ≤ `(n). Also, it is clear that
hn(x, (σ′, σn−1), [vk]) = 1 because the first signature is always a valid signature. Therefore we have

AdvRiskPn,`(n)(hn) ≥ Pr[(([x], σn, [vk]), y)← Dn;h(A(([x], σn, [vk]))) 6= y]

= Pr[(([x], σn, [vk]), y)← Dn; 1 6= y]

= 0.5.

This concludes the proof of Theorem 8.
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Appendix C. Proof of Theorem 10

Before proving Theorem 10, we recall a useful lemma. The same proof of amplification of (weak
to strong) one-way functions by Yao (1982) and described in (Goldreich, 2007), or the parallel
repetition of verifiable puzzles (Canetti et al., 2005; Holenstein and Schoenebeck, 2011) can be used
to prove the following lemma.

Lemma 22 (Amplification of verifiable puzzles) Suppose S is a distribution over Boolean for-
mulas such that for every poly-size adversary A, for sufficiently large n, it holds that solving the
puzzles generated by S are weakly hard. Namely, Prφ←S(1n,r1)[φ(t) = 1; t ← A(φ)] ≤ ε for
ε = 1/poly(n). Then, for any polynomial-size adversary A, there is a negligible function negl,
such that the probability that A can simultaneously solve all of k = n/ε puzzles φ1, . . . , φk that are
independently sampled from S is at most negl(n).

Proof (of Theorem 10.) First consider the following sampler S1. (We will modify S1 later on).

1. Sample m examples S ← Dm
n .

2. Run L to get h← L(S).

3. Sample another (x, y)← Dn

4. Using the Cook-Levin reduction, get a Boolean formula φ = φh,x,y such that φ ∈ SAT, if (1)
d(x′, x′) ≤ b(n) and (2) h(x′) 6= y. This is possible because using h, x, y, both conditions (1)
and (2) are efficiently checkable.

5. Output φ.

By the assumptions of Theorem 10, it holds that Prφ←S1 [φ ∈ SAT] ≥ β(n) while for any poly-size
algorithm A, it holds that Prφ←S1,t←A(φ)[φ(t) = 1] ≤ α. So, S1 almost gets the conditions of a hard
sampler for NP, but only with a weak sense.

Using standard techniques, we can amplify the ε-gap between α, β(n). The algorithm S2 works
as follows. (This algorithm assumes the functions α, β(n) are efficiently computable, or at least there
is an efficiently computable threshold τ ∈ [α+ 1/poly(n), β(n)− 1/poly(n)].)

1. For k = n/ε2, and all i ∈ [k], get φi ← S1.

2. Using the Cook-Levin reduction get a Boolean formula φ = φφ1,...,φk such φ ∈ SAT, if there
is a solution to satisfy at least τ = (α+ β(n))/2 of the formulas φ1, . . . , φk. More formally,
φ ∈ SAT, if there is a vector t = (t1, . . . , tk) such that |{i : φi(ti) = 1}| ≥ τ . This is possible
since verifying t is efficiently possible.

By the Chernoff-Hoeffding bound,

Pr
φ←S2

[φ ∈ SAT] ≥ 1− e−(ε/2)2·n/ε2 ≥ 1− e−n/4.

Proving the second property of the hard sampler S is less trivial, as it needs an efficient reduction.
However, we can apply a weak bound here and then use Lemma 22. We first claim that for any
poly-size adversary A,

Pr
φ←S2,t←A(φ)

[φ(t) = 1] ≤ 1− ε/3. (1)
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To prove Equation 1, suppose for sake of contradiction that there is such adversary A. We can use
A and solve φ′ ← S1 with probability more than α+ Ω(ε) which is a contradiction. Given φ′, The
reduction is as follows.

1. Choose i← [k] at random.

2. Sample k − 1 instances φ1, . . . , φi−1, φi+1, . . . , φk ← S1 independently at random.

3. Let φi = φ′.

4. Ask A to solve φφ1,...,φk , and if A’s answer gave a solution for φi = φ′, output this solution.

Since A cannot guess i, a simple argument shows that the above reduction succeeds with probability
α + ε/2 − ε/3 = α + ε/6. Now that we have a puzzle generator S2 that has satisfiable puzzles
with probability 1− negl(n) and efficient algorithms can solve its solutions by probability at most
ε/2, using Lemma 22, we can use another direct product and design sampler S that samples 2n/ε
independent instances from S2 and asks for solutions to all of them. Because we already established
that Prφ←S2 [φ ∈ SAT] ≥ 1− negl(n), the puzzles sampled by S are also satisfiable by probability
1−n ·negl(n) = 1−negl(n), but efficient algorithms can still find the solution only with probability
that is negl(n).
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