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Abstract
The stochastic variance-reduced gradient method (SVRG) and its accelerated variant ( Katyusha)
have attracted enormous attention in the machine learning community in the last few years due
to their superior theoretical properties and empirical behaviour on training supervised machine
learning models via the empirical risk minimization paradigm. A key structural element in both
of these methods is the inclusion of an outer loop at the beginning of which a full pass over the
training data is made in order to compute the exact gradient, which is then used in an inner loop to
construct a variance-reduced estimator of the gradient using new stochastic gradient information. In
this work, we design loopless variants of both of these methods. In particular, we remove the outer
loop and replace its function by a coin flip performed in each iteration designed to trigger, with a
small probability, the computation of the gradient. We prove that the new methods enjoy the same
superior theoretical convergence properties as the original methods. For loopless SVRG, the same
rate is obtained for a large interval of coin flip probabilities, including the probability 1/n, where n
is the number of functions. This is the first result where a variant of SVRG is shown to converge
with the same rate without the need for the algorithm to know the condition number, which is often
unknown or hard to estimate correctly. We demonstrate through numerical experiments that the
loopless methods can have superior and more robust practical behavior.
Keywords: stochastic optimization, variance-reduced methods, SVRG

1. Introduction

Empirical risk minimization (a.k.a. finite-sum) problems form the dominant paradigm for training
supervised machine learning models such as ridge regression, support vector machines, logistic
regression, and neural networks. In its most general form, a finite sum problem has the form

min
x∈Rd

f(x)
def
=

1

n

n∑
i=1

fi(x) , (1)

where n refers to the number of training data points (e.g., videos, images, molecules), x is the vector
representation of a model using d features, and fi(x) is the loss of model x on data point i.

Variance-reduced methods. One of the most remarkable algorithmic breakthroughs in recent
years was the development of variance-reduced stochastic gradient algorithms for solving (1). These
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methods are significantly faster than SGD (Nemirovsky and Yudin, 1983; Nemirovski et al., 2009;
Takáč et al., 2013) in theory and practice on convex and strongly convex problems, and faster in
theory on several classes on nonconvex problems (unfortunately, these methods are no yet successful
in training production-grade neural networks).

Two of the most notable and popular methods belonging to the family of variance-reduced
methods are SVRG (Johnson and Zhang, 2013) and its accelerated variant known as Katyusha
(Allen-Zhu, 2017). The latter method accelerates the former via the employment of a novel “negative
momentum” idea. Both of these methods have a double loop design. At the beginning of the outer
loop, a full pass over the training data is made to compute the gradient of f at a reference point
wk, which is chosen as the freshest iterate (SVRG) or a weighted average of recent iterates (for
Katyusha). This gradient is then used in the inner loop to adjust the stochastic gradient∇fi(xk),

where i is sampled uniformly at random from [n]
def
= {1, 2, . . . , n}, and xk is the current iterate,

so as to reduce its variance. In particular, both SVRG and Katyusha perform the adjustment
gk = ∇fi(xk) − ∇fi(wk) +∇f(wk). Note that, like ∇fi(xk), the new search direction gk is an
unbiased estimator of∇f(xk). Indeed,

E
[
gk
]

= ∇f(xk)−∇f(wk) +∇f(wk) = ∇f(xk). (2)

where the expectation is taken over random choice of i ∈ [n]. However, it turns out that as the
methods progress, the variance of gk, unlike that of ∇fi(xk), progressively decreases to zero. The
total effect of this is significantly faster convergence.

Convergence of SVRG and Katyusha for L–smooth and µ–strongly convex functions. For
instance, consider the regime where fi is L–smooth for each i, and f is µ–strongly convex:

Assumption 1 (L–smoothness) Functions fi : Rd → R are L–smooth for some L > 0:

fi(y) ≤ fi(x) + 〈∇fi(x), y − x〉+
L

2
‖y − x‖2 , ∀x, y ∈ Rd. (3)

Assumption 2 (µ–strong convexity) Function f : Rd → R is µ–strongly convex for µ > 0:

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖y − x‖2 , ∀x, y ∈ Rd. (4)

In this regime, the iteration complexity of SVRG isO ((n+ L/µ) log 1/ε) ,which is a vast improve-
ment on the linear rate of gradient descent (GD), which is O (nL/µ log 1/ε), and on the sublinear rate
of SGD, which isO(L/µ+ σ2/µ2ε), where σ2 = 1/n

∑
i ‖∇fi(x∗)‖2 and x∗ is the (necessarily unique)

minimizer of f . On the other hand, Katyusha enjoys the accelerated rateO((n+
√
nL/µ) log 1/ε),

which is superior to that of SVRG in the ill-conditioned regime where L/µ ≥ n. This rate has been
shown to be optimal in a certain precise sense (Nesterov, 2013).

In the past several years, an enormous effort of the machine learning and optimization com-
munities was exerted into designing new efficient variance-reduced methods to tackle problem (1).
These developments have brought about a renaissance in the field. The historically first provably
variance-reduced method, the stochastic average gradient (SAG) method of Roux et al. (2012);
Schmidt et al. (2017), was awarded the Lagrange prize in continuous optimization in 2018. The
SAG method was later modified to an unbiased variant called SAGA (Defazio et al., 2014a), achiev-
ing the same theoretical rates. Alternative variance-reduced method include MISO (Mairal, 2015),
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FINITO (Defazio et al., 2014b), SDCA (Shalev-Shwartz, 2016), dfSDCA (Csiba and Richtárik,
2015), AdaSDCA (Csiba et al., 2015), QUARTZ (Qu et al., 2015), SBFGS (Gower et al., 2016),
SDNA (Qu et al., 2016), SARAH (Nguyen et al., 2017) and S2GD (Konečný and Richtárik, 2017),
mS2GD (Konečný et al., 2016), RBCN (Doikov and Richtárik, 2018), JacSketch (Gower et al.,
2018) and SAGD (Bibi et al., 2018). Accelerated variance-reduced methods were developed by
Shalev-Shwartz and Zhang (2014), Defazio (2016), Zhou (2018) and Zhou et al. (2018).

2. Contributions

As explained in the introduction, a trade-mark structural feature of SVRG and its accelerated variant,
Katyusha, is the presence of the outer loop in which a full pass over the data is made. However,
the presence of this outer loop is the source of several issues. First, the methods are harder to analyze.
Second, one needs to decide at which point the inner loop is terminated and the outer loop entered.
For SVRG, the theoretically optimal inner loop size depends on both L and µ. However, µ is not
always known. Moreover, even when an estimate is available, as is the case in regularized problems
with an explicit strongly convex regularizer, the estimate can often be very loose. Because of these
issues, one often chooses the inner loop size in a suboptimal way, such as by setting it to n or O(n).

Two loopless methods. In this paper we address the above issues by developing loopless variants
of both SVRG and Katyusha; we refer to them as L-SVRG and L-Katyusha, respectively. In
these methods, we dispose of the outer loop and replace its role by a biased coin-flip, to be performed
in every step of the methods, used to trigger the computation of the gradient ∇f(wk) via a pass over
the data. In particular, in each step, with (a small) probability p > 0 we perform a full pass over data
and update the reference gradient ∇f(wk). With probability 1− p we keep the previous reference
gradient. This procedure can alternatively be interpreted as having an outer loop of a random length.
However, the resulting methods are easier to write down, comprehend and analyze.

Fast rates are preserved. We show that L-SVRG and L-Katyusha enjoy the same fast
theoretical rates as their loopy forefathers. Our proofs are different and the complexity results more
insightful.

For L-SVRG with fixed stepsize η = 1/6L and probability p = 1/n, we show (see Theorem 5)
that for the Lyapunov function

Φk def
=
∥∥∥xk − x∗∥∥∥2 +

4η2

pn

n∑
i=1

∥∥∥∇fi(wk)−∇fi(x∗)∥∥∥2 . (5)

we get E
[
Φk
]
≤ εΦ0 as long as k = O ((n+ L/µ) log 1/ε) . In contrast, the classical SVRG result

shows convergence of the expected functional suboptimality E
[
f(xk)− f(x∗)

]
to zero at the

same rate. Note that the classical result follows from our theorem by utilizing the inequality
f(xk)− f(x∗) ≤ L/2‖xk − x∗‖2, which is a simple consequence of L–smoothness. However, our
result provides a deeper insight into the behavior of the method. In particular, it follows that the
gradients∇fi(wk) at the reference points wk converge to the gradients at the optimum. This is a key
intuition behind the workings of SVRG, one not revealed by the classical analysis. Hereby we close
the gap in the theoretical understanding of the the SVRG convergence mechanism. Moreover, our
theory predicts that as long as p is chosen in the (possibly very large) interval

min
{ c
n
,
cµ

L

}
≤ p ≤ max

{ c
n
,
cµ

L

}
, (6)
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where c = Θ(1), L-SVRG will enjoy the optimal complexity O ((n+ L/µ) log 1/ε). In the ill-
conditioned regime L/µ� n, for instance, we roughly have p ∈ [µ/L, 1/n]. This is in contrast with the
(loopy/standard) SVRG method the outer loop of which needs to be of the size ≈ L/µ. To the best of
our knowledge, SVRG does not enjoy this rate for an outer loop of size n (or any value independent
of µ, which is often not known in practice), even though this is the setting most often used in practice.
Several authors have tried to establish such a result, but without success. We thus answer an open
problem since 2013, the inception of SVRG.

For L-Katyusha with stepsize η = θ2
(1+θ2)θ1

we show convergence of the Lyapunov function

Ψk = Zk + Yk +Wk, (7)

where Zk = L(1+ησ)
2η

∥∥zk − x∗∥∥2, Yk = 1
θ1

(f(yk)− f(x∗)), andWk = θ2(1+θ1)
pθ1

(f(wk)− f(x∗)),
and where xk, yk and wk are iterates produced by the method, with the parameters defined by
σ = µ/L, θ1 = min{

√
2σn/3, 1/2}, θ2 = 1/2, p = 1/n. Our main result (Theorem 11) states that

E
[
Ψk
]
≤ εΨ0 as long as k = O((n+

√
nL/µ) log 1/ε).

Simplified analysis. Advantage of the loopless approach is that a single iteration analysis is
sufficient to establish convergence. In contrast, one needs to perform elaborate aggregation across
the inner loop to prove the convergence of the original loopy methods.

Superior empirical behaviour. We show through extensive numerical testing on both synthetic
and real data that our loopless methods are superior to their loopy variants. We show through
experiments that L-SVRG is very robust to the choice of p from the optimal interval (6) predicted by
our theory. Moreover, even the worst case for L-SVRG outperforms the best case for SVRG. This
shows how further randomization can significantly speed up and stabilize the algorithm.

Notation. Throughout the whole paper we use conditional expectation E
[
X | xk, wk

]
for

L-SVRG and E
[
X | yk, zk, wk

]
for L-Katyusha, but for simplicity we will denote these expecta-

tions as E [X ]. If E [X ] refers to unconditional expectation, it is directly mentioned.

3. Loopless SVRG (L-SVRG)

In this section we describe in detail the Loopless SVRG method (L-SVRG), and its convergence.
The algorithm. The L-SVRG method, formalized as Algorithm 1, is inspired by the original

SVRG (Johnson and Zhang, 2013) method. We remove the outer loop present in SVRG and instead
use a probabilistic update of the full gradient.1 This update can be also seen in a way that outer loop
size is generated by geometric distribution similar to methods of Konečný and Richtárik (2017); Lei
et al. (2017).

Note that the reference point wk (at which a full gradient is computed) is updated in each iteration
with probability p to the current iterate xk, and is left unchanged with probability 1−p. Alternatively,
the probability p can be seen as a parameter that controls the expected time before next full pass over
data. To be more precise, the expected time before next full pass over data is 1/p. Intuitively, we wish
to keep p small so that full passes over data are computed rarely enough. As we shall see next, the
simple choice p = 1/n leads to complexity identical to that of original SVRG.

1. This idea was independently explored in Hofmann et al. (2015); we have learned about this work after a first draft of
our paper was finished.
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Algorithm 1 Loopless SVRG (L-SVRG)

Parameters: stepsize η > 0, probability p ∈ (0, 1]
Initialization: x0 = w0 ∈ Rd
for k = 0, 1, 2, . . . do
gk = ∇fi(xk)−∇fi(wk) +∇f(wk) (i ∈ {1, . . . , n} is sampled uniformly at random)
xk+1 = xk − ηgk

wk+1 =

{
xk with probability p
wk with probability 1− p

end for

Convergence theory. A key role in the analysis is played by the gradient learning quantity

Dk def
=

4η2

pn

n∑
i=1

∥∥∥∇fi(wk)−∇fi(x∗)∥∥∥2 (8)

and the Lyapunov function Φk def
=
∥∥xk − x∗∥∥2 +Dk. The analysis involves four lemmas, followed by

the main theorem. We wish to mention the lemmas as they highlight the way in which the argument
works. All lemmas combined, together with the main theorem, can be proved on a single page, which
underlines the simplicity of our approach.

Our first lemma upper bounds the expected squared distance of xk+1 from x∗ in terms of the
same distance but for xk, function suboptimality, and second moment of gk.

Lemma 1 We have

E

[∥∥∥xk+1 − x∗
∥∥∥2] ≤ (1− ηµ)

∥∥∥xk − x∗∥∥∥2 − 2η(f(xk)− f(x∗)) + η2E

[∥∥∥gk∥∥∥2] . (9)

In our next lemma, we further bound the second moment of gk in terms of function suboptimality
and Dk.

Lemma 2 We have

E

[∥∥∥gk∥∥∥2] ≤ 4L(f(xk)− f(x∗)) +
p

2η2
Dk. (10)

Finally, we bound E
[
Dk+1

]
in terms of Dk and function suboptimality.

Lemma 3 We have

E
[
Dk+1

]
≤ (1− p)Dk + 8Lη2(f(xk)− f(x∗)). (11)

Putting the above three lemmas together naturally leads to the following result involving Lyapunov
function (5).

Lemma 4 Let the step size η ≤ 1/6L. Then for all k ≥ 0 the following inequality holds:

E
[
Φk+1

]
≤ (1− ηµ)

∥∥∥xk − x∗∥∥∥2 +
(

1− p

2

)
Dk. (12)
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Using this lemma we can obtain a recursion involving the Lyapunov function on the right-hand
side of (12) and obtain the rate of convergence stated in the following theorem.

Theorem 5 Let η = 1/6L, p = 1/n. Then E
[
Φk
]
≤ εΦ0 as long as k ≥ O ((n+ L/µ) log 1/ε) .

Proof As the corollary of Lemma 4 we have E
[
Φk
]
≤ max {1− ηµ, 1− p/2}Φk−1. Setting η =

1/6L, p = 1/n and unrolling conditional probability one obtains

E
[
Φk
]
≤ max

{
1− µ

6L
, 1− 1

2n

}k
Φ0,

which concludes the proof.

Note that the step size does not depend on the strong convexity parameter µ and yet the resulting
complexity adapts to it.

Discussion. Examining (12), we can see that contraction of the Lyapunov function is max{1−
ηµ, 1 − p/2}. Due to the limitation of η ≤ 1/6L, the first term is at least 1 − η/6µ, thus the
complexity cannot better than O (L/µ log 1/ε). In terms of total complexity (number of stochas-
tic gradient calls), L-SVRG calls the stochastic gradient oracle in expectation O(1 + pn) times
times in each iteration. Combining these two complexities together, one gets the total complexity
O ((1/p + n+ L/µ + Lpn/µ) log 1/ε) .Note that any choice of p ∈ [min {c/n, cµ/L} ,max {c/n, cµ/L}] ,
where c = Θ(1), leads to the optimal total complexity O ((n+ L/µ) log 1/ε). This fills the gap in
SVRG theory, where the outer loop length (in our case 1/p in expectation) needs to be proportional to
L/µ. Moreover, analysis for L-SVRG is much simpler and provides more insights.

4. Loopless Katyusha (L-Katyusha)

In this section we describe in detail the Loopless Katyusha method (L-Katyusha), and its
convergence properties.

The algorithm. The L-Katyusha method, formalized as Algorithm 2, is inspired by the
original Katyusha (Allen-Zhu, 2017) method. We use the same technique as for Algorithm 1,
where we remove the outer loop present in Katyusha and instead use a probabilistic update of the
full gradient.

Algorithm 2 Loopless Katyusha (L-Katyusha)

Parameters: θ1, θ2, probability p ∈ (0, 1]
Initialization: Choose y0 = w0 = z0 ∈ Rd, stepsize η = θ2

(1+θ2)θ1
and set σ = µ

L
for k = 0, 1, 2, . . . do
xk = θ1z

k + θ2w
k + (1− θ1 − θ2)yk

gk = ∇fi(xk)−∇fi(wk) +∇f(wk) (i ∈ {1, . . . , n} is sampled uniformly at random)
zk+1 = 1

1+ησ

(
ησxk + zk − η

Lg
k
)

yk+1 = xk + θ1(z
k+1 − zk)

wk+1 =

{
yk with probability p
wk with probability 1− p

end for
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Figure 1: Comparison of SVRG and L-SVRG for different datasets and regularizer weights µ.

The exact analogy applies to the reference point wk (at which a full gradient is computed) as
for L-SVRG. Instead of updating this point in a deterministic way every m iteration, we use the
probabilistic update with parameter p, when we update wk+1 to the current iterate yk with this
probability and is left unchanged with probability 1 − p. As we shall see next, the same choice
p = 1/n as for L-SVRG leads to complexity identical to that of original Katyusha.

Convergence theory. In comparison to L-SVRG, we don’t use gradient mapping as the key
component of our analysis. Instead, we prove convergence of functional values in yk, wk and
point-wise convergence of zk. This is summarized in the following Lyapunov function:

Ψk = Zk + Yk +Wk, (13)

where Zk = L(1+ησ)
2η

∥∥zk − x∗∥∥2, Yk = 1
θ1

(f(yk) − f(x∗)), Wk = θ2(1+θ1)
pθ1

(f(wk) − f(x∗)).
Note that even if xk is not in this function, its point-wise convergence is directly implied by the
convergence of Ψk due to the definition of xk in Algorithm 2 and L-smoothness of f .

The analysis involves five lemmas, followed by the convergence summarized in the main theorem.
The lemmas highlight important steps of our analysis. The simplicity of our approach is still
preserved: all lemmas and the main theorem can be proved on not more than two pages.

Our first lemma upper bounds the variance of the gradient estimator gk, which eventually goes to
zero as our algorithm progresses.

Lemma 6 We have

E

[∥∥∥gk −∇f(xk)
∥∥∥2] ≤ 2L

(
f(wk)− f(xk)−

〈
∇f(xk), wk − xk

〉)
. (14)

Next two lemmas are more technical, but essential for proving the convergence.

Lemma 7 We have〈
gk, x∗ − zk+1

〉
+
µ

2

∥∥∥xk − x∗∥∥∥2 ≥ L

2η

∥∥∥zk − zk+1
∥∥∥2 + Zk+1 − 1

1 + ησ
Zk. (15)

Lemma 8 We have

1

θ1

(
f(yk+1)− f(xk)

)
− θ2

2Lθ1

∥∥∥gk −∇f(xk)
∥∥∥2 ≤ L

2η

∥∥∥zk+1 − zk
∥∥∥2 +

〈
gk, zk+1 − zk

〉
.

(16)
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Finally, we use the update of Algorithm 2 to decomposeWk+1 in terms ofWk and Yk, which is
one of the main components that allow for simpler analysis than the one of original Katyusha.

Lemma 9 We have

E
[
Wk+1

]
= (1− p)Wk + θ2(1 + θ1)Yk. (17)

Putting all lemmas together, we obtain the following contraction of the Lyapunov function (7).

Lemma 10 Let θ1, θ2 > 0, θ1 + θ2 ≤ 1, σ = µ
L and η = θ2

(1+θ2)θ1
, then we have

E
[
Zk+1 + Yk+1 +Wk+1

]
≤ 1

1 + ησ
Zk + (1− θ1(1− θ2))Yk +

(
1− pθ1

1 + θ1

)
Wk. (18)

In order to obtain a recursion involving the Lyapunov function on the right-hand side of (18)

Theorem 11 Let θ1 = min{
√

2σn/3, 1/2}, θ2 = 1/2, p = 1/n. Then E
[
Ψk
]
≤ εΨ0 after the

following number of iterations: k = O((n+
√
nL/µ) log 1/ε).

Proof From Lemma 10 we get

E
[
Ψk+1

]
≤ max

{
1

(1 + ησ)
, 1− θ1(1− θ2), 1−

pθ1
(1 + θ1)

}
Ψk.

Setting p = 1/n, θ1 = min{
√

2σn/3, 1/2}, θ2 = 1/2, and unrolling conditional probability one obtains
E
[
Ψk+1

]
≤ (1− θ)E

[
Ψk
]
, where θ = min {σ/6θ1, θ1/2n} . Choosing σ = µ/L concludes the proof.

Discussion. One can show by analyzing (18) that for ill-conditioned problems (n < L/µ), the
iteration complexity is O(

√
L/µp log 1/ε). Algorithm 2 calls stochastic gradient oracle O(1 + pn)

times per iteration in expectation. Thus, the total complexity is O((1 + pn)
√
L/µp log 1/ε). One can

see that p = Θ (1/n) leads to optimal rate.

5. Numerical Experiments

In this section, we perform experiments with logistic regression for binary classification with L2

regularizer, where our loss function has the form fi(x) = log(1 + exp(−bia>i x)) + µ
2 ‖x‖

2 , where
ai ∈ Rd, bi ∈ {−1,+1}, i ∈ [n]. Hence, f is smooth and µ-strongly convex. We use four LIBSVM
library2: a9a, w8a, mushrooms, phishing, cod-rna.

We compare our methods L-SVRG and L-Katyusha with their original version. It is well-
known that whenever practical, SAGA is a bit faster than SVRG. While a comparison to SAGA
seems natural as it also does not have a double loop structure, we position our loopless methods for
applications where the high memory requirements of SAGA prevent it to be applied. Thus, we do not
compare to SAGA.

Plots are constructed in such a way that the y-axis displays
∥∥xk − x?∥∥2 for L-SVRG and∥∥yk − x?∥∥2 for L-Katyusha, where x? were obtained by running gradient descent for a large

2. The LIBSVM dataset collection is available at https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/
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Figure 2: Comparison of Katyusha & L-Katyusha for different datasets and regularizer weights
µ.
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Figure 3: Comparison of SVRG (S) and L-SVRG (L) for several choices of expected outer loop length
(L-SVRG) or deterministic outer loop length (SVRG). Numbers 1–5 correspondent to loop-lengths
n, 4
√
κn3,

√
κn, 4
√
κ3n, κ, respectively, where κ = L/µ.

number of epochs. The x-axis displays the number of epochs (full gradient evaluations). That is, n
computations of∇fi(x) equals one epoch.

Superior practical behaviour of the loopless approach. Here we show that L-SVRG and
L-Katyusha perform better in experiments than their loopy variants. In terms of theoretical
iteration complexity, both the loopy and the loopless methods are the same. However, as we can
see from Figure 1, the improvement of the loopless approach can be significant. One can see that
for these datasets, L-SVRG is always better than SVRG, and can be faster by several orders of
magnitude! Looking at Figure 2, we see that the performance of L-Katyusha is at least as good
as that of Katyusha, and can be significantly faster in some cases. All parameters of the methods
were chosen as suggested by theory. For L-SVRG and L-Katyusha they are chosen based on
Theorems 5 and 11, respectively. For SVRG and Katyusha we also choose the parameters based
on the theory, as described in the original papers. The initial point x0 is chosen to be the origin.

Different choices of probability/ outer loop size. We now compare several choices of the
probability p of updating the full gradient for SVRG and several outer loop sizes m for SVRG. Since
our analysis guarantees the optimal rate for any choice of p between 1/n and µ/L for well condition
problems, we decided to perform experiments for p within this range. More precisely, we choose
5 values of p, uniformly distributed in logarithmic scale across this interval, and thus our choices
are n, 4

√
κn3,

√
κn, 4
√
κ3n, and κ, where κ = L/µ, denoted in the figures by 1, 2, 3, 4, 5, respectively.

Since the expected “outer loop” length (length for which reference point stays the same) is 1/p, for

9
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Figure 4: All methods together for different datasets and different regularizer weights.

SVRG we choose m = 1/p. Looking at Figure 3, one can see that L-SVRG is very robust to the
choice of p from the “optimal interval” predicted by our theory. Moreover, even the worst case for
L-SVRG outperforms the best case for SVRG.

All methods together. Finally, we provide all algorithms together in one plot for different
datasets with different regularizer weight, thus with different condition numbers, displayed in Figure 4.
As for the previous experiments, loopless methods are not worse and sometimes significantly better.
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Dominik Csiba, Zheng Qu, and Peter Richtárik. Stochastic dual coordinate ascent with adaptive
probabilities. In Proceedings of the 32nd International Conference on Machine Learning, pages
674–683, 2015.

Aaron Defazio. A simple practical accelerated method for finite sums. In Advances in Neural
Information Processing Systems, pages 676–684, 2016.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in Neural Information
Processing Systems, pages 1646–1654, 2014a.

Aaron Defazio, Tiberio Caetano, and Justin Domke. Finito: A faster, permutable incremental gradient
method for Big Data problems. The 31st International Conference on Machine Learning, 2014b.

Nikita Doikov and Peter Richtárik. Randomized block cubic Newton method. In Proceedings of the
35th International Conference on Machine Learning, 2018.

Robert Mansel Gower, Donald Goldfarb, and Peter Richtárik. Stochastic block BFGS: squeezing
more curvature out of data. In 33rd International Conference on Machine Learning, pages
1869–1878, 2016.
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Zheng Qu, Peter Richtárik, and Tong Zhang. Quartz: Randomized dual coordinate ascent with
arbitrary sampling. In Advances in Neural Information Processing Systems 28, pages 865–873,
2015.
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Appendix
Appendix A. Auxiliary Lemmas

Lemma 12 For random vector x ∈ Rd and any y ∈ Rd, the variance of y can be decomposed as

E
[
‖x− E [x]‖2

]
= E

[
‖x− y‖2

]
− E

[
‖E [x]− y‖2

]
. (19)

The next lemma is a consequence of Jensen’s inequality applied to x 7→ ‖x‖2.

Lemma 13 For any vectors a1, a2, . . . , ak ∈ Rd, the following inequality holds:∥∥∥∥∥
k∑
i=1

ai

∥∥∥∥∥
2

≤ k
k∑
i=1

‖ai‖2 . (20)

Appendix B. Proofs for Algorithm 1 (L-SVRG)

In all proofs below, we will for simplicity write f∗ def
= f(x∗).

B.1. Proof of Lemma 1

Definition of xk+1 and unbiasness of gk guarantee that

E

[∥∥∥xk+1 − x∗
∥∥∥2] = E

[∥∥∥xk − x∗ − ηgk∥∥∥]2
Alg. 1

=
∥∥∥xk − x∗∥∥∥2 + E

[
2η
〈
gk, x∗ − xk

〉]
+ η2E

[∥∥∥gk∥∥∥2]
(2)
=

∥∥∥xk − x∗∥∥∥2 + 2η
〈
∇f(xk), x∗ − xk

〉
+ η2E

[∥∥∥gk∥∥∥2]
(4)
≤

∥∥∥xk − x∗∥∥∥2 + 2η
(
f∗ − f(xk)− µ

2

∥∥∥xk − x∗∥∥∥)+ η2E

[∥∥∥gk∥∥∥2]
=

∥∥∥xk − x∗∥∥∥2 (1− ηµ) + 2η
(
f∗ − f(xk)

)
+ η2E

[∥∥∥gk∥∥∥2] .
B.2. Proof of Lemma 2

Using definition of gk

E

[∥∥∥gk∥∥∥2] Alg. 1
= E

[∥∥∥∇fi(xk)−∇fi(x∗) +∇fi(x∗)−∇fi(wk) +∇f(wk)
∥∥∥2]

(20)
≤ 2E

[∥∥∥∇fi(xk)−∇fi(x∗)∥∥∥2]+

2E

[∥∥∥∇fi(x∗)−∇fi(wk)− E
[
∇fi(x∗)−∇fi(wk)

]∥∥∥2]
(3)+(19)
≤ 4L(f(xk)− f∗) + 2E

[∥∥∥∇fi(wk)−∇fi(x∗)∥∥∥2]
(8)
= 4L(f(xk)− f∗) +

p

2η2
Dk.

13
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B.3. Proof of Lemma 3

E
[
Dk+1

]
Alg. 1

= (1− p)Dk + p
4η2

pn

n∑
i=1

∥∥∥∇f(xk)−∇f(x∗)
∥∥∥2

(3)
≤ (1− p)Dk + 8Lη2(f(xk)− f∗).

B.4. Proof of Lemma 4

Combining Lemmas 1 and 3 we obtain

E

[∥∥∥xk+1 − x∗
∥∥∥2 +Dk+1

]
(9)+(11)
≤ (1− µη)

∥∥∥xk − x∗∥∥∥2 + 2η(f∗ − f(xk)) + η2E

[∥∥∥gk∥∥∥2]
+(1− p)Dk + 8Lη2(f(xk)− f∗)

(10)
≤ (1− µη)

∥∥∥xk − x∗∥∥∥2 + (1− p)Dk + (2η − 8Lη2)(f∗ − f(xk))

+η2
(

4L(f(xk)− f∗) +
p

2η2
Dk
)

= (1− µη)
∥∥∥xk − x∗∥∥∥2 +

(
1− p

2

)
Dk + (2η − 12Lη2)(f∗ − f(xk)).

Now we use the fact that η ≤ 1
6L and obtain the desired inequality:

E

[∥∥∥xk+1 − x∗
∥∥∥2 +Dk+1

]
≤ (1− µη)

∥∥∥xk − x∗∥∥∥2 +
(

1− p

2

)
Dk.

Appendix C. Proofs for Algorithm 2 (L-Katyusha)

C.1. Proof of Lemma 6

To upper bound the variance of gk we first uses its definition

E

[∥∥∥gk −∇f(xk)
∥∥∥2] Alg. 2

= E

[∥∥∥∇fi(xk)−∇fi(wk)− E
[
∇fi(xk)−∇fi(wk)

]∥∥∥2]
(19)
≤ E

[∥∥∥∇fi(xk)−∇fi(wk)∥∥∥2]
(3)
≤ 2L

(
f(wk)− f(xk)−

〈
∇f(xk), wk − xk

〉)
.

C.2. Proof of Lemma 7

We start with the definition of zk+1

zk+1 Alg. 2
=

1

1 + ησ

(
ησxk + zk − η

L
gk
)
,

14
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which implies η
Lg

k = ησ(xk − zk+1) + (zk − zk+1), which further implies that〈
gk, zk+1 − x∗

〉
= µ

〈
xk − zk+1, zk+1 − x∗

〉
+
L

η

〈
zk − zk+1, zk+1 − x∗

〉
=

µ

2

(∥∥∥xk − x∗∥∥∥2 − ∥∥∥xk − zk+1
∥∥∥2 − ∥∥∥zk+1 − x∗

∥∥∥2)
+
L

2η

(∥∥∥zk − x∗∥∥∥2 − ∥∥∥zk − zk+1
∥∥∥2 − ∥∥∥zk+1 − x∗

∥∥∥2)
≤ µ

2

∥∥∥xk − x∗∥∥∥2 +
L

2η

(∥∥∥zk − x∗∥∥∥2 − (1 + ησ)
∥∥∥zk+1 − x∗

∥∥∥2)
− L

2η

∥∥∥zk − zk+1
∥∥∥2 .

C.3. Proof of Lemma 8

L

2η

∥∥∥zk+1 − zk
∥∥∥2 +

〈
gk, zk+1 − zk

〉
=

1

θ1

(
L

2ηθ1

∥∥∥θ1(zk+1 − zk)
∥∥∥2 +

〈
gk, θ1(z

k+1 − zk)
〉)

Alg. 2
=

1

θ1

(
L

2ηθ1

∥∥∥yk+1 − xk
∥∥∥2 +

〈
gk, yk+1 − xk

〉)
=

1

θ1

(
L

2ηθ1

∥∥∥yk+1 − xk
∥∥∥2 +

〈
∇f(xk), yk+1 − xk

〉
+
〈
gk −∇f(xk), yk+1 − xk

〉)
=

1

θ1

(
L

2

∥∥∥yk+1 − xk
∥∥∥2 +

〈
∇f(xk), yk+1 − xk

〉
+
L

2

(
1

ηθ1
− 1

)∥∥∥yk+1 − xk
∥∥∥2)

+
1

θ1

(〈
gk −∇f(xk), yk+1 − xk

〉)
(3)
≥ 1

θ1

(
f(yk+1)− f(xk) +

L

2

(
1

ηθ1
− 1

)∥∥∥yk+1 − xk
∥∥∥2 +

〈
gk −∇f(xk), yk+1 − xk

〉)
≥ 1

θ1

(
f(yk+1)− f(xk)− ηθ1

2L(1− ηθ1)

∥∥∥gk −∇f(xk)
∥∥∥2)

=
1

θ1

(
f(yk+1)− f(xk)− θ2

2L

∥∥∥gk −∇f(xk)
∥∥∥2) ,

where the last inequality uses the Young’s inequality in the form of 〈a, b〉 ≥ −‖a‖
2

2β −
β‖b‖2

2 for

β = ηθ1
L(1−ηθ1) , which concludes the proof.

C.4. Proof of Lemma 9

From the definition of wk+1 in Algorithm 2 we have

E
[
f(wk+1)

]
Alg. 2

= (1− p)f(wk) + pf(yk). (21)

The rest of proof follows from the definition ofWk (17).
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C.5. Proof of Lemma 10

Combining all the previous lemmas together, we obtain

f∗
(4)
≥ f(xk) +

〈
∇f(xk), x∗ − xk

〉
+
µ

2

∥∥∥xk − x∗∥∥∥2
= f(xk) +

µ

2

∥∥∥xk − x∗∥∥∥2 +
〈
∇f(xk), x∗ − zk + zk − xk

〉
Alg. 2

= f(xk) +
µ

2

∥∥∥xk − x∗∥∥∥2 +
〈
∇f(xk), x∗ − zk

〉
+
θ2
θ1

〈
∇f(xk), xk − wk

〉
+

(1− θ1 − θ2)
θ1

〈
∇f(xk), xk − yk

〉
(2)
≥ f(xk) +

θ2
θ1

〈
∇f(xk), xk − wk

〉
+

(1− θ1 − θ2)
θ1

(f(xk)− f(yk))

+E

[
µ

2

∥∥∥xk − x∗∥∥∥2 +
〈
gk, x∗ − zk+1

〉
+
〈
gk, zk+1 − zk

〉]
(15)
≥ f(xk) +

θ2
θ1

〈
∇f(xk), xk − wk

〉
+

(1− θ1 − θ2)
θ1

(f(xk)− f(yk))

+E

[
Zk+1 − 1

1 + ησ
Zk
]

+ E

[〈
gk, zk+1 − zk

〉
+
L

2η

∥∥∥zk − zk+1
∥∥∥2]

(16)
≥ f(xk) +

θ2
θ1

〈
∇f(xk), xk − wk

〉
+

(1− θ1 − θ2)
θ1

(f(xk)− f(yk))

+E

[
Zk+1 − 1

1 + ησ
Zk
]

+ E

[
1

θ1

(
f(yk+1)− f(xk)

)
− θ2

2Lθ1

∥∥∥gk −∇f(xk)
∥∥∥2]

(14)
≥ f(xk) +

θ2
θ1

〈
∇f(xk), xk − wk

〉
+

(1− θ1 − θ2)
θ1

(f(xk)− f(yk))

+E

[
Zk+1 − 1

1 + ησ
Zk +

1

θ1

(
f(yk+1)− f(xk)

)]
−θ2
θ1

E
[
f(wk)− f(xk)−

〈
∇f(xk), wk − xk

〉]
= f(xk) +

(1− θ1 − θ2)
θ1

(f(xk)− f(yk))− 1

1 + ησ
Zk − θ2

θ1
(f(wk)− f(xk))

+E

[
Zk+1 +

1

θ1

(
f(yk+1)− f(xk)

)]
,

where in the second inequality we use also convexity of f(x).

xk
Alg. 2

= θ1z
k + θ2w

k + (1− θ1 − θ2)yk

zk − xk =
θ2
θ1

(xk − wk) +
1− θ1 − θ2

θ1
(xk − yk).

After rearranging we get

1

1 + ησ
Zk + (1− θ1 − θ2)Yk +

θ2
θ1

(f(wk − f∗)) ≥ E
[
Zk+1 + Yk+1

]
.
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Using definition ofWk we get

E
[
Zk+1 + Yk+1

]
≤ 1

1 + ησ
Zk + (1− θ1 − θ2)Yk +

p

(1 + θ1)
Wk. (22)

Finally, using Lemma 9 we get

E
[
Zk+1 + Yk+1 +Wk+1

]
≤ 1

1 + ησ
Zk + (1− θ1 − θ2)Yk +

p

(1 + θ1)
Wk

+(1− p)Wk + θ2(1 + θ1)Yk

=
1

1 + ησ
Zk + (1− θ1(1− θ2))Yk +

(
1− pθ1

1 + θ1

)
Wk,

which concludes the proof.
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