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Abstract

The (stochastic) gradient descent and the multiplicative update method are probably the most pop-
ular algorithms in machine learning. We introduce and study a new regularization which provides
a unification of the additive and multiplicative updates. This regularization is derived from an hy-
perbolic analogue of the entropy function, which we call hypentropy. It is motivated by a natural
extension of the multiplicative update to negative numbers. The hypentropy has a natural spectral
counterpart which we use to derive a family of matrix-based updates that bridge gradient methods
and the multiplicative method for matrices. While the latter is only applicable to positive semi-
definite matrices, the spectral hypentropy method can naturally be used with general rectangular
matrices. We analyze the new family of updates by deriving tight regret bounds. We study em-
pirically the applicability of the new update for settings such as multiclass learning, in which the
parameters constitute a general rectangular matrix.

Keywords: Online Convex Optimization, Gradient Descent, Exponentiated Gradient, Experimen-
tation

1. Introduction

Algorithms for online learning can morally be divided into two camps. On one side is the additive
gradient update. Additive gradient-based stochastic methods are the most commonly used approach
for learning the parameters of shallow and deep models alike. On the other side stands the mul-
tiplicative update method. It is somewhat less glamorous, nonetheless a fundamental primitive in
game theory and machine learning, and was rediscovered repeatedly in a variety of algorithmic set-
tings (Arora et al., 2012). Both additive and multiplicative updates can be seen as special cases of a
more general technique of learning with regularization. General frameworks for regularization were
developed in online learning, dubbed Follow-The-Regularized-Leader and in convex optimization
as the Mirrored Decent algorithms, see more below.

Notable attempts were made to unify different regularization techniques, in particular between the
multiplicative and additive update methods (Kivinen and Warmuth, 1997). For example, Ada-
Grad (Duchi et al., 2011) stemmed from a theoretical study of learning the best regularization in
hindsight. As the name implies, the p-norm update (Grove et al., 2001; Gentile, 2003) uses the
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squared p-norm of the parameters as a regularization. By varying the order of the norm between
regret bounds that are characteristic of additive and multiplicative updates.

We study a new, arguably more natural, family of regularization which “interpolates” between ad-
ditive and multiplicative forms. We analyze its performance both experimentally, and theoretically
to obtain tight regret bounds in the online learning paradigm. The motivation for this interpolation
stems from the extension of the multiplicative update to negative weights. Instead of using the so
called ”EG± trick”, a term coined by Warmuth, which simulates arbitrary weights through dupli-
cation to positive and negative components, we use a direct approach. To do so we introduce the
hyperbolic regularization with a single temperature-like hyperparameter. Varying the hyperparam-
eter yields regret bounds that translate between those akin to additive, and multiplicative, update
rules. This regularization appears briefly in Cesa-Bianchi and Lugosi (2006).

As a natural next step, we investigate the spectral analogue of the hypentropy function. We show
that the spectral hypentropy is strongly-convex with respect to the Euclidean or trace norms, again
as a function of the single interpolation parameter. The spectral hypentropy yields updates that can
be viewed as interpolation between gradient descent rule and matrix multiplicative update (Tsuda
et al., 2005; Arora and Kale, 2007).

The standard matrix multiplicative update rule applies only to positive semi-definite matrices. Stan-
dard extensions to square and more general matrices increase the dimensionality (Hazan et al.,
2012). Moreover, the the regret bounds scale as O(

√
T log(m+ n) for m × n matrices. In con-

trast, the spectral hypentropy regularization is defined for arbitrary, rectangular, matrices. Moreover,
the hypentropy-based update in better regret bounds of O(

√
T log min{m,n}), matching the best

known bounds in Kakade et al. (2012).

Related work For background on the multiplicative updates method and its use in machine learn-
ing and algorithmic design, see Arora et al. (2012). The matrix version of multiplicative updates
method was proposed in Tsuda et al. (2005) and later in Arora and Kale (2007). The study of
the interplay between additive and multiplicative updates was initiated in the influential paper of
Kivinen and Warmuth (1997). Generalizations of multiplicative updates to negative weights were
studied in the context of the Winnow algorithm and mistake bounds in Warmuth (2007); Grove et al.
(2001). The latter paper also introduced the p-norm algorithm which was further developed in Gen-
tile (2003). The generalization of the p-norm regularization to matrices was studied in Kakade et al.
(2012).

2. Problem Setting

Notation. Vectors are denoted by bold-face letters, e.g. w. The zero vector and the all ones vector
are denoted by 0 and 1 respectively. We denote a ball of radius 1 with respect to the p-norm in Rd
as Bp = {x ∈ Rd : ‖x‖p ≤ 1}. For simplicity of the presentation in the sequel we assume that
weights are confined to the unit ball. Our results generalize straightforwardly to arbitrary radii.

Matrices are denoted by capitalized bold-face letters, e.g. X. We denote the space of real matrices
of size m × n as Rm×n and symmetric matrices of size d × d as Sd. For a matrix X ∈ Rm×n,
we denote the vector of singular values σ(X) = (σ1, σ2, . . . , σl) where σ1 ≥ σ2 ≥ · · · ≥ σl ≥ 0
and l = min{m,n}. Analogously, for X ∈ Sd, we denote the vector of its eigenvalues as λ(X) =
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(λ1, λ2, . . . , λd). We use ‖X‖p
def
= ‖σ(X)‖p to represent the Schatten p-norm of a matrix, namely,

the p-norm of the vector of singular values. We refer to the Schatten norm for p = 1 as the trace-
norm. Note that the notation of the spectral norm of X is ‖X‖∞. We denote the ball of radius τ with
respect to the trace-norm as BTr(τ) = {X ∈ Rm×n : ‖X‖1 ≤ τ}. We also define the intersection
of a ball and the positive orthant as B+

p = Bp ∩ Rd+. We use (x)+ to denote max(x, 0). We denote

by ‖x‖∗ the dual norm of x, ‖x‖∗
def
= sup{z>x | ‖z‖ ≤ 1}.

Online Convex Optimization. In online convex optimization (Cesa-Bianchi and Lugosi, 2006;
Hazan, 2016; Shalev-Shwartz, 2012), a learner iteratively chooses a vector from a convex set K ⊂
Rd. We denote the total number of rounds as T . In each round, the learner commits to a choice
wt ∈ K. After committing to this choice, a convex loss function `t : K → R is revealed and
the learner incurs a loss `t(wt). The most common performance objective of an online learning
algorithm A is regret. Regret is defined to be the total loss incurred by the algorithm with respect
to the loss of the best fixed single prediction found in hindsight. Formally, the regret of a learning
algorithm A is defined as,

RT (A)
def
= sup

`1...`t

{ T∑
t=1

`t(wt)− min
w∗∈K

T∑
t=1

`t(w
∗)

}
.

3. Main Results

We begin by defining the β-hyperbolic entropy, denoted φβ .

Definition 1 (Hyperbolic-Entropy) For all β > 0, let φβ : Rd → R be defined as,

φβ(x) =
d∑
i=1

(
xi arcsinh

(xi
β

)
−
√
x2
i + β2

)
.

For brevity and clarity, we use the shorthand hypentropy for φβ . Given the hypentropy function, we
derive its associated Bregman divergence, the relative hypentropy as,

Dβ
φ(x ‖ y) = φβ(x)− φβ(y)− 〈∇φβ(y),x− y〉

=

d∑
i=1

[
xi(arcsinh

(xi
β

)
− arcsinh

(yi
β

)
)−

√
x2
i + β2 +

√
y2
i + β2

]
.
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We next describe an OCO algorithm, Hypentropy Update (HU), which is mirror descent with respect
to this divergence.

Algorithm 1: Hypentropy (HU)

Input: η > 0, β > 0, convex subset K ⊆ Rd
Initialize weight matrix w1 = 0;
for i = 1 to T do

(a) Predict wt (b) Incur loss `t(wt) (c) Calculate gt = ∇`t(wt) ;

Update: wt+ 1
2 = β sinh

(
arcsinh

(
wt

β

)
− ηgt

)
;

Project onto K: wt+1 = arg min
v∈K

Dβ
φ(v ‖ wt+ 1

2 )

end

For the specific cases where our constraint set K is the 1-norm or 2-norm ball, we prove the follow-
ing regret bounds.

Theorem 2 Let w ∈ B2 and assume that for all t, ‖gt‖2 ≤ G2. Setting for β ≥ 1,

η =
1

G2

√
1

β(β + 1)T
, yields RT (HU) ≤ 4G2

√
T .

Theorem 3 Let w ∈ B1 and assume that for all t, ‖gt‖∞ ≤ G∞. Setting for β ≤ 1

η =
1

G∞

√
log
(

3
β

)
2T (1 + βd)

, yields RT (HU) ≤ 3G∞

√
T (1 + βd) log ( 3

β ) .

Note that with β > 1, we have O(G2

√
T ) regret like GD while for β = Θ(1/d), regret is

O(G∞
√
T log d) like EG. We also analyze a version of HU, called SHU, for closed convex sets

of matrices in Rm×n. The pseudocode of SHU is provided in Algorithm 2. We discuss the spectral
hypentropy, Dβ

Φ(·, ·) in Sec. 5.

Algorithm 2: Spectral Hypentropy (SHU)
Input: η > 0, β > 0, convex domain of matrices K ⊆ Rm×n
Initialize weight matrix W1 = 0;
for i = 1 to T do

(a) Predict Wt (b) Incur loss `t(Wt) (c) Calculate Gt = ∇`t(Wt) ;

Update: Wt+ 1
2 = β sinh

(
arcsinh

(
Wt

β

)
− ηGt

)
;

Project onto K: Wt+1 = arg min
V∈K

Dβ
Φ(V ‖Wt+ 1

2 )

end

The update step of SHU requires a spectral decomposition. We define f(A) = Uf(diag [σ(A)])V>

where A = U diag(σ(A))V> is the singular value decomposition of A. We use this definition
twice, once with f = arcsinh, and after subtracting the gradient with f = sinh. We prove the
following regret bound for SHU.
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Square Entropy Hypentropy

φ(x) 1
2x

2 x log(x)− x
x arcsinh(xβ )

−
√
x2 + β2

∇φ(x) x log(x) arcsinh(xβ )

∇2φ(x) 1 1
x

1√
x2+β2

Figure 1: Left:Classical and new divergences. Center: scalar versions of mirror maps used in
HU(β = 1

5), GD, and EG Algorithms depicted in blue, red, and yellow respectively.
EG is only defined for positive values of x. Right: β is varied between 0.1, 1, and 10 and
is similarly depicted along with its linear and logarithmic limits.

Theorem 4 (Trace norm Regret) Let W ∈ BTr(τ) ⊆ Rm×n and let ‖Gt‖∞ ≤ G∞ be a spectral
norm bound on the gradients. For γ = β

τ ≤ 1, setting,

η =
1

2G∞

√
log
(

3
γ

)
T (1 + γmin{m,n})

, yields RT (SHU) ≤ 4τG∞

√
T (1 + γmin{m,n}) log ( 3

γ ) .

HU and SHU are mirror descent algorithms using the hypentropy and spectral hypentropy regular-
ization functions defined in Sec. 4 and Sec. 5 respectively. These sections explore the geometric
properties of these new regularization functions. Connections to the EG± doubling trick are ex-
plored in Sec. 6. The regret theorems above are then proved in App. C. Experimental results which
underscore the applicability of HU and SHU are described in App. A. A thorough description of
mirror descent is given for completeness in App. B.

4. Hypentropy Divergence

In this section, we explore the β-hyperbolic entropy. We first note that we can view φβ(x) as the
sum of scalar functions, φβ(x) =

∑d
i=1 φβ(xi), each of which satisfies,

φ′′β(x) =
1√

x2 + β2
. (1)

As we vary β, the relative hypentropy interpolates between the squared Euclidean distance and the
relative entropy. The potentials for these divergences are sums of element-wise scalar functions,
for simplicity we view them as scalar functions. The interpolation properties of hypentropy can be
seen in Figure 4. As β approaches 0, we see that ∇2φβ approaches 1

|x| . When working only over
the positive orthant, as is the case with entropic regularization, the hypentropy second derivative
converges to the second derivative of the negative entropy. On the other hand, as β grows much
larger than x, we see

√
β2 + x2 ≈ β. Therefore, for larger β, ∇2φβ is essentially a constant. In

this regime hypentropy behaves like a scaled squared euclidean distance.

From a mirror descent perspective (see App. B), it makes sense to look at the mirror map, the
gradient of the φ which defines the dual space where additive updates take place. Weights are
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mapped into the dual space via the mirror map ∇φ : Rd → Rd and mapped back into the primal
space via∇φ∗. Gradient-Descent (GD) can be framed as mirror descent using the squared euclidean
norm potential while Exponentiated-Gradient (EG) amounts to mirror descent using the entropy
potential. The Hypentropy Update (HU) uses the mirror map ∇φβ . As can be seen from Figure
4, for sufficiently large weights, the hypentropy mirror map behaves like log(x), namely, the EG
mirror map. In contrast, arcsinh(x/β) is linear for small weights, and thus behave like GD1. Large
values of β correspond to a slower transition from the linear regime to the logarithmic regime of the
mirror map.

The regret analysis of GD and EG depend on geometric properties of the divergence related to the
2-norm and 1-norm respectively. Given this connection, it is useful to analyze the properties of
hypentropy with respect to both the 1-norm and 2-norm. Recall that a function f is α-strongly
convex with respect to a norm ‖ · ‖ on K if,

∀x,y ∈ K, f(x)− f(y)−∇f(y)(x− y) ≥ α

2
‖x− y‖2.

For convenience, we use the following second order characterization of strong-convexity from
Thm. 3 in (Yu, 2013).

Lemma 5 Let K be a convex subset of some finite vector space X . A twice differentiable function
f : K → R is α-strongly convex with respect to a norm ‖ · ‖ iff

inf
x∈K,y∈X :‖y‖=1

y>∇2φ(x)y ≥ α .

We next prove elementary properties of φβ .

Lemma 6 The function φβ is (1 + β)−1-strongly-convex over B2 w.r.t the 2-norm.

Proof To prove the first part, note that from (1) we get that the Hessian is the diagonal matrix,

∇2φβ(x) = diag
[

1√
x21+β2

, . . . 1√
x2d+β2

]
Strong convexity follows from the diagonal structure of the Hessian, whose smallest eigenvalue is

1√
x2 + β2

≥ 1√
1 + β2

≥ 1

1 + β
.

Lemma 7 The function φβ is (1 + βd)−1-strongly-convex over B1 w.r.t. the 1-norm.

Proof We work with the characterization provided in Lemma 5,

inf
x∈B1,‖y‖1=1

y>∇2φ(x)y = inf
x∈B1,‖y‖1=1

d∑
i=1

y2
i√

β2 + x2
i

[
Equation (1)

]

= inf
x∈B1,‖y‖1=1

1∑d
i=1

√
β2 + x2

i

( d∑
i=1

y2
i√

β2 + x2
i

)( d∑
i=1

√
β2 + x2

i

)

1. If scaled by an appropriate factor, like (1+β), the limits as β tends to 0 and ∞ are exactly EG and GD respectively.
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≥ inf
x∈B1,‖y‖1=1

1∑d
i=1

√
β2 + x2

i

( d∑
i=1

√
y2
i

)2 [
Cauchy- Schwarz

]
= inf

x∈B1,‖y‖1=1

1∑d
i=1

√
β2 + x2

i

‖y‖21 ≥
1∑d

i=1(β + |xi|)
≥ 1

1 + βd
.

We next introduce a generalized notion of diameter with respect to 0 and use it to prove properties
of φβ .

Definition 8 The diameter of a convex set K that contains 0 with respect to φ is, diamφ(K)
def
=

supx∈KDφ(x ‖ 0) .

In App. D, we derive the following diameter bounds:

diam(B1) ≤ log
( 3

β

)
, ∀β ≤ 1 (2)

diam(B2) ≤ 2

β
(3)

5. Spectral Hyperbolic Divergence

In this section, the focus is on using hypentropy as a spectral regularization function. We show that
the matrix version of HU is strongly convex with respect to the trace norm. Our proof technique
of strong convexity is a roundabout for the matrix potential. The proof works by showing that the
conjugate potential function is smooth with respect to the spectral norm (the dual of the trace norm).
The duality of smoothness and strong convexity is then used to show strong convexity.

5.1. Matrix Functions

We are concerned with potential functions that act on the singular values of a matrix. For an even
scalar absolutely symmetric function, f : R→ R+, consider the trace function,

F (X) = (f ◦ σ)(X) =
d∑
i=1

f(σi) = Tr
(
f
(√

X>X
))

, (4)

where we overload the notation for f and denote f(v) =
∑d

i=1 f(vi). For X ∈ Sd we use

F (X) = (f ◦ λ)(X) = Tr(f(X)) . (5)

Here f(X) represents the standard lifting of a scalar function to a square matrix, where f acts on
the vector of eigenvalues, namely,

X = Udiag [λ(X)]U> ⇒ f(X) = U diag [f(λ(X))]U> .

We also use the gradient of a trace-function in our analysis. The following result from Thm. 14 in (Kakade
et al., 2009) shows how to compute a gradient using a singular value decomposition.
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Theorem 9 Let X ∈ Rm×n and F : Rm×n → R+ be defined as above, then

∇F (X) = f ′(X) .

We also make use of the Fenchel conjugate functions. Consider a convex function f : X → R
defined on a finite vector space X endowed with an inner product 〈·, ·〉. The conjugate of f is
defined as follows.

Definition 10 The conjugate f∗ : X ∗ → R of a convex function f : X → R is

f∗(z) = sup
x∈X
〈x, z〉 − f(x) .

In this section, we use the space of matrices (either Rm×n or Sd) with the inner product 〈X,Y〉 =
Tr(X>Y). Thus, the dual space of X is X itself and f∗ is defined over X .

We need to relate the conjugate of a trace function to that of a scalar function. This is achieved
by the following result, restated from Thm. 12 (Kakade et al., 2009). The theorem implies that the
conjugate of a singular-values function is the singular-values function lifted from the conjugate of
the scalar function.

Theorem 11 Let F = (f ◦ σ) be defined as in (4), then F ∗ = (f∗ ◦ σ).

5.2. Duality of Strong Convexity and Smoothness

Recall that a function f is L-smooth with respect to a norm ‖ · ‖ on K if,

∀x,y ∈ K, f(x)− f(y)−∇f(y)(x− y) ≤ L

2
‖x− y‖2 .

For convenience, we use the following second order characterization of smoothness which is an
analogue of Lemma 5.

Lemma 12 A twice differentiable function f : X → R is L-smooth with respect to ‖ · ‖ at x iff

sup
y∈X :‖y‖=1

y>∇2φ(x)y ≤ L .

Strong convexity and smoothness are dual notions in the sense that f is α-strongly convex with
respect to a norm ‖ · ‖ iff its Fenchel conjugate f∗ is α−1-smooth with respect to the dual norm
‖ · ‖∗.

For the matrix variant of hypentropy we find it easier to show smoothness of the conjugate rather
than strong convexity directly. Unfortunately, as we see in the sequel, the Hessian of the conjugate
function is not globally upper bounded. Therefore, we would need a local variant of the duality of
strong convexity and smoothness. In the context of mirror descent with mirror map ∇φ, we show
that φ is strongly convex over K if φ∗ is locally smooth at all points within the image of the mirror
map. Formally, we have the following lemma whose proof we provide in App. E. In the following
we use the standard notation for image of vector functions,∇f(S) = {y|∇f(x) = y, x ∈ S},

8
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Lemma 13 (Local duality of smoothness and strong convexity) Let K ⊆ Rd be an open convex
set and ‖ · ‖ be a norm with dual norm ‖ · ‖∗. Let φ : Rd → R be twice differentiable, closed and
convex function. Suppose the Fenchel conjugate φ∗ : Rd → R is L smooth with respect to ‖ · ‖∗
over C = ∇φ(K). Then, φ is 1

L strongly convex with respect to ‖ · ‖ over K.

5.3. Strong Convexity of Spectral Hypentropy

We now analyze the strong convexity of the spectral hypentropy . The spectral function Φβ(X) is
defined for X ∈ Rm×n by (4) and for X ∈ Sd by (5) replacing f with φβ . The main theorem of this
subsection is as follows.

Theorem 14 The trace function Φβ : Rm×n → R is (2(τ + βmin{m,n}))−1-strongly convex
with respect to the trace norm over BTr(τ).

We denote the d-dimensional symmetric matrices of trace-ball with maximal radius τ by

BTr(τ) = {X ∈ Sd : ‖X‖1 ≤ τ} .

We prove the above theorem by first proving the lemma below for matrices in BTr(τ). We then ex-
tend it to arbitrary matrices using a symmetrization argument, using a technique similar to (Juditsky
and Nemirovski, 2008; Warmuth, 2007; Hazan et al., 2012). The following property will be of use:

Definition 15 Define K to be (r, τ)-compatible with Φβ if K ⊆ BTr(τ) is a convex subset of
matrices that lives in a vector space X ⊆ Sd such that ∀X ∈ X , rank(X) ≤ r and ∇Φβ(X) ∈ X .

This abstraction will be useful in translating strong convexity of arbitrary matrices to the symmetric
case. The bound on the rank is essential to give a modulus of strong convexity result that depends
only on min{m,n} rather than m+ n. The final property is necessary for the low rank structure to
be preserved after a primal-dual mapping.

Lemma 16 The trace function Φβ is (2(τ + βr))−1-strongly convex w.r.t the trace norm over
(r, τ)-compatible set K.

To prove the symmetric variant, we show that Φ∗β is smooth with respect to the spectral norm, which
is the dual norm of the trace norm. The result then follows directly from Lemma 13.

From Theorem 11, Φβ has Fenchel conjugate

Φ∗β(X) = Tr(φ∗β(X)) .

Since the derivative of the conjugate of a function is the inverse of the derivative of the function, we
have

dφ∗β
dx

=

(
dφβ
dx

)−1

= β sinh(x) .

The indefinite integral of the above yields that up to a constant, φ∗β(x) = β cosh(x). Clearly, Φβ is
not globally smooth. Nonetheless, we do have smoothness over ∇Φβ(BTr(τ)). Before proving this
property, we introduce a clever technical lemma of Juditsky and Nemirovski (2008) that allows us
to reduce the spectral smoothness for matrices to smoothness of functions in the vector-case.

9
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Lemma 17 Let f : R→ R be a function and c ∈ R+ such that that for a ≥ b,

f ′(a)− f ′(b)
a− b

≤ c(f ′′(a) + f ′′(b))

2
. (6)

Let F : Sd → R be a function defined by F (X) = Tr(f(X)). Then, the second directional
derivative of F is bounded for any H ∈ Sd as follows,

D2F (X) [H,H] ≤ cTr(Hf ′′(X)H) .

We are now prepared to analyze the smoothness of Φ∗β .

Lemma 18 (Local Smoothness) If K is (r, τ)-compatible with Φβ , then the trace function Φ∗β is
2(τ + βr)-smooth with respect to the spectral norm over∇Φβ(K).

Proof To prove local smoothness, we use the second order conditions from Lemma 12. This
requires us to upper bound the second directional derivatives for all directions corresponding to
matrices of unit spectral norm. We consider the matrix

X = ∇Φβ(Y) = φ′β(Y) = arcsinh

(
Y

β

)
.

Note that (φ∗β)′′(x) = β cosh(x) is positive and convex. Therefore, by the mean value theorem,
there exists c ∈ [a, b] for which,

(φ∗β)′(b)− (φ∗β)′(a)

b− a
= (φ∗β)′′(c) ≤ max

{
(φ∗β)′′(a) , (φ∗β)′′(b)

}
≤ (φ∗β)′′(a) + (φ∗β)′′(b) .

We note that by Definition 15, ∇Φβ(X ) ⊆ X , so we can restrict ourselves to the vector space X .
Therefore, applying Lemma 17, we have

sup
H∈X :‖H‖∞≤1

D2Φ∗β(X) [H,H] ≤ sup
H∈X :‖H‖∞≤1

2 Tr
(
H(φ∗β)′′(X)H

)
= sup

H∈X :‖H‖∞≤1
2 Tr

(
H2(φ∗β)′′(X)

)
[Commutativity of trace]

≤ sup
H∈X :‖H‖∞≤1

2〈σ2(H), σ((φ∗β)′′(X))〉 [Von Neumann’s trace inequality]

where Von Neumann’s trace inequality stands for, Tr(A>B) ≤ 〈σ(A), σ(B)〉. Now, since H ∈ X ,
we know rank(H) ≤ r, and so H can have at most r nonzero singular values, yielding

sup
H∈X :‖H‖∞≤1

D2Φ∗β(X) [H,H] ≤ sup
H∈X :‖H‖∞≤1

2‖H2‖∞
r∑
i=1

σi((φ
∗
β)′′(X)) = 2

r∑
i=1

(φ∗β)′′(φ′β(σi(Y))) .

Now, note that

(φ∗β)′′(φ′β(x)) = β cosh (arcsinh (x/β)) =
√
β2 + x2 ≤ β + |x| .

10
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It then follows that

r∑
i=1

(φ∗β)′′(φ′β(σi(Y))) ≤ βr + ‖Y‖1 ≤ τ + βr .

Therefore, the second directional derivative in bounded by 2(τ + βr) as desired.

Proof [Theorem 14] We introduce the symmetrization operator S : Rm×n → Sm+n which is a
linear function that takes a matrix to a symmetric matrix,

S(X) =

 0 X

X> 0

 .

The eigenvalues of S(X) are exactly one copy of singular values and one copy of negative singular
values of X. Therefore, we have

Φβ(X) =

min{m,n}∑
i=1

φβ(σi(X)) =
1

2
Φβ(S(X)) .

Technically, for the above to hold true, we should shift φβ such that its 0 is at 0. Since a constant
shift does not affect diameter or convexity properties so this is not an issue.

Let µ be the modulus of strong convexity in the symmetrized space. We bound Φβ(X) from below
as follows,

2Φβ(X) = Φβ(S(X))

≥ Φβ(S(Y)) + 〈∇Φβ(S(Y)), S(X)− S(Y)〉+
µ

2
‖S(X)− S(Y)‖21

= Φβ(S(Y)) + 〈∇Φβ(S(Y)), S(X−Y)〉+
µ

2
‖S(X−Y)‖21

= 2Φβ(Y) + 2〈∇Φβ(Y),X−Y〉+ 2µ‖X−Y‖21 .

Therefore, the modulus of strong convexity over asymmetric matrices is 2µ.

Note that K = {S(X) : X ∈ BTr(2τ)} is (2 min{m,n}, τ)-compatible with Φβ . In particular, we
have a vector space X = {S(X) : X ∈ Rm×n} containing symmetric matrices of rank at most
2 min{m,n}. Furthermore, for any X ∈ X , X = S(Y) for some Y ∈ Rm×n and thus,

∇Φβ(X) = ∇Φβ(S(Y)) = S(∇Φβ(Y)) ∈ X .

It follows from Lemma 16 that µ ≥ (2(2τ + 2βmin{m,n}))−1, and so the strong convexity is at
most 2µ ≥ (2(τ + βmin{m,n}))−1 as desired.

11
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Algorithm 3: EG±
Input: η > 0, β > 0
Initialize: u1

i = v1
i = β

2 , G0 = 0;
for t = 1 to T do

(a) Predict wt = ut − vt (b) Incur loss `t(wt) (c) Calculate Gt = Gt−1 +∇`t(wt)︸ ︷︷ ︸
gt

;

Update: ut+
1
2 = ut exp(−ηgt) and vt+

1
2 = vt exp(ηgt);

Normalize weights: (ut+1,vt+1) = βd

(∑d
i=1 u

t+ 1
2

i + v
t+ 1

2
i

)−1

(ut+
1
2 ,vt+

1
2 )

end

6. Connections to EG±

The EG± algorithm (Kivinen and Warmuth, 1997) maintains two vectors u and v such that, w =
u − v. The two vectors are updated over R2d

+ using the EG algorithm. We consider here a variant
where the 2d dimensional weights are normalized such that their sum is βd. Typically, we would
have β = 1

d , so (u,v) lie on a unit simplex.

We now show that the EG± algorithm can be viewed as an adaptive variant of HU with the update,

yt+1 = (∇φβt)−1(∇φβt−1(wt)− ηgt)

wt+1 = arg min
v∈K

Dβt
φ (v ‖ yt+1) ,

(7)

where K is the 1-ball of radius βd.

In this adaptive update, ∇φβt−1 is used to map into the dual space where a gradient update occurs.
Afterwards, (∇φ)−1

βt
maps back to the primal. When used in an OCO setting over the norm-1 ball,

βt can always be chosen to be sufficiently small such that projection step is voided. EG± fits into
this algorithmic paradigm with a specific choice of βt that avoids hypentropy projection. In the
setting of OCO over the norm-1 ball of radius βd, we have the following result.

Theorem 19 EG± with learning rate η is equivalent to the adaptive HU algorithm described in

(7) with the same learning rate and βt = βd
(∑d

i=1 cosh(ηGt
i)
)−1

, where Gt =
∑t

s=1 g
t.

Proof We start with some analysis of EG±. We have ut+1
i ∝ exp(−ηGt

i) and similarly vt+1
i ∝

exp(ηGt
i). Rescaling such that ‖(ut+1,vt+1)‖1 = βd yields the normalization factor,

βd∑d
i=1 exp(−ηGt

i) + exp(ηGt
i)

=
βd

2
∑d

i=1 cosh(ηGt
i)

Putting the above all together, we get

wt+1
i = ut+1

i − vt+1
i =

βd

2
∑d

i=1 cosh(ηGt
i)

(
exp(−ηGt

i)− exp(ηGt
i)
)

=
βd sinh(−ηGt

i)∑d
i=1 cosh(ηGt

i)
= βt sinh(−ηGt

i) . (8)

12
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Therefore, we have wt+1 = ∇φ−1
βt

(−ηGt). We can now show that the adaptive HU algorithm
described in (7) results in the same weights. We prove this property by induction on t. The base
case follows because we initialize w0 = 0 in HU. Now we assume that wt = ∇φ−1

βt−1
(−ηGt−1).

Applying the hypentropy update, we have

yt+1 = ∇φ−1
βt

(∇φβt−1(∇φ−1
βt−1

(−ηGt−1))− ηgt) = ∇φ−1
βt

(−ηGt−1 − ηgt) = ∇φ−1
βt

(−ηGt) .

Now, note that ∀x ∈ R, | sinh(x)| ≤ cosh(x), so ‖yt+1‖1 ≤ βd so projection is not required and
wt+1 = yt+1.

We also find it useful to consider these updates without normalization or projection. Without any
constraint, the regularization parameter β does need to change.

Theorem 20 Running HU with a learning rate η and a regularization parameter β without pro-
jection is equivalent to running EG± without normalization.

The proof can be found in App. F.

Discussion While, we can represent EG± as an adaptive variant of HU, we still would like to
understand how HU with a fixed β relates to EG±. A brief look into βt provides some intuition that
the two still should be similar updates. Note that for small η, cosh(ηGt

i) = 1 +O(η2) and βt ≈ β.
In this regime, a fixed β should result in a similar update. It should be noted that projection is then
an interpolation of weight-scaling and soft-thresholding. The relation to EG± also motivates the
choice of β ≈ ‖w?‖

d as this provides the right scale for EG±. For simplicity, let β = 1
d . We see

from (8) that the weights follow wt = ∇φ∗(−ηGt) where φ∗(x) = log(
∑d

i=1 cosh(xi)).
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Appendix A. Experimental Results

Next, we experiment with HU in the context of empirical risk minimization (ERM). In the experi-
ments, gt stands for a stochastic estimate of the gradient of the empirical loss. Thus, we can convert
the regret analysis to convergence in expectation (Cesa-Bianchi et al., 2004).

Effective Learning Rate For small value w, sinh(w) ≈ w ≈ arcsinh(w). As a result, near 0 the
update in HU is morally the additive update, wt+1

i = wti − βηgti . The product βη can be viewed as
the de facto learning rate of the gradient descent portion of the interpolation. As such, we define the
effective learning rate to be βη. In the sequel, fixing the effective learning rate while changing β is
a fruitful lens for comparing HU to with GD.
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A.1. Logistic Regression

In this experiment we use the HU algorithm to optimize a logit model. The ambient dimension d is
chosen to be 500. A weight w is drawn uniformly at random from [−1, 1]d. The features are from
{0, 1}d and distributed according to the power law, Pr[xi = 1] = 1/5

√
i. The label associated with

an example xt is set to yt = sign(〈w,xt〉) with with probability 0.9 and otherwise flipped.

The algorithms are trained with log-loss using batches of size 10. Stochastic gradient descent and
the p-norm algorithm (Gentile, 2003) (p = 2 ln d) are used for comparison. Metaparameters were
selected via grid search. As can be seen in Fig. 2, the p-norm algorithm performs significantly
worse than HU for a large set of values of β, while SGD performs comparably. As expected, for
large value of β, SGD and HU are indistinguishable.

Figure 2: Comparison of accuracy and loss of GD, p-norm, and HU on binary logistic regression.

In the next experiment we use the same logit model with ambient dimension d chosen to be 10, 000.
We generate weights, w ∈ Rd, with sparsity (fraction of zero weights) s ∈ {0, 0.9}. The nonzero
weights are chosen uniformly at random from [−1, 1]. We run the algorithms for 20,000 iterations.
Rather than fixing η, we fix η′ = η/

√
1 + β2. This way, as β → ∞, HU(η′, β) behaves like

GD(η) while for small β, the update is roughly EG±(η). We let βEG = ‖w?‖1/d. As discussed in
Appendix 6, this choice of β is similar to running EG± with an 1-norm bound of ‖w?‖1. We then
choose η′ = 0.1 and β ∈ {0.5, 1, 2, 4, 8} × βEG. In Fig. 3, we show the interpolation between GD
and EG±. The larger β is, the closer the progress of HU resembles that of GD. Intermediate values
of β have progress in between the EG± and GD. We do not plot EG± as it is exactly the same as
running HU with βEG as there is no projection in this experiment.

A.2. Multiclass Logistic Regression

In this experiment we use SHU to optimize a multiclass logistic model. We generated 200,000
examples in R25. We set the number of classes to k = 15. Labels are generated using a rank 5
matrix W ∈ Rk×d. An example x ∈ Rd was labeled according to the prediction rule,

y = arg max
i∈[k]

{(Wx)i} .

With probability 5.0% the label was flipped to a different one at random. The matrix W and each
example xi features are determined in a joint process to make the problem poorly conditioned for
optimization. Features of each example are first drawn from a standard normal. Weights of W are

15
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Figure 3: Value of ‖wt−w?‖1 in dense and sparse settings with η′ = 0.1 and β ∈ {0.5, 1, 2, 4, 8}×
βEG.

sampled from a standard normal distribution for the first r features and are set to 0 for the remaining
d − r features. After labels are computed, features are perturbed by Gaussian noise with standard
deviation 0.05. The examples and weights are then scaled and rotated. Coordinate i of the data is
scaled by si ∝ i−1.1 where

∑d
i=1 si = 1. Then a random rotation R is applied. The inverse of

these transformation is applied to the weights. Therefore, from the original sample X0 ∈ Rn×d and
weights W0 ∈ Rk×d the new sample and weights are set to be X = X0R and W = W0R

−1,
where R ∈ Rd×d is the scaling and rotation described above.

Since our ground truth weights are low rank, our goal is to find weights of approximately low rank
with low classification error. To do this, we optimize a multiclass logistic regression loss with a
trace-norm constraint. We compare SHU, Schatten p-norm algorithm (p-norm algorithm applied to
singular values) and gradient descent in the fully stochastic (single example) case. We report results
for unconstrained optimization in Fig. 4 and trace-norm constrained optimization in Fig. 5. In these
figures only the algorithms with lowest final loss after a grid search are depicted.

Without projection, SHU results in the largest trace norm solution of norm 700 whereas the p-
norm algorithm and GD reach solutions with trace norm just above 600. Nevertheless, SHU attains
the lowest classification error and loss. Performance is noticeably better than gradient descent.
Moreover, the spurious singular values are typically smaller than that of gradient descent. This
pattern holds up in both settings.

With our new divergence, the SHU update looks exponential for large singular values and linear
for small ones. In this sense, once gradients start accumulating in the directions that correspond to
the actual signal, these directions can be exploited exponentially. On the other hand, the spurious
directions are morally handled with gradient descent with an effective learning rate ηβ. Note that
in our experiments, the SHU effective learning rate is smaller than the GD learning rate by an
order of magnitude. This may explain the smaller magnitude in erroneous singular values. On the
other hand, the p-norm algorithm not only increases the magnitude of large singular values, but
also shrinks the magnitude of small singular values, resulting in solutions that are closer to being
low-rank. To see this, note that the p-norm inverse mirror map has the form

f(σ)i = σp−1
i /‖σ‖p−2

p

16
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Figure 4: Unconstrained minimization of logistic loss.

Figure 5: Minimization over the trace-norm ball of radius 500. The p-norm algorithm is not in-
cluded because the p-norm divergence does not have a closed form projection onto the
1-ball.

for p = 2 ln(k) ≈ 5.4. Therefore, there is a natural normalization which shrinks small singu-
lar values as good directions are exploited. Without projection, this does not happen with SHU.
Informally speaking, the following analogy applies to the three methods:

17
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GD: The rich get richer!
SHU: The rich get much richer!!

p-norm: The rich get richer and the poor get poorer, oy!

Adding trace norm projection reduces the magnitude of these singular values, but not to the level
which the p-norm algorithm can achieve. Overall, it appears that SHU may be slightly more effec-
tive at reducing loss but the p-norm algorithm is more effective at producing low rank solutions.

A.3. Image Classification with Neural Networks.

Loss minimization for neural networks is known to be nonconvex, thus the regret bounds from this
paper do not apply in this setting. Still, convex optimization algorithms, such as AdaGrad, work
well practice for training neural networks. In this section, we use the unconstrained version of
the HU to find the weights of a simple neural network for image classification using the popular
CIFAR10 dataset (Krizhevsky et al.). SGD was used for comparison. Outside of use of the HU
algorithm, the design of the network and code are from the Tensorflow tutorial on convolutional
networks for image classification. The network involves 2 convolutional layers, max pooling, and 2
fully connected layers, all using ReLU activations. The loss function is the cross entropy loss plus a
2-norm regularization. For a complete description of the experimental setup see (TFT; Krizhevsky
and Hinton, 2009).

Empirically, SGD with learning rate η tended to perform similarly in terms of training error to HU
with equivalent effective learning rate βη for a range of values of β. In order to compare to SGD
with learning rate η, β was varied and HU’s learning rate was set to be η

β (in order to keep the
effective learning rate invariant). As can be seen from Figure 6, the loss curves for a variety of
values of β are very similar for βη = 0.005, although the smallest β = 0.1 has slightly lower loss.
In general, the final loss reached is similar for a fixed effective learning rate. In addition, there
is a clear pattern indicating that shrinking β results in sparser weights. This may warrant further
investigation.

Figure 6: CIFAR10 loss and sparsity level. The effective learning rate was held constant at 0.005
while β is varied. Sparsity is displayed for the second convolutional layer conv2. The
loss corresponds to the total loss, which includes regularization.
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Algorithm 4: Online Mirror Descent with potential function R

Input: η > 0, β > 0, convex domain K ⊆ Rd
Let y1 be such that∇R(y1) = 0 and w1 = arg minw∈KDR(w ‖ y1);
for i = 1 to T do

(a) Predict wt (b) Incur loss `t(wt) (c) Calculate gt = ∇`t(wt) ;

Update: ∇R(yt+1) = ∇R(wt)− ηgt;
Project onto K: wt+1 = arg minw∈KDR(w ‖ yt+1)

end

Appendix B. Online Mirrored Descent

Online Mirror Descent (OMD) is an meta-algorithm for online convex optimization. The regular-
ization function, R, is assumed to be strongly convex, smooth, and twice differentiable. Like GD,
Mirror Descent is an iterative algorithm involving a simple gradient update. R defines a mapping
into a dual space where the updates occur, followed by an inverse mapping to the original space.
This step may result in a vector outside of K, so a projection is required. An alternative formulation
where the regularization casts a trade-off between moving along the gradient direction and staying
close to the current iterate is,

wt+1 = arg min
w∈K

{
η〈gt,w〉+DR(w ‖ wt)

}
. (9)

For Algorithm 4 with the above assumptions, we have the following regret bound.

Theorem 21 (OMD Regret) Assume R is µ-strongly convex with respect to a norm ‖ · ‖ whose
dual is ‖ · ‖∗, then running OMD with a fixed learning rate η yields the following regret bound,

RT ≤
1

η
sup
w∈K

DR(w ‖ w1) +
η

2µ

T∑
t=1

‖gt‖2∗ .

If we have a bound on the dual norm of a gradient, we can choose a learning rate which minimizes
the upper bound, yielding Theorem 24. We next introduce two well known properties of Bregman
divergences without proof. The first technical lemma is the Bregman divergence analogue of the
law of cosines.

Lemma 22 (Three-point Lemma) For every three vectors x,y, z,

DR(x ‖ z) = DR(x ‖ y) +DR(y ‖ z)− 〈∇R(z)−∇R(y),x− y〉 .

The next lemma is an analogue of the Pythagorean theorem for Bregman projections.

Lemma 23 (Generalized Pythagorean Theorem) Let

x′ = ΠK,φ(x) = arg min
y∈K

DR(y ‖ x) ,

then
DR(z ‖ x) ≥ DR(z ‖ x′) +DR(x′ ‖ x) .
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Proof [Theorem 21] Let w∗ = arg minw∈K
∑T

t=1 `t(w) be the best fixed predictor in hindsight,
then

`t(w
t)− `t(w∗) ≤ 〈gt,wt −w∗〉 [Convexity]

=
1

η
〈∇R(wt)−∇R(yt+1),wt −w∗〉

=
1

η
〈∇R(yt+1)−∇R(wt),w∗ −wt〉

=
1

η

(
DR(w∗ ‖ wt) +DR(wt ‖ yt+1)−DR(w∗ ‖ yt+1)

)
[Lemma 22]

=
1

η

(
DR(w∗ ‖ wt) +DR(wt ‖ yt+1)−DR(w∗ ‖ wt+1)−DR(wt+1 ‖ yt+1)

)
[Lemma 23]

=
1

η

(
DR(w∗ ‖ wt)−DR(w∗ ‖ wt+1)) +

1

η

(
DR(wt ‖ yt+1)−DR(wt+1 ‖ yt+1)

)
.

Note that the left hand side term telescopes when summing over t, yielding

T∑
t=1

`t(w
t)− `t(w∗) ≤

DR(w∗ ‖ w1)

η
+

1

η

T∑
t=1

(
DR(wt ‖ yt+1)−DR(wt+1 ‖ yt+1)

)
. (10)

If suffices to upper bound DR(wt ‖ yt+1) − DR(wt+1 ‖ yt+1). We start by substituting the
definition of the Bregman divergence in DR,

DR(wt ‖ yt+1)−DR(wt+1 ‖ yt+1)

= R(wt)−R(wt+1)− 〈∇R(yt+1),wt −wt+1〉

≤ 〈∇R(wt),wt −wt+1〉 − µ

2
‖wt −wt+1‖2 − 〈∇R(yt+1),wt −wt+1〉 [µ-strong convexity]

= 〈∇R(wt)−∇R(yt+1),wt −wt+1〉 − µ

2
‖wt −wt+1‖2

= η 〈gt,wt −wt+1〉 − µ

2
‖wt −wt+1‖2 [Update rule]

≤ η ‖gt‖∗ ‖wt −wt+1‖ − µ

2
‖wt −wt+1‖2 [ Cauchy-Schwarz]

≤ η2‖gt‖2∗
2µ

.

The last step follows from maximizing the quadratic function in ‖wt − wt+1‖. Using the above
bound (10) completes the proof.

Appendix C. Regret Analysis

The HU and SHU are instances of Online Mirror Descent withDβ
φ(· ‖ ·) andDβ

Φ(· ‖ ·) divergences,
respectively. We provide a simple regret analysis that follows directly from the geometric properties
derived in Sec. 4 and Sec.5. The following theorem allows us to bound the regret of an OMD
algorithm in terms of the diameter and strong convexity.
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Theorem 24 Assume that R : K → R is µ-strongly convex in respect to a norm ‖ · ‖ whose dual
norm is ‖ · ‖∗. Assume that the diameter of K is bounded, diamR(K) ≤ D. Last, assume that ∀t,
|gt‖∗ ≤ G, then the regret bound of HU and learning rate η =

√
2µD/(TG2) satisfies

RT ≤ 2
√

2µ−1DTG2 .

We next provide regret bounds for HU over B1 and B2 and a regret bound for SHU over BTr(τ).

Proof [Theorem 2] Applying Lemma 6 and the diameter bounds from (3) to Theorem 24 yields,

RT ≤ 2

√
2(1 +

1

β
)TG2

2 ≤ 4G2

√
T .

The final inequality follows from the condition that β ≥ 1.

Proof [Theorem 3] Applying Lemma 7 and the diameter bounds from (2) to Theorem 24 yields,

RT ≤ 2G∞

√
2T (1 + βd) log

(
3
β

)
≤ 3G∞

√
T (1 + βd) log ( 3

β ) .

Proof [Theorem 4] Applying (2) on the vector singular values, we have

diamΦβ (BTr(τ)) ≤ τ log

(
3τ

β

)
where β ≤ τ . Furthermore, from Theorem 14, we can see that Φβ is (2(τ + βmin{m,n}))−1

strongly convex with respect to the trace-norm over BTr(τ). Letting γ = β
τ , the result follows.

Appendix D. Diameter Calculation

In this appendix, we derive the diameter bounds from Sec .4. Whenever implied by the context we
omit the potential φ from the diameter. Before we consider two specific diameters below, we bound
the diameter in general as follows,

Dβ
φ(x ‖ 0) = φβ(x)− φβ(0)

=
d∑
i=1

(
xi arcsinh(xi/β)−

√
x2
i + β2

)
+ βd

≤
d∑
i=1

xi arcsinh(xi/β)

=

d∑
i=1

|xi| log

(
1

β

(√
x2
i + β2 + |xi|

))
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Thus, without loss of generality, we can assume that x lies in the positive orthant. We next bound
the diameter of B2 as follows,

diam(B2) ≤
d∑
i=1

xi log

(
1

β

(√
x2
i + β2 + xi

))

≤
d∑
i=1

xi log
(

1 +
2xi
β

)
≤

d∑
i=1

2x2
i

β
=

2‖x‖22
β
≤ 2

β
. (11)

For β ≤ 1 and x ∈ B1 it holds that,
√
x2
i + β2 + xi ≤

√
2 + 1. Hence, for β ≤ 1, we have

diam(B1) ≤
d∑
i=1

xi log
(1 +

√
2

β

)
= ‖x‖1 log

(1 +
√

2

β

)
≤ log

( 3

β

)
. (12)

Appendix E. Local Duality of Smoothness and Strong-Convexity

Proof [Lemma 13] It suffices to show that for any x ∈ K, φ is locally 1
L -strongly convex with

respect to ‖ · ‖ at x if φ∗ is locally L-smooth at x∗ = ∇φ(x) with respect to ‖ · ‖∗.

From local smoothness at x∗, we have for any y ∈ Rd,

f(y) =
1

2
y>∇2φ∗(x∗)y ≤ L

2
‖y‖2∗ .

Taking the dual, which is order reversing, we have for any z ∈ Rd,

f∗(z) =
1

2
z>[∇2φ∗(x∗)]−1z ≥ 1

2L
‖z‖2 . (13)

Since∇φ∗ = (∇φ)−1, then from the inverse function theorem, we have that

∇2φ∗(x∗) = [∇2φ(x)]−1 . (14)

Using the above equality in (13), we have for any z ∈ Rd,

1

2
z>∇2φ(x)z ≥ 1

2L
‖z‖2 .
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Appendix F. Equivalence of HU and EG± without projection

Proof [Theorem 20] Note that in EG± without normalization we get,

ut+1
i vt+1

i = uti exp(−ηgti)vti exp(ηgti) = utiv
t
i .

Therefore, utiv
t
i remains fixed and due to the initialization ∀i, u0

i v
0
i = β2

4 . This inverse relationship
between u and v can be used to find a simple closed form solution for w by solving a quadratic
equation. In particular, we know u > 0, so we have

w = u− v = u− β2

4u
⇒ u =

w +
√
w2 + β2

2
.

The resulting final update is

wt+1
i =

√
(wti)

2 + β2 + wti
2

exp(−ηgti)−
√

(wti)
2 + β2 − wti

2
exp(ηgti)

=
√

(wti)
2 + β2

exp(−ηgti)− exp(ηgti)

2
+ wti

exp(−ηgti) + exp(ηgti)

2

= sinh(−ηgti)
√

(wti)
2 + β2 + cosh(−ηgti)wti .

Now we consider HU algorithm with the same parameters,

wt+1 = ∇φ−1
β (∇φβ(wt)− ηgt)

[
HU update

]
⇒ wt+1

i = β sinh
(

arcsinh
(wti
β

)
− ηgti

)
= β

[
sinh

(
arcsinh

(wti
β

))
cosh(−ηgti) + cosh

(
arcsinh

(wti
β

))
sinh(−ηgti)

]
= sinh(−ηgti)

√
(wti)

2 + β2 + cosh(−ηgti)wti .

Thus indeed the two updates with the conditions stated in the theorem are equivalent.
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