
Proceedings of Machine Learning Research vol 117:1–28, 2020 31st International Conference on Algorithmic Learning Theory

Robust Guarantees for Learning an Autoregressive Filter

Holden Lee HOLDEN.LEE@DUKE.EDU
Duke University

Cyril Zhang CYRIL.ZHANG@PRINCETON.EDU

Princeton University

Editors: Aryeh Kontorovich and Gergely Neu

Abstract
The optimal predictor for a known linear dynamical system (with hidden state and Gaussian noise)
takes the form of an autoregressive linear filter, namely the Kalman filter. However, making
optimal predictions in an unknown linear dynamical system is a more challenging problem that
is fundamental to control theory and reinforcement learning. To this end, we take the approach
of directly learning an autoregressive filter for time-series prediction under unknown dynamics.
Our analysis differs from previous statistical analyses in that we regress not only on the inputs to
the dynamical system, but also the outputs, which is essential to dealing with process noise. The
main challenge is to estimate the filter under worst case input (inℋ∞ norm), for which we use an
𝐿∞-based objective rather than ordinary least-squares. For learning an autoregressive model, our
algorithm has optimal sample complexity in terms of the rollout length, which does not seem to be
attained by naive least-squares.
Keywords: control theory, time series, linear dynamical systems, autoregressive models, optimal
filtering

1. Introduction

The problem of estimating the hidden state and outputs of a known linear dynamical system (LDS),
given the inputs and observations, is a well-studied problem in control theory (Kamen and Su, 1999).
When the process and observation noise are independent and mean-zero with known covariances,
this problem is solved by the Kalman filter (Kalman, 1960; Anderson and Moore, 2012), which
recursively propagates the optimal linear estimator for the hidden state. When the recursion for the
estimator is unrolled, the Kalman filter is seen to be a linear autoregressive filter: it predicts the
system’s next output as a linear combination of the system’s past ground-truth outputs.

However, when the LDS is unknown, optimal filtering is a much harder problem. Moreover, in
the absence of model knowledge, learning to filter a LDS is generally required for controlling a LDS,
a foundational problem in machine learning and control theory. One widely-used approach is to learn
the dynamical matrices from data, after which one can simply apply the Kalman filter. Unfortunately,
this approach runs into computational barriers: the usual formulation of this problem is nonconvex.
System identification techniques provide various practical algorithms for this problem (Ljung, 1998).
However, these algorithms, such as EM (Roweis and Ghahramani, 1999), lack rigorous end-to-end
guarantees, and are often unstable or find suboptimal solutions in high dimensions.

In this work, we bypass the state-space representation of an LDS, and analyze the statistical
guarantees of learning an autoregressive filter directly. This allows us to compete with the predictions

c○ 2020 H. Lee & C. Zhang.

LEE ZHANG

of the steady-state Kalman filter, without the computationally intractable task of explicitly identifying
the system. We present a polynomial-time algorithm for learning an autoregressive filter for time-
series prediction. The predictor has robust (ℋ∞) learning guarantees, which do not seem to be
attained by naive least-squares.

1.1. Background

Our primary motivation is the following question: can we learn to predict the observations as well
as the Kalman filter (inℋ∞ norm) without learning the system? We consider the setting of a linear
dynamical system with hidden state, defined by1

ℎ(𝑡) = 𝐴ℎ(𝑡− 1) + 𝐵𝑥(𝑡− 1) + 𝜉(𝑡) (1.1)

𝑦(𝑡) = 𝐶ℎ(𝑡) + 𝜂(𝑡), (1.2)

where 𝑥(𝑡) ∈ R𝑚 are inputs, ℎ(𝑡) ∈ R𝑑 are hidden states, 𝑦(𝑡) ∈ R𝑛 are outputs, 𝐴 ∈ R𝑑×𝑑,
𝐵 ∈ R𝑑×𝑚, 𝐶 ∈ R𝑛×𝑑, and 𝜉(𝑡) ∈ R𝑑 and 𝜂(𝑡) ∈ R𝑛 are independent zero-mean noise (we
consider the case when they are Gaussian). Crucially, only the 𝑦(𝑡), and not the ℎ(𝑡), are observed.
A major difficulty of learning the dynamics from data comes from the fact that the objective
function ||𝑦(𝑡) − 𝐶𝐴𝑡ℎ(0) −

∑︀𝑡−1
𝑖=0 𝐶𝐴𝑖𝐵𝑥(𝑡 − 1 − 𝑖)||2 is nonconvex in 𝐴,𝐵,𝐶. A classic

approach is subspace identification (Ho and Kalman, 1966; Van Overschee and De Moor, 2012),
for which statistical guarantees only exist in the asymptotic regime or under stringent assumptions.
In the presence of noise, these methods are often used to initialize the EM algorithm (Roweis and
Ghahramani, 1999), a classic heuristic for a non-convex objective.

Another classical model for dynamical systems is the autoregressive-moving average (ARMA)
model (Hamilton, 1994; Box et al., 1994; Brockwell and Davis, 2009), which models latent perturba-
tions using a moving average process. A central technique here is to recover an ARMA model by
solving the Yule-Walker equations. However, to our knowledge, existing work on provably learning
these models is limited to asymptotic guarantees.

1.2. Our results

We show that under certain stability conditions of the Kalman filter, we can bypass proper identifica-
tion of the system, and still converge to the performance of the Kalman filter. We take an improper
learning approach, reducing this problem to the general problem of learning an autoregressive model.

Our algorithm is based off a simple and familiar algorithm in time series analysis: using a sine-
wave input design to fit an autoregressive model using least-squares. However, a key problem with
the ordinary least-squares approach is that it does not provide learning guarantees under worst-case
input (that we have not necessarily seen), i.e., in theℋ∞ norm. Such worst-case bounds are important
because in the usual control-theoretic framework, bounds under the ℋ∞ norm are used to obtain
guarantees for robust control.

To obtain ℋ∞ bounds for learning an autoregressive model, we augment our algorithm with
a 𝐿∞ objective to learn a predictor that is robust in the ℋ∞ sense. When applied to the Kalman
filter, our work gives (to our knowledge) the first non-asymptotic sample complexity guarantees for
learning an optimal autoregressive filter for estimation in a LDS.

1. Note that ℎ(𝑡) and 𝑥(𝑡) are often denoted by 𝑥𝑡 and 𝑢𝑡 respectively in the control theory literature; in this paper we
follow the machine learning convention of using ℎ to denote hidden state.

2

LEARNING AN AUTOREGRESSIVE FILTER

1.3. Related work

LDS without hidden state, and FIRs. The problem of learning unknown dynamical systems
has attracted a lot of recent attention from the machine learning community, due to connections to
reinforcement learning and recurrent neural networks. Much progress has been made on the simpler
related problem of learning and control in a linear dynamical model with no hidden state. Such a
model is defined by

ℎ(𝑡) = 𝐴ℎ(𝑡− 1) + 𝐵𝑥(𝑡− 1) + 𝜉(𝑡), (1.3)

where 𝐴, 𝐵, 𝑥(𝑡), 𝜉(𝑡) are as before, but ℎ(𝑡) is now observed. Dean et al. (2017) consider the linear
quadratic regulator (LQR)—the control problem for such a LDS—and prove that the least-squares
estimator of the dynamics, given independent rollouts, is sample-efficient for this setting. Simchowitz
et al. (2018) show that access to independent rollouts is unnecessary; the LDS can be identified with
a single rollout, even when the system is only marginally stable. Sarkar and Rakhlin (2019) improve
the analysis and extend it to explosive 𝐴.

An alternative approach to identifying 𝐴 and 𝐵 is to learn the system as a finite-impulse response
(FIR) filter. This is because the problem of learning a FIR filter can be thought of as a relaxation of
the problem of learning a LDS, by “unrolling” the LDS. Tu et al. (2017) use ordinary least-squares
with design inputs to learn a FIR, and give near-optimal sample complexity bounds. Boczar et al.
(2018) complete the “identify-then-control” pipeline by studying robust control for this estimated
FIR filter.

Limitations of FIRs. FIR filters are an insufficiently expressive class of models for prediction in
linear dynamical systems with a latent state ℎ(𝑡). Firstly, there are unstable or marginally stable
systems which can be written as autoregressive models with short filter length, but the infinite impulse
response filter is not approximated by any finite truncation. Moreover, performance guarantees for
prediction using FIR filters are given under observation noise, and become very poor under process
noise. In these cases, the statistical guarantees of prediction using FIR filters can be suboptimal by
an arbitrarily large factor, while an autoregressive model can make statistically optimal predictions.
To illustrate this dramatic gap, we analyze a simple example in Section 2.2. Our approach fills a gap
in the literature, by giving statistical guarantees similar to those obtained by Tu et al. (2017) for the
more expressive and useful family of autoregressive models.

LDS with hidden state, and autoregressive models. In the setting of linear dynamical systems
with a hidden state, several recent works analyze settings in which the dynamics can be identified.
Hardt et al. (2016) show that under certain conditions on the characteristic polynomial of the
system’s transition matrix, gradient descent learns the parameters of a single-input single-output LDS.
However, they only consider the setting of observation noise, and not process noise (i.e. 𝜉(𝑡) = 0). In
work concurrent to ours, Simchowitz et al. (2019), building on Oymak and Ozay (2018), consider the
problem of learning an autoregressive filter, and for the case of a LDS, are able to recover matrices
𝐴, 𝐵, 𝐶 which give an equivalent realization of the LDS. Although they allow for semi-parametric
noise and marginally stable systems, their guarantees are for estimating the matrices in operator norm,
rather than the system in the more stringentℋ∞ norm. Tsiamis and Pappas (2019) give guarantees
for a subspace identification algorithm to estimate the Kalman gain in operator norm.

By unrolling the Kalman filter (see Section 2.3), the problem of learning the Kalman filter can be
recast as learning an autoregressive model. Several works have addressed learning an ARMA model

3

LEE ZHANG

in the online learning (regret minimization) setting. We note however that the regret framework
is different than what is required for control, as it ensures performance only on the data that is
seen; the predictor is not required to perform well on worst-case input. Anava et al. (2013) give an
algorithm that works in the presence of adversarial (as opposed to i.i.d. Gaussian) noise. However, the
constraint on the ℓ1-norm of the coefficients of the error terms, which they require for the dynamical
stability of their estimator of residuals, is very stringent. Kozdoba et al. (2019) use online gradient
descent to learn an autoregressive model. They show that whenever the original LDS is observable,
the Kalman filter is strictly stable, and hence only a finite horizon is necessary. They do not require
the original LDS to be stable. However, their regret bounds scale as the size of the outputs, which
can potentially grow in time when the system is not strictly stable.

Finally, we note the approach of online spectral filtering for prediction in symmetric and asym-
metric LDS’s (Hazan et al., 2017, 2018). In these works, the process noise is only handled up to a
multiplicative factor of the optimal filter with knowledge of the system. Intuitively, this “competitive
ratio bound” arises because these works consider regressing only on one or a few past observations
𝑦𝑡 (in a somewhat rigid manner), rather than having the freedom to imitate an optimal autoregressive
filter.

2. Problem setting and preliminaries

We first state the general problem of learning an autoregressive model, and then in Section 2.3
describe the connection to linear dynamical systems. In Section 2.4 we introduce some concepts
from control theory and use it to write error bounds in terms of control-theoretic norms of filters
(Lemma 2.4).

2.1. Problem statement

A (single-input, single-output) dynamical system converts input signals 𝑥(0), . . . , 𝑥(𝑇 − 1) ∈ R into
output signals (random variables) 𝑦(1), . . . , 𝑦(𝑇) ∈ R. We will assume that the data are generated
by an autoregressive model:

𝑦(𝑡 + 1) = 𝑔* * 𝑥(𝑡) + ℎ* * 𝑦(𝑡) + 𝜂(𝑡 + 1) =
∞∑︁
𝑘=0

𝑔*(𝑘)𝑥(𝑡− 𝑘) +
∞∑︁
𝑘=0

ℎ*(𝑘)𝑦(𝑡− 𝑘) + 𝜂(𝑡 + 1),

(2.1)

where 𝜂(𝑡) ∼ 𝑁(0, 𝜎2) is a time series of i.i.d. Gaussian noise, 𝑔, ℎ, are supported on N0, and
𝑥(𝑡) = 0 for 𝑡 < 0 and 𝑦(𝑡) = 0 for 𝑡 ≤ 0.

Problem 2.1 Let 𝑔*, ℎ* ∈ RN0 be filters. The learner is given black-box access to the system L
which takes inputs 𝑥 ∈ RN0 to outputs 𝑦 ∈ RN by (2.1). During each rollout, the learner specifies an
input design {𝑥(0), . . . , 𝑥(𝑇 − 1)}, and receives the corresponding output sequence. After collecting
outputs from 𝑠 rollouts, the learner returns filters 𝑔, ℎ, which specify a map from input to output
signals via (2.1).

For an estimate 𝑔, ℎ of 𝑔*, ℎ*, define the error in the prediction (compared to the expected value
of 𝑦(𝑡 + 1)) to be

𝑦err(𝑡 + 1) = (𝑔 − 𝑔*) * 𝑥(𝑡) + (ℎ− ℎ*) * 𝑦(𝑡). (2.2)

4

LEARNING AN AUTOREGRESSIVE FILTER

The goal is to learn 𝑔, ℎ such that the expected error in the prediction is a small fraction 𝜀1 of the
input, plus a small fraction 𝜀2 of the elapsed time:

E

[︃
𝑇∑︁
𝑡=1

‖𝑦err(𝑡)‖2
]︃
≤ 𝜀1

𝑇∑︁
𝑡=1

‖𝑥(𝑡)‖2 + 𝜀2𝑇. (2.3)

2.2. Inadequacy of learning an FIR filter

We complete the discussion in Section 1.3, exhibiting a minimal example where the gap between
FIR and autoregressive models can be made arbitrarily large. Consider the system

ℎ(𝑡) = 𝑟ℎ(𝑡− 1) + 𝑥(𝑡− 1) + 𝜉(𝑡),

𝑦(𝑡) = ℎ(𝑡) + 𝜂(𝑡)

where 0 < 𝑟 < 1 and 𝜉(𝑡), 𝜂(𝑡) ∼ 𝑁(0, 1). Then we can calculate using formulas for the Kalman
filter that the variance in the estimation of ℎ and 𝑦 are 𝜎2

ℎ = 𝑟2+
√
𝑟4+4
2 , and 𝜎2

𝑦 = 𝜎2
ℎ + 1. The mean

squared error in estimating 𝑦𝑡 using the Kalman filter is 𝜎2
𝑦 , which remains finite as 𝑟 → 1. On the

other hand, if we were to estimate 𝑦𝑡 without using the previous observations 𝑦𝑡−1, . . ., then the
average estimation error is 1 + (1 + 𝑟2 + 𝑟4 + · · ·) = 1 + 1

1−𝑟2
, which blows up as 𝑟 → 1. Hence

the multiplicative factor between the error using a FIR filter, and using the optimal filter, goes to
∞ as 𝑟 → 1. In general, FIR methods suffer a multiplicative factor depending on ‖𝐺‖∞ (Tu et al.,
2017, §3 (Process noise)), which is 1

1−𝑟2
in this example.

2.3. Connection to the Kalman filter

Our work is motivated by optimal state estimation in LDS’s with hidden state given by the dynam-
ics (1.1)–(1.2). The Kalman filter gives the optimal linear estimator in the case that the parameters
and noise covariances of the LDS are known and ℎ(0) is drawn from a distribution with known mean
ℎ−(0) and covariance. We can compute matrices 𝐴(𝑡)

𝐾𝐹 , 𝐵(𝑡)
𝐾𝐹 , and 𝐶

(𝑡)
𝐾𝐹 such that the optimal linear

estimate of the latent state ̂︀ℎ(𝑡) and the observation ̂︀𝑦(𝑡) are given by a time-varying LDS (taking the
𝑦(𝑡) as feedback) with those matrices:

ℎ−(𝑡) = 𝐴
(𝑡)
𝐾𝐹ℎ

−(𝑡− 1) + 𝐵
(𝑡)
𝐾𝐹

(︂
𝑥(𝑡− 1)
𝑦(𝑡− 1)

)︂
(2.4)

̂︀𝑦(𝑡) = 𝐶
(𝑡)
𝐾𝐹ℎ

−(𝑡). (2.5)

In the case where the initial and noise distributions are Gaussian, ℎ−(𝑡) and ̂︀𝑦(𝑡) are furthermore
the maximum a posteriori estimators, and the actual hidden state ℎ(𝑡) and the observation 𝑦(𝑡) are
Gaussians when conditioned onℱ𝑡−1 (the observations up to time 𝑡−1): ℎ(𝑡)|ℱ𝑡−1 ∼ 𝑁(ℎ−(𝑡),Σ

(𝑡)
ℎ)

and 𝑦(𝑡)|ℱ𝑡−1 ∼ 𝑁(̂︀𝑦(𝑡),Σ
(𝑡)
𝑦) for some covariance matrices Σ

(𝑡)
ℎ , Σ

(𝑡)
𝑦 .

If the original system is observable and the noise is iid, taking 𝑡→∞, the matrices 𝐴(𝑡)
𝐾𝐹 , 𝐵(𝑡)

𝐾𝐹 ,
and 𝐶

(𝑡)
𝐾𝐹 approach certain fixed matrices 𝐴𝐾𝐹 , 𝐵𝐾𝐹 , and 𝐶𝐾𝐹 , and the covariance matrices Σ

(𝑡)
ℎ

and Σ
(𝑡)
𝑦 approach fixed matrices Σℎ and Σ𝑦 (Harrison, 1997). Our goal is to learn this steady-state

5

LEE ZHANG

Kalman filter without knowing parameters of the original LDS.2 In the Gaussian case, at steady-state,
the actual hidden state ℎ(𝑡) and observation 𝑦(𝑡) will be distributed as ℎ(𝑡)|ℱ𝑡−1 ∼ 𝑁(ℎ−(𝑡),Σℎ)
and 𝑦(𝑡)|ℱ𝑡−1 ∼ 𝑁(̂︀𝑦(𝑡),Σ𝑦).

From now on, we will assume that the initial and noise distributions are fixed Gaussians, as our
results will compare against the steady-state Kalman filter and rely on the fact that 𝑦(𝑡)|ℱ𝑡−1 is a
mean-zero random variable. This may not be true for general noise distributions.

Denote 𝐵𝐾𝐹 = (𝐵𝐾𝐹,𝑥 𝐵𝐾𝐹,𝑦), where 𝐵𝐾𝐹,𝑥 and 𝐵𝐾𝐹,𝑦 are the submatrices acting on 𝑥(𝑡)
and 𝑦(𝑡), respectively. Consider for simplicity the case where the input and output dimensions are 1:
if the hidden state has dimension 𝑑, then 𝐴𝐾𝐹 ∈ R𝑑×𝑑, 𝐵𝐾𝐹,𝑥, 𝐵𝐾𝐹,𝑦 ∈ R𝑑×1, 𝐶𝐾𝐹 ∈ R1×𝑑, and
we simply have Σℎ = 𝜎2

ℎ for some 𝜎ℎ. We can then “unfold” the Kalman filter into an equivalent
autoregressive model (2.1) by letting 𝑔*(𝑡) = 𝐶𝐾𝐹𝐴

𝑡
𝐾𝐹𝐵𝐾𝐹,𝑥 and ℎ*(𝑡) = 𝐶𝐾𝐹𝐴

𝑡
𝐾𝐹𝐵𝐾𝐹,𝑦, and

𝜂(𝑡) ∼ 𝑁(0, 𝜎2
ℎ).3 Note that the autoregressive model captures the law of the random process defined

by the LDS (under what is observable at each time step, i.e., the filtration ℱ𝑡), without utilizing a
hidden state.

In this setting, we again attempt to minimize the error between the prediction and the expected
value when the dynamics are known, 𝑦err(𝑡) = ̂︀𝑦(𝑡)− E[𝑦(𝑡)|ℱ𝑡−1].

2.4. Preliminaries on control theory

An impulse response function can be equivalently be represented as a power series.

Definition 2.2 For a sequence 𝑓 ∈ RZ define the transfer function of 𝑓 by 𝐹 (𝑧) =
∑︀

𝑘∈Z 𝑓(𝑘)𝑧−𝑘.
We will always denote the transfer function of a sequence in RZ by the corresponding capital letter.

Note that if 𝑦 = 𝑓 * 𝑥, then as formal power series, 𝑌 = 𝐹𝑋 , and equality holds as functions for 𝑧
such that 𝐹 (𝑧), 𝑋(𝑧) converge absolutely. Translation corresponds to multiplication: the transfer
function of 𝑡 ↦→ 𝑦(𝑡+ 1) is 𝑧𝑌 (𝑧). Hence, letting 𝑁 be the transfer function of 𝜂, we have from (2.1)
that

𝑧𝑌 = 𝐺*𝑋 + 𝐻*𝑌 + 𝑧𝑁 (2.6)

=⇒ (1− 𝑧−1𝐻*)𝑌 = 𝑧−1𝐺*𝑋 + 𝑁 (2.7)

𝑌 = 𝑧−1𝐺*𝐻*
unr𝑋 + 𝐻*

unr𝑁 (2.8)

where 𝐻*
unr(𝑧) : =

1

1− 𝑧−1𝐻*(𝑧)
. (2.9)

Thus, we can rewrite (2.1) as

𝑦(𝑡 + 1) = ℎ*unr * 𝑔* * 𝑥(𝑡) + ℎ*unr * 𝜂(𝑡 + 1), (2.10)

where ℎ*unr(𝑘), the “unrolled” filter, is such that
∑︀∞

𝑘=0 ℎ
*
unr(𝑘)𝑧−𝑘 = 𝐻*

unr(𝑧).

2. Note that if the parameters of the LDS are unknown, then any 𝐴, 𝐵, 𝐶 for which the law of the 𝑦𝑡 in (1.1)–(1.2) is the
same as the law of the actual 𝑦𝑡 is an equivalent realization. Then the Kalman filters computed from these 𝐴, 𝐵, 𝐶
will all give equivalent predictions, so we need not distinguish between them.

3. Note this is not to be confused with the 𝜂(𝑡) in (1.1)–(1.2): this 𝜂(𝑡) has larger variance because it also incorporates
the uncertainty about the hidden state.

6

LEARNING AN AUTOREGRESSIVE FILTER

Definition 2.3 Theℋ∞-norm of a filter is the 𝐿∞-norm of the transfer function over the unit circle
‖𝑧‖2 = 1:

‖𝑓‖ℋ∞
= ‖𝐹‖∞ := max

‖𝑧‖2=1
𝐹 (𝑧). (2.11)

Theℋ2-norm of a filter is the 𝐿2-norm of the transfer function over the unit circle:

‖𝑓‖ℋ2
= ‖𝐹‖2 :=

(︃
1

2𝜋

∫︁
|𝑧|=1

|𝐹 (𝑧)|2 𝑑𝑧

)︃ 1
2

. (2.12)

For the rest of the paper we will assume the system is stable, i.e., ‖𝐻*‖∞ < 1, so that ‖𝐻*
unr‖ <∞.4

The ℋ2-norm represents the steady state variance under iid Gaussian noise as input, and the
ℋ∞-norm represents the maximum norm of the output when ‖𝑥‖2 = 1:

‖𝑓‖2ℋ2
= E∀𝑠,𝜂(𝑠)∼𝑁(0,1) |(𝑓 * 𝜂)(𝑡)|2 (2.13)

‖𝑓‖ℋ∞
= sup

‖𝑥‖2=1
‖𝑓 * 𝑥‖2 . (2.14)

From (2.2) and (2.10),

𝑦err(𝑡 + 1) = (𝑔 − 𝑔*) * 𝑥(𝑡) + (ℎ− ℎ*) * (ℎ*unr * 𝑔* * 𝑥)(𝑡− 1) + (ℎ− ℎ*) * (ℎ*unr * 𝜂)(𝑡)
(2.15)

= [(𝑔 − 𝑔*) + 𝛿1 * (ℎ− ℎ*) * ℎ*unr * 𝑔*] * 𝑥(𝑡) + [(ℎ− ℎ*) * ℎ*unr] * 𝜂(𝑡) (2.16)

where 𝛿𝑖(𝑗) = 1𝑖=𝑗 . Because 𝜂 has mean 0,

E𝜂

[︃
𝑇∑︁
𝑡=1

‖𝑦err(𝑡)‖2
]︃

= E𝜂

[︃
𝑇∑︁
𝑡=1

‖[(𝑔 − 𝑔*) + 𝛿1 * (ℎ− ℎ*) * ℎ*unr * 𝑔*] * 𝑥(𝑡)‖2
]︃

+ E𝜂

[︃
𝑇∑︁
𝑡=1

‖[(ℎ− ℎ*) * ℎ*unr] * 𝜂(𝑡)‖22

]︃
.

Hence from (2.13) and (2.14) we obtain the following, noting that the noise in Problem 2.1 is
𝑁(0, 𝜎2).

Lemma 2.4 Suppose that ‖𝐻*‖∞ < 1. Then in the setting of Problem 2.1,

E

[︃
𝑇∑︁
𝑡=1

‖𝑦err(𝑡)‖2
]︃
≤
⃦⃦

(𝐺−𝐺*) + 𝑧−1(𝐻 −𝐻*)𝐻*
unr𝐺

*⃦⃦2
∞ ‖𝑥‖

2 + ‖(𝐻 −𝐻*)𝐻*
unr‖

2
2 𝜎

2𝑇

We will approximate 𝑔*, ℎ* with finite-length filters of length 𝑟, so we need to make sure 𝑟 is
large enough to capture most of the response. For this, we use the following definition and lemma
from Tu et al. (2017) which gives a sufficient length in terms of the desired error and aℋ∞ norm.

4. The ‖𝐻*‖∞ < 1 condition is necessary to do worst-case (ℋ∞-norm) estimation over a infinite time horizon, with
only access to a finite rollout. This is because an input with infinite response can have arbitrarily small response over a
finite horizon. This suggests that to solve the control problem over infinite time horizon of a non-stable system, one
should look for weaker assumptions than learning in ℋ∞-error that still allow control.

7

LEE ZHANG

Definition 2.5 (Sufficient length condition, (Tu et al., 2017, Definition 1)) We say that a Laurent
series 𝐹 has stability radius 𝜌 ∈ (0, 1) if 𝐹 converges for {𝑥 ∈ C : |𝑥| > 𝜌}. Let 𝐹 be stable with
stability radius 𝜌 ∈ (0, 1). Fix 𝜀 > 0. Define

𝑅(𝜀) =

⌈︂
inf

𝜌<𝛾<1

1

1− 𝛾
ln

(︂
‖𝐹 (𝛾𝑧)‖∞
𝜀(1− 𝛾)

)︂⌉︂
. (2.17)

Note that this “sufficient length condition” is analogous to having a 1
1−𝜌(𝐴) dependence on the

spectral norm of 𝐴, for learning a LDS. Indeed, a filter corresponding to a LDS will have stability
radius 𝜌(𝐴).

Lemma 2.6 ((Tu et al., 2017, Lemma 4.1)) Suppose 𝐹 is stable with stability radius 𝜌 ∈ (0, 1).

Then ‖𝑓≥𝐿‖1 :=
∑︀

𝑘≥𝐿 |𝑓(𝑘)| ≤ max𝜌<𝛾<1
‖𝐹 (𝛾𝑧)‖∞𝛾𝐿

1−𝛾 . Hence, if 𝐿 ≥ 𝑅(𝜀), then ‖𝑓≥𝐿‖1 ≤ 𝜀.

3. Algorithm and main theorem

We motivate our main algorithm, Algorithm 1. The most natural algorithm is the following: let
the inputs be sinusoids at equally spaced frequencies, and solve a least-squares problem for 𝑔, ℎ.
However, ordinary least-squares will only give 𝑔, ℎ for which the estimation error is small for random
input, while we desire 𝑔, ℎ for which the estimation error is small for worst-case input; in other
words, it gives an average-case (ℋ2), rather than the worst-case (ℋ∞) bound that we desire. This
is analogous to the difference between estimating a 𝑟 × 𝑟 matrix in Frobenius and operator norm;
the Frobenius norm trivially bounds the operator norm, but the resulting bound is typically

√
𝑟 from

optimal. Hence, the sample complexity bound from ordinary least-squares does not have optimal
dependence on 𝑟. Note that Boczar et al. (2018) solve the analogous problem for a FIR filter 𝑓*

with least-squares without suffering an extra
√
𝑟 factor, because in that setting, the matrix 𝑀 in the

least-squares problem is a fixed matrix depending on the inputs, the error 𝑓 − 𝑓* in the estimate
is gaussian, and supremum bounds for Gaussians are applicable. Our setting is more challenging
because the 𝑀 ’s depend on noise in observations 𝑦(𝑡) that we have no control over.

The first step of our algorithm is still to solve a least-squares problem. We do this in two
parts: first, solve for ℎ𝐿𝑆 by regressing on zero input, and then using ℎ𝐿𝑆 , solve for 𝑔(𝑗)𝐿𝑆 separately
for each frequency 𝑗. We do this to avoid the error in ℎ𝐿𝑆—larger by a factor

√
𝑟 because it is

𝑟-dimensional—contributing to the error in the 𝑔
(𝑗)
𝐿𝑆 .

The final step is to combine the 𝑔
(𝑗)
𝐿𝑆 . Because the number of frequencies is larger than the length

𝑟 of the filter (necessary to be able to interpolate to unseen frequencies), we cannot find a single 𝑔

that matches each 𝑔
(𝑗)
𝐿𝑆 on the 𝑗th frequency. Keeping in mind ourℋ∞ objective, we hence optimize

a 𝐿∞ problem over the frequencies to interpolate the 𝑔
(𝑗)
𝐿𝑆 .

Note that in our algorithm we can just take just 0 < 𝑗 < 𝑐𝑟
2 for the sin signals because the signals

for 𝑗 = 0, 𝑐𝑟2 are trivial; we consider 0 ≤ 𝑗 ≤ 𝑐𝑟
2 to make the notation in the proof simpler. For

convenience of notation we re-index the time series to start at 𝑡 = −𝐿.
Our algorithm differs from the one in Simchowitz et al. (2019) in that their algorithm first does

a pre-filtering step (ridge regression) on past outputs, and then does a linear regression on just the
previous inputs, while our algorithm regresses on the previous inputs and observations together.
Moreover, we use designed inputs in order to ensure estimation inℋ∞ norm.

8

LEARNING AN AUTOREGRESSIVE FILTER

Algorithm 1 Learning an autoregressive model
1: INPUT: burn-in time 𝐿, number of rollouts of each frequency ℓ, filter length 𝑟, 𝑐 > 4𝜋.
2: Collect length 𝑇 = 𝑐𝑟 rollouts of the ∼ 2𝑐ℓ𝑟 input signals starting at 𝑡 = −𝐿,

𝑥(∙,𝑘) = 𝑥(∙) ≡ 0, 1 ≤ 𝑘 ≤ 𝑐ℓ𝑟 (3.1)

𝑥(𝑗,𝑘)cos (𝑡) = 𝑥(𝑗)cos(𝑡) = cos

(︂
2𝜋𝑗𝑡

𝑐𝑟

)︂
0 ≤ 𝑗 ≤ 𝑐𝑟

2
1 ≤ 𝑘 ≤ ℓ, (3.2)

𝑥
(𝑗,𝑘)
sin (𝑡) = 𝑥

(𝑗)
sin(𝑡) = sin

(︂
2𝜋𝑗𝑡

𝑐𝑟

)︂
0 ≤ 𝑗 ≤ 𝑐𝑟

2
1 ≤ 𝑘 ≤ ℓ. (3.3)

Let the outputs be 𝑦(∙,𝑘), 𝑦(𝑗,𝑘)cos , and 𝑦
(𝑗,𝑘)
sin . Let 𝑀 (∙,𝑘) ∈ R𝑟×𝑇 , 𝑀 (𝑗,𝑘)

cos,𝑡 ∈ R2𝑟×𝑇 , and 𝑀
(𝑗,𝑘)
sin,𝑡 ∈

R2𝑟×𝑇 be the matrices with columns (for 1 ≤ 𝑡 ≤ 𝑇)

𝑀
(∙,𝑘)
𝑡 = 𝑦(∙,𝑘)(𝑡− 1 : 𝑡− 𝑟) 𝑀

(𝑗,𝑘)
cos,𝑡 =

(︃
𝑥
(𝑗)
cos(𝑡− 1 : 𝑡− 𝑟)

𝑦
(𝑗,𝑘)
cos (𝑡− 1 : 𝑡− 𝑟)

)︃
𝑀

(𝑗,𝑘)
sin,𝑡 =

(︃
𝑥
(𝑗)
sin(𝑡− 1 : 𝑡− 𝑟)

𝑦
(𝑗,𝑘)
sin (𝑡− 1 : 𝑡− 𝑟)

)︃
(3.4)

where 𝑥(𝑡− 1 : 𝑡− 𝑟) denotes (𝑥(𝑡− 1), . . . , 𝑥(𝑡− 𝑟))⊤.
3: Solve the following least-squares problem under zero noise. Here, 𝑦(∙,𝑘) refers to the vector

𝑦(∙,𝑘)(1 : 𝑇).

ℎ𝐿𝑆 = argminℎ

𝑐ℓ𝑟∑︁
𝑘=1

⃦⃦⃦
𝑀 (∙,𝑘)⊤ℎ− 𝑦(∙,𝑘)

⃦⃦⃦2
. (3.5)

4: Solve the following least-squares problems, for 0 ≤ 𝑗 ≤ 𝑐𝑟
2 :

𝑔
(𝑗)
𝐿𝑆 = argmin𝑔

ℓ∑︁
𝑘=1

[︃⃦⃦⃦⃦
𝑀 (𝑗,𝑘)⊤

cos

(︂
𝑔

ℎ𝐿𝑆

)︂
− 𝑦(𝑗,𝑘)cos

⃦⃦⃦⃦2
+

⃦⃦⃦⃦
𝑀

(𝑗,𝑘)⊤
sin

(︂
𝑔

ℎ𝐿𝑆

)︂
− 𝑦

(𝑗,𝑘)
sin

⃦⃦⃦⃦2]︃
(3.6)

5: Solve and return(︂
𝑔
ℎ

)︂
= argmin𝑔,ℎ max

{︃
1

𝑟

𝑐ℓ𝑟∑︁
𝑘=1

⃦⃦⃦
𝑀 (∙,𝑘)⊤ (ℎ− ℎ𝐿𝑆)

⃦⃦⃦2
, (3.7)

max
𝑗

ℓ∑︁
𝑘=1

⎡⎣⃦⃦⃦⃦⃦𝑀 (𝑗,𝑘)
cos

[︃(︂
𝑔
ℎ

)︂
−

(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃]︃⃦⃦⃦⃦
⃦
2

+

⃦⃦⃦⃦
⃦𝑀 (𝑗,𝑘)

sin

[︃(︂
𝑔
ℎ

)︂
−

(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃]︃⃦⃦⃦⃦
⃦
2
⎤⎦}︃.

Theorem 3.1 (Learning an autoregressive model) There is 𝐶,𝐶 ′ such that the following holds.
In the setting of Problem 2.1, suppose that ‖𝐺*‖∞ < ∞, ‖𝐻*‖∞ < 1, and Algorithm 1 is

run with 𝑐 ≥ 8𝜋, burn-in time 𝐿 ≥ max
{︁
𝑅𝐻*

unr

(︁
𝛿

4𝐾𝑇
√
𝑐ℓ𝑟

)︁
, 𝑅𝐻*

unr𝐺
*

(︁
𝛿

4𝐾
√
𝑐ℓ𝑟𝑇

)︁}︁
where 𝐾 =

9

LEE ZHANG

(︁
1 +

∑︀𝑇−2
𝑡=0 |ℎ*(𝑡)|

)︁2
, rollout length 𝑇 , and ℓ ≥ 𝐶 ′2(𝑟 + ln

(︀
1
𝛿

)︀
) rollouts of each input. Let

𝜀1 : =
𝐶√
𝑐ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂ 3
2

(1 + ‖𝐻*‖∞) ‖𝐻*
unr‖∞ , 𝜀2 : =

𝐶√
𝑐ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂2

. (3.8)

Then with probability 1− 𝛿, the algorithm returns 𝑔, ℎ such that

E

[︃
𝑇∑︁
𝑡=1

‖𝑦err(𝑡)‖2
]︃
≤ 𝜀21 ‖𝑥‖

2
2 + 𝜀22𝑇. (3.9)

To prove the theorem, we establish the bounds⃦⃦
(𝐺−𝐺*) + 𝑧−1(𝐻 −𝐻*)𝐻*

unr𝐺
*⃦⃦

∞ ≤ 𝜀1 ‖(𝐻 −𝐻*)𝐻*
unr‖2 ≤ 𝜎−1𝜀2 (3.10)

and use Lemma 2.4. Note there is no dependence on 𝜎 in (3.9) for the following reason: smaller 𝜎
means worse estimation of ‖(𝐻 −𝐻*)𝐻*

unr‖2 (the response to 𝑁(0, 1) noise) by a factor of 𝜎−1,
but when tested on rollouts with noise 𝑁(0, 𝜎2), the error is not affected.

We expect the 𝑂
(︁

1√
ℓ𝑇

)︁
dependence on ℓ, 𝑇, 𝑟 to be optimal: there are 𝑂(𝑟) parameters, and we

have access to 𝑂(ℓ𝑇𝑟) samples (including samples in the same rollout). We also conjecture that the
‖𝐻*

unr‖∞ dependence is unavoidable.
As an immediate corollary, we obtain a theorem for learning the Kalman filter. For simplicity,

we state the result when ℎ(0) has the steady-state distribution, to avoid burn-in time arguments.

Corollary 3.2 (Improperly learning the Kalman filter) Consider the system (1.1)–(1.2). Let
𝐴𝐾𝐹 , 𝐵𝐾𝐹,𝑥, 𝐵𝐾𝐹,𝑦, 𝐶𝐾𝐹 be the steady-state Kalman filter matrices and 𝜎2

𝑦 be the variance
in the estimate of 𝑦, as defined in Section 2.3. Let 𝐺*(𝑧) =

∑︀∞
𝑡=0𝐶𝐾𝐹𝐴

𝑡
𝐾𝐹𝐵𝐾𝐹,𝑥𝑧

−𝑡 and
𝐻*(𝑧) =

∑︀∞
𝑡=0𝐶𝐾𝐹𝐴

𝑡
𝐾𝐹𝐵𝐾𝐹,𝑦𝑧

−𝑡. Suppose that 𝐴𝐾𝐹 has spectral radius < 1, and suppose
the rollouts are started with ℎ(0) ∼ 𝑁(0, 𝜎2

ℎ). Algorithm 1 with parameters given in Theorem 3.1
returns predictions such that

E

[︃
𝑇∑︁
𝑡=1

‖𝑦err(𝑡)‖2
]︃
≤ 𝜀21 ‖𝑥‖

2
2 + 𝜀22𝑇. (3.11)

4. Proof sketch

It will be convenient to first prove the theorem in the case when the burn-in time is infinite. Note that
by the stability assumption on 𝐻*, for signals with finite ‖𝑥‖∞, the outputs will not diverge.

Theorem 4.1 Theorem 3.1 holds in the setting when the burn-in time 𝐿 is infinite.

We break the proof of Theorem 3.1 into 4 parts. The first 3 parts will prove Theorem 4.1. The
full proof is in Section A.

10

LEARNING AN AUTOREGRESSIVE FILTER

Step 1 (Concentration): If 𝑦 = 𝑀⊤𝑥 and 𝑦 = 𝑦 + 𝜂, then the error from the least-squares
problem argmin𝑥

⃦⃦
𝑀⊤𝑥− 𝑦

⃦⃦2 is (𝑀𝑀⊤)−1𝑀𝜂. A simple way to bound this is to bound 𝑀𝑀⊤

from below and 𝑀𝜂 from above. When we have 𝑠 samples, and 𝑥 ∈ R𝑟, we expect
⃦⃦
(𝑀𝑀⊤)−1

⃦⃦
≤

𝑂
(︀
1
𝑠

)︀
and ‖𝑀𝜂‖ ≤ 𝑂 (

√
𝑟𝑠).

We show that the matrices 𝑄(∙) :=
∑︀𝑐ℓ𝑟

𝑘=1𝑀
(∙,𝑘)𝑀 (∙,𝑘)⊤ and 𝑄(𝑗) :=

∑︀ℓ
𝑘=1(𝑀

(𝑗,𝑘)
cos 𝑀

(𝑗,𝑘)⊤
cos +

𝑀
(𝑗,𝑘)
sin 𝑀

(𝑗,𝑘)⊤
sin) in the least-squares problem (3.5) and (3.6) concentrate using matrix concentration

bounds (Lemma A.2), and that the terms such as
∑︀𝑐ℓ𝑟

𝑘=1𝑀
(∙,𝑘)𝜂(∙,𝑘) concentrate by martingale

concentration (Lemma A.5). The main complication is to track how the error ℎ𝐿𝑆 − ℎ* propagates
into 𝑔

(𝑗)
𝐿𝑆 − 𝑔* (see (A.11) and following computations).

Step 2 (Generalization): The bounds we obtain on

(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂
in the direction of the 𝑗th

frequency (A.63) show that the actual solution (𝑔*, ℎ*) does well in the min-max problem (3.7).
The solution (𝑔, ℎ) to (3.7) will only do better. By concentration, the matrices in the least-squares
problem 𝑄(∙), 𝑄(𝑗) and in the actual expected square loss are comparable. Because (𝑔, ℎ) does well
in the min-max problem, it will do comparably well with respect to the actual expected loss, when
the input is one of the frequencies that has been tested, 2𝜋𝑗

𝑐𝑟 .
In this step, we already have enough to bound 𝜀2, the error in estimation with pure noise and no

input signal.

Step 3 (Interpolation): We’ve produced (𝑔, ℎ) that is close to the actual (𝑔*, ℎ*) when tested on
each of the frequencies 2𝜋𝑘

𝑐𝑟 , but need to extend this bound to all frequencies. Considering transfer
functions and clearing denominators, this reduces to a problem about polynomial interpolation. We
use a theorem from approximation theory (Theorem A.6) that bounds the maximum of a polynomial
𝑝 on the unit circle, given its value at ≥ deg 𝑝 equispaced points. Note that it is crucial here that the
number of parameters in 𝑔, ℎ is less than the number of frequencies tested.

Note that we needed to clear 1−𝑧−1𝐻* from the denominator, so we lose a factor of ‖𝐻*
unr‖∞ =⃦⃦

1− 𝑧−1𝐻*⃦⃦
∞ here. We obtain a bound on 𝜀1, finishing the proof of Theorem 4.1.

Step 4 (Truncation): Finally, we show that with a large burn-in time, the distribution of 𝑦’s will
be almost indistinguishable from the steady-state distribution, and hence the algorithm still works.

5. Conclusion and further directions

In the regime where Theorem 3.1 applies, we expect the dependence on the number of samples, as
well as on ‖𝐻*

unr‖∞, to be optimal. However, note that our theorem requires at least Ω(𝑟2) rollouts.
It is an interesting question whether the bounds hold for fewer rollouts, or even for one rollout with
carefully designed inputs, analogous to results in the case of LDS without hidden state (Simchowitz
et al., 2018). Another open question is to prove a lower bound for the number of samples, in terms of
‖𝐻*

unr‖∞.
By improperly learning the Kalman filter as an autoregressive model, we incur sample complexity

depending on
√
𝑟 rather than

√
𝑑, where 𝑑 is the dimension of the hidden state; obtaining bounds

depending on 𝑑 seems to be a difficult problem. Another important question is learning the optimal
filter for noise models besides iid Gaussians.

We expect that the theorem can be generalized in a straightforward manner to multiple-input,
multiple-output systems.

11

LEE ZHANG

Finally, one can complete the “identify-then-control” pipeline by using the estimates from our
algorithm for robust control. Although estimation inℋ∞ norm of non-strictly stable systems is not
possible in our setup, non-stable systems often arise in practice, so it is of great interest to find a
weaker guarantees for such systems that still allow for robust control.

References

Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. Online learning for time series prediction.
In COLT 2013 - The 26th Annual Conference on Learning Theory, June 12-14, 2013, Princeton
University, NJ, USA, pages 172–184, 2013.

Brian DO Anderson and John B Moore. Optimal filtering. Courier Corporation, 2012.

Badri Narayan Bhaskar, Gongguo Tang, and Benjamin Recht. Atomic norm denoising with appli-
cations to line spectral estimation. IEEE Transactions on Signal Processing, 61(23):5987–5999,
2013.

Ross Boczar, Nikolai Matni, and Benjamin Recht. Finite-data performance guarantees for the
output-feedback control of an unknown system. arXiv preprint arXiv:1803.09186, 2018.

G. Box, G. Jenkins, and G. Reinsel. Time Series Analysis: Forecasting and Control. Prentice-Hall, 3
edition, 1994.

P. Brockwell and R. Davis. Time Series: Theory and Methods. Springer, 2 edition, 2009.

Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, and Stephen Tu. On the sample complexity
of the linear quadratic regulator. arXiv preprint arXiv:1710.01688, 2017.

J. Hamilton. Time Series Analysis. Princeton Univ. Press, 1994.

Moritz Hardt, Tengyu Ma, and Benjamin Recht. Gradient descent learns linear dynamical systems.
arXiv preprint arXiv:1609.05191, 2016.

P Jeff Harrison. Convergence and the constant dynamic linear model. Journal of Forecasting, 16(5):
287–292, 1997.

Thomas P Hayes. A large-deviation inequality for vector-valued martingales. Combinatorics,
Probability and Computing, 2005.

Elad Hazan, Karan Singh, and Cyril Zhang. Learning linear dynamical systems via spectral filtering.
In Advances in Neural Information Processing Systems, pages 1–2, 2017.

Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Spectral filtering for general
linear dynamical systems. arXiv preprint arXiv:1802.03981, 2018.

BL Ho and Rudolph E Kalman. Effective construction of linear state-variable models from in-
put/output functions. at-Automatisierungstechnik, 14(1-12):545–548, 1966.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82.1:35–45, 1960.

12

LEARNING AN AUTOREGRESSIVE FILTER

Edward W Kamen and Jonathan K Su. Introduction to optimal estimation. Springer Science &
Business Media, 1999.

Mark Kozdoba, Jakub Marecek, Tigran T. Tchrakian, and Shie Mannor. On-line learning of linear dy-
namical systems: Exponential forgetting in kalman filters. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 4098–4105, 2019.

Beatrice Laurent and Pascal Massart. Adaptive estimation of a quadratic functional by model
selection. Annals of Statistics, pages 1302–1338, 2000.

Lennart Ljung. System identification: Theory for the User. Prentice Hall, Upper Saddle River, NJ, 2
edition, 1998.

Samet Oymak and Necmiye Ozay. Non-asymptotic identification of lti systems from a single
trajectory. arXiv preprint arXiv:1806.05722, 2018.

Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian models. Neural
computation, 11(2):305–345, 1999.

Tuhin Subhra Sarkar and Alexander Rakhlin. Near optimal finite time identification of arbitrary
linear dynamical systems. In International Conference on Machine Learning, pages 5610–5618,
2019.

Max Simchowitz, Horia Mania, Stephen Tu, Michael I Jordan, and Benjamin Recht. Learning without
mixing: Towards a sharp analysis of linear system identification. arXiv preprint arXiv:1802.08334,
2018.

Max Simchowitz, Ross Boczar, and Benjamin Recht. Learning linear dynamical systems with
semi-parametric least squares. arXiv preprint arXiv:1902.00768, 2019.

Lloyd N Trefethen. Approximation theory and approximation practice, volume 128. Siam, 2013.

Anastasios Tsiamis and George J. Pappas. Finite sample analysis of stochastic system identification.
ArXiv, abs/1903.09122, 2019.

Stephen Tu, Ross Boczar, Andrew Packard, and Benjamin Recht. Non-asymptotic analysis of robust
control from coarse-grained identification. arXiv preprint arXiv:1707.04791, 2017.

Peter Van Overschee and BL De Moor. Subspace Identification for Linear Systems. Springer Science
& Business Media, 2012.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge University Press, 2018.

13

LEE ZHANG

Appendix A. Proof

A.1. Concentration

We first set up notation and make some preliminary observations. A table of notation is provided
in Section B. Let X(𝑗)

cos ∈ R𝑟×𝑇 be the matrix with columns 𝑥(𝑗,𝑘)cos (𝑡 − 1 : 𝑡 − 𝑟), 1 ≤ 𝑡 ≤ 𝑇 and

likewise define X
(𝑗)
sin,Y

(𝑗,𝑘)
cos ,Y

(𝑗,𝑘)
sin , so that 𝑀 (𝑗,𝑘)

* =

(︃
X

(𝑗,𝑘)
*

Y
(𝑗,𝑘)
*

)︃
for * ∈ {cos, sin}. Let Γ(∙) =

E𝜂(∙,𝑘)𝑀
(∙,𝑘)𝑀 (∙,𝑘)⊤, Γ

(𝑗)
*,𝑡 = E

𝜂
(𝑗,𝑘)
*

𝑀
(𝑗,𝑘)
*,𝑡 𝑀

(𝑗,𝑘)⊤
*,𝑡 , Γ

(𝑗)
𝑋,*,𝑡 = X

(𝑗)
*,𝑡X

(𝑗)⊤
*,𝑡 where * ∈ {cos, sin},

𝜂(∙,𝑘), 𝜂
(𝑗,𝑘)
* is the noise in the various rollouts. We will also write 𝜂 for the noise from a generic

rollout (so 𝜂(∙,𝑘), 𝜂(𝑗,𝑘)* are independent copies of 𝜂).
Let Γ(𝑗) = Γ

(𝑗)
cos,𝑡 + Γ

(𝑗)
sin,𝑡 and Γ

(𝑗)
𝑋 = Γ

(𝑗)
𝑋,cos,𝑡 + Γ

(𝑗)
𝑋,sin,𝑡. These matrices not depend on 𝑡,

which can be seen as follows. Consider the system response to 𝑥(𝑗)(𝑡) = 𝑒
2𝜋𝑖𝑗𝑡
𝑐𝑟 . (Although we

cannot put in complex values in the system, there is a well-defined response for complex inputs.)

Let 𝑀 (𝑗) be the matrix with columns 𝑀 (𝑗)
𝑡 =

(︂
𝑥(𝑗)(𝑡− 1 : 𝑡− 𝑟)

𝑦(𝑗)(𝑡− 1 : 𝑡− 𝑟)

)︂
, where the 𝑦(𝑗) is defined as

in (2.1) except with noise equal to 𝜂(𝑗)(𝑡) = 𝜂
(𝑗)
cos(𝑡) + 𝑖𝜂

(𝑗)
sin(𝑡), 𝜂(𝑗)cos(𝑡), 𝜂

(𝑗)
sin(𝑡) ∼ 𝑁(0, 𝜎2). Because

𝑀
(𝑗)
𝑡+𝑠 has the same distribution as 𝑒

2𝜋𝑖𝑠
𝑐𝑟 𝑀

(𝑗)
𝑡 , the expression E[𝑀

(𝑗)
𝑡 𝑀

(𝑗)†
𝑡 + 𝑀

(−𝑗)
𝑡 𝑀

(−𝑗)†
𝑡] does

not depend on 𝑡. Expanding, it equals 1
2E[(𝑀

(𝑗)
cos,𝑡 + 𝑖𝑀

(𝑗)
sin,𝑡)(𝑀

(𝑗)
cos,𝑡 − 𝑖𝑀

(𝑗)
sin,𝑡)

⊤ + (𝑀
(𝑗)
cos,𝑡 −

𝑖𝑀
(𝑗)
sin,𝑡)(𝑀

(𝑗)
cos,𝑡 + 𝑖𝑀

(𝑗)
sin,𝑡)

⊤] = Γ
(𝑗)
cos,𝑡 + Γ

(𝑗)
sin,𝑡. Similarly, Γ

(𝑗)
𝑋 is well-defined. Note that Γ

(𝑗)
𝑋 =

X
(𝑗)
cos,𝑡X

(𝑗)⊤
cos,𝑡 + X

(𝑗)
sin,𝑡X

(𝑗)⊤
sin,𝑡 has rank ≤ 2, as the columns of X

(𝑗)
cos,𝑡 and X

(𝑗)
sin,𝑡 are spanned by

𝑥(±𝑗)(𝑟 : 1).
Let 𝑦(𝑡) denote the expected value of 𝑦(𝑡) given 𝑦(𝑠), 𝑥(𝑠) for 𝑠 < 𝑡: 𝑦(𝑡 + 1) = 𝑔* * 𝑥(𝑡) +

ℎ* * 𝑦(𝑡). Let 𝑦(𝑡) denote the expected value of 𝑦(𝑡) given only the inputs 𝑥(𝑠) for 𝑠 < 𝑡.
We first compute the error ℎ𝐿𝑆−ℎ* and 𝑔

(𝑗)
𝐿𝑆− 𝑔*, and then the error in the mean response which

is given by
(︁
𝑥
(𝑗)
cos(𝑟 : 1)⊤ 𝑦

(𝑗)
cos(𝑟 : 1)⊤

)︁[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃
, and the analogous expression for sin.

This is broken up into subexpressions that we apply concentration bounds to.

Computing ℎ𝐿𝑆 − ℎ*. Let

𝑄(∙) =
𝑐ℓ𝑟∑︁
𝑘=1

𝑀 (∙,𝑘)𝑀 (∙,𝑘)⊤ =
𝑐ℓ𝑟∑︁
𝑘=1

𝑇∑︁
𝑡=1

𝑀
(∙,𝑘)
𝑡 𝑀

(∙,𝑘)⊤
𝑡 (A.1)

𝑄(𝑗) =
ℓ∑︁

𝑘=1

(𝑀 (𝑗,𝑘)
cos 𝑀 (𝑗,𝑘)⊤

cos + 𝑀
(𝑗,𝑘)
sin 𝑀

(𝑗,𝑘)⊤
sin) =

ℓ∑︁
𝑘=1

𝑇∑︁
𝑡=1

(𝑀
(𝑗,𝑘)
cos,𝑡𝑀

(𝑗,𝑘)⊤
cos,𝑡 + 𝑀

(𝑗,𝑘)
sin,𝑡 𝑀

(𝑗,𝑘)⊤
sin,𝑡).

(A.2)

We calculate the least squares solution ℎ𝐿𝑆 and the error ℎ𝐿𝑆−ℎ*, noting that 𝑦(∙,𝑘) = 𝑦(∙,𝑘)+𝜂(∙,𝑘).

ℎ𝐿𝑆 = 𝑄(∙)−1
𝑐ℓ𝑟∑︁
𝑘=1

𝑀 (∙,𝑘)𝑦(∙,𝑘) (A.3)

14

LEARNING AN AUTOREGRESSIVE FILTER

ℎ* = 𝑄(∙)−1
𝑐ℓ𝑟∑︁
𝑘=1

𝑀 (∙,𝑘)𝑦(∙,𝑘) (A.4)

ℎ𝐿𝑆 − ℎ* = 𝑄(∙)−1
𝑐ℓ𝑟∑︁
𝑘=1

𝑀 (∙,𝑘)𝜂(∙,𝑘) (A.5)

= Γ(∙)− 1
2 (Γ(∙)− 1

2𝑄(∙)Γ(∙)− 1
2)−1⏟ ⏞

(0∙)

Γ(∙)− 1
2

𝑐ℓ𝑟∑︁
𝑘=1

𝑀 (∙,𝑘)𝜂(∙,𝑘)⏟ ⏞
(1∙)

(A.6)

Computing 𝑔
(𝑗)
𝐿𝑆 . The least squares solution 𝑔

(𝑗)
𝐿𝑆 is

𝑔
(𝑗)
𝐿𝑆 =

1

ℓ𝑇
Γ
(𝑗)+
𝑋

[︃
ℓ∑︁

𝑘=1

[X(𝑗)
cos(𝑦

(𝑗,𝑘)
cos −Y(𝑗,𝑘)

cos ℎ𝐿𝑆) + X
(𝑗)
sin(𝑦

(𝑗,𝑘)
sin −Y

(𝑗,𝑘)
sin ℎ𝐿𝑆)]

]︃
. (A.7)

Noting that 𝑦(𝑗,𝑘)cos = Y
(𝑗,𝑘)⊤
cos ℎ* + X

(𝑗)⊤
cos 𝑔*, we calculate

𝑦(𝑗,𝑘)cos −Y(𝑗,𝑘)
cos ℎ𝐿𝑆 = 𝜂(𝑗,𝑘)cos + 𝑦(𝑗,𝑘)cos −Y(𝑗,𝑘)⊤

cos ℎ* −Y(𝑗,𝑘)⊤
cos (ℎ𝐿𝑆 − ℎ*) (A.8)

= 𝜂(𝑗,𝑘)cos + X(𝑗)⊤
cos 𝑔* −Y(𝑗,𝑘)⊤

cos (ℎ𝐿𝑆 − ℎ*). (A.9)

The analogous equation for sin holds. Substituting (A.9) into (A.7), letting 𝑃
(𝑗)
𝑋 be the projection

onto the column space of Γ
(𝑗)
𝑋 , and noting 1

ℓ𝑇 Γ(𝑗)+
∑︀ℓ

𝑘=1(X
(𝑗)
cosX

(𝑗)⊤
cos + X

(𝑗)
sinX

(𝑗)⊤
sin)𝑔* = 𝑃

(𝑗)
𝑋 𝑔*,

we get

𝑔
(𝑗)
𝐿𝑆 = 𝑃

(𝑗)
𝑋 𝑔* +

1

ℓ𝑇
Γ
(𝑗)+
𝑋

[︃
𝑐𝑟∑︁
𝑘=1

[X(𝑗)
cos(𝜂

(𝑗,𝑘)
cos −Y(𝑗,𝑘)⊤

cos (ℎ𝐿𝑆 − ℎ*)) + X
(𝑗)
sin(𝜂

(𝑗,𝑘)
sin −Y

(𝑗,𝑘)⊤
sin (ℎ𝐿𝑆 − ℎ*))]

]︃
(A.10)

Computing

(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂
(projected). We now calculate the error in

(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
, projected with

𝑃
(𝑗)
𝑋 . The projection is because we do not care about the absolute error (which can be large), we only

care about the mean error on the inputs 𝑥(𝑗)cos and 𝑥
(𝑗)
sin, which are in the column space of Γ

(𝑗)
𝑋 .(︃

𝑃
(𝑗)
𝑋 𝑂
𝑂 𝐼𝑟

)︃[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃
(A.11)

=

(︃
1
ℓ𝑇 Γ

(𝑗)+
𝑋

∑︀ℓ
𝑘=1[X

(𝑗)
cos(𝜂

(𝑗,𝑘)
cos −Y

(𝑗,𝑘)⊤
cos (ℎ𝐿𝑆 − ℎ*)) + X

(𝑗)
sin(𝜂

(𝑗,𝑘)
sin −Y

(𝑗,𝑘)⊤
sin (ℎ𝐿𝑆 − ℎ*))]

ℎ𝐿𝑆 − ℎ*

)︃
.

(A.12)

Let Y(𝑗)
cos be the matrix with the mean responses to 𝑥

(𝑗)
cos, Y

(𝑗)
cos,𝑡 = 𝑦

(𝑗)
cos(𝑡− 1 : 𝑡− 𝑟), and likewise

for sin.

15

LEE ZHANG

Computing
(︁
𝑥
(𝑗)
cos(𝑟 : 1)⊤ 𝑦

(𝑗)
cos(𝑟 : 1)⊤

)︁[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃
. Write 𝑦

(𝑗,𝑘)
cos = 𝑦

(𝑗)
cos + 𝜁

(𝑗,𝑘)
cos and

Y
(𝑗,𝑘)
cos = Y

(𝑗)

cos +Z
(𝑗,𝑘)
cos , where 𝜁(𝑗,𝑘)cos is the noise term and Z

(𝑗,𝑘)
cos has 𝜁(𝑗,𝑘)(𝑡− 1 : 𝑡− 𝑟) as columns.

(Note that 𝜂(𝑗,𝑘)cos only includes the new noise at each time step, while 𝜁
(𝑗,𝑘)
cos is the accummulated

noise; 𝑦(𝑗) is the expected value given the previous observations, and 𝑦
(𝑗) is the mean given only the

inputs.) Then by (A.12), because 𝑃
(𝑗)
𝑋 𝑥

(𝑗)
cos(𝑟 : 1) = 𝑥

(𝑗)
cos(𝑟 : 1),

(︁
𝑥(𝑗)cos(𝑟 : 1)⊤ 𝑦

(𝑗)
cos(𝑟 : 1)⊤

)︁[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃
(A.13)

= 𝑥(𝑗)cos(𝑟 : 1)⊤
1

ℓ𝑇
Γ
(𝑗)+
𝑋

[︃
ℓ∑︁

𝑘=1

X(𝑗,𝑘)
cos 𝜂(𝑗,𝑘)cos + X

(𝑗)
sin𝜂

(𝑗,𝑘)
sin

]︃
(A.14)

+

[︃
𝑥(𝑗)cos(𝑟 : 1)⊤

1

ℓ𝑇
Γ
(𝑗)+
𝑋

[︃
−

ℓ∑︁
𝑘=1

(X(𝑗)
cosY

(𝑗,𝑘)⊤
cos + X

(𝑗)
sinY

(𝑗,𝑘)⊤
sin)

]︃
+ 𝑦

(𝑗)
cos(𝑟 : 1)⊤

]︃
(ℎ𝐿𝑆 − ℎ*)

(A.15)

= 𝑥(𝑗)cos(𝑟 : 1)⊤
1

ℓ𝑇
Γ
(𝑗)+
𝑋

[︃
ℓ∑︁

𝑘=1

X(𝑗,𝑘)
cos 𝜂(𝑗,𝑘)cos + X

(𝑗)
sin𝜂

(𝑗,𝑘)
sin

]︃
(A.16)

+

[︃
𝑥(𝑗)cos(𝑟 : 1)⊤

1

ℓ𝑇
Γ
(𝑗)+
𝑋

[︃
−

ℓ∑︁
𝑘=1

(X(𝑗)
cosZ

(𝑗,𝑘)⊤
cos + X

(𝑗)
sinZ

(𝑗,𝑘)⊤
sin)

]︃]︃
(ℎ𝐿𝑆 − ℎ*) (A.17)

(see explanation below)

=
1

ℓ𝑇
𝑥(𝑗)cos(𝑟 : 1)⊤Γ

(𝑗)+ 1
2

𝑋

[︃
Γ
(𝑗)+ 1

2
𝑋

ℓ∑︁
𝑘=1

(X(𝑗)
cos𝜂

(𝑗,𝑘)
cos + X

(𝑗)
sin𝜂

(𝑗,𝑘)
sin)⏟ ⏞

(1)

(A.18)

+ Γ
(𝑗)+ 1

2
𝑋

ℓ∑︁
𝑘=1

(X(𝑗)
cosZ

(𝑗,𝑘)
cos + X

(𝑗)
sinZ

(𝑗,𝑘)
sin)(ℎ𝐿𝑆 − ℎ*)⏟ ⏞

(2)

]︃
(A.19)

In (A.17) we used that 𝑥(𝑗)cos(𝑟 : 1)⊤Γ
(𝑗)+
𝑋

[︂
−
∑︀ℓ

𝑘=1(X
(𝑗)
cosY

(𝑗)

cos + X
(𝑗)
sinY

(𝑗)

sin)

]︂
+ 𝑦

(𝑗)
cos(𝑟 : 1)⊤ = 0.

To see this, let 𝐴 be the matrix sending 𝑥
(𝑗)
* (𝑡− 1 : 𝑡− 𝑟) ↦→ 𝑦

(𝑗)
* (𝑡− 1 : 𝑡− 𝑟) for * ∈ {cos, sin}.

Then this equals 𝑥
(𝑗)
cos(𝑟 : 1)⊤Γ

(𝑗)+
𝑋

[︁
−
∑︀ℓ

𝑘=1

∑︀𝑇
𝑡=1(X

(𝑗)
cos,𝑡X

(𝑗)⊤
cos,𝑡 + X

(𝑗)
sin,𝑡X

(𝑗)⊤
sin,𝑡)𝐴⊤

]︁
+ 𝑥

(𝑗)
cos(𝑟 :

1)⊤𝐴⊤ = 0.

Computing

⃦⃦⃦⃦
⃦Γ(𝑗) 1

2

[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃⃦⃦⃦⃦
⃦.

⃦⃦⃦⃦
⃦Γ(𝑗) 1

2

[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃⃦⃦⃦⃦
⃦ (A.20)

16

LEARNING AN AUTOREGRESSIVE FILTER

=

⃦⃦⃦⃦
⃦⃦
⎛⎝Γ

(𝑗) 1
2

cos,𝑟+1

Γ
(𝑗) 1

2
sin,𝑟+1

⎞⎠[︃(︃𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃⃦⃦⃦⃦⃦⃦ (A.21)

because Γ(𝑗) = Γ
(𝑗)
cos,𝑡 + Γ

(𝑗)
sin,𝑡 for any 𝑡 (A.22)

=

⎯⎸⎸⎸⎷ ∑︁
*∈{cos,sin}

⃦⃦⃦⃦
⃦Γ

(𝑗) 1
2

*,𝑟+1

[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃⃦⃦⃦⃦
⃦
2

(A.23)

=

⎯⎸⎸⎸⎷ ∑︁
*∈{cos,sin}

[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃⊤
E
𝜂
(𝑗)
*

(︃
𝑥
(𝑗)
* (𝑟 : 1)

𝑦
(𝑗)
* (𝑟 : 1)

)︃(︁
𝑥
(𝑗)
* (𝑟 : 1)⊤ 𝑦

(𝑗)
* (𝑟 : 1)⊤

)︁[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃
(A.24)

Because 𝜁
(𝑗)
* (𝑟 : 1) has mean 0,

E
𝜂
(𝑗)
*

(︃
𝑥
(𝑗)
* (𝑟 : 1)

𝑦
(𝑗)
* (𝑟 : 1)

)︃(︁
𝑥
(𝑗)
* (𝑟 : 1)⊤ 𝑦

(𝑗)
* (𝑟 : 1)⊤

)︁
(A.25)

= E
𝜂
(𝑗)
*

[︃(︃
𝑥
(𝑗)
* (𝑟 : 1)

𝑦
(𝑗)
* (𝑟 : 1)

)︃(︁
𝑥
(𝑗)
* (𝑟 : 1)⊤ 𝑦

(𝑗)
* (𝑟 : 1)⊤

)︁
+

(︃
0

𝜁
(𝑗)
* (𝑟 : 1)

)︃(︁
0 𝜁

(𝑗)
* (𝑟 : 1)⊤

)︁]︃
(A.26)

Hence,⃦⃦⃦⃦
⃦Γ(𝑗) 1

2

[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃⃦⃦⃦⃦
⃦ (A.27)

=

⎯⎸⎸⎸⎷ ∑︁
*∈{cos,sin}

⃦⃦⃦⃦
⃦(︁𝑥(𝑗)* (𝑟 : 1)⊤ 𝑦

(𝑗)
* (𝑟 : 1)⊤

)︁[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃⃦⃦⃦⃦
⃦
2

+ E
𝜂
(𝑗)
*

⃦⃦⃦
𝜁
(𝑗)
* (𝑟 : 1)⊤(ℎ𝐿𝑆 − ℎ*)

⃦⃦⃦2
.

(A.28)

Prospectus. In Section A.1.1, we lower bound (0∙) in (A.6), and in Section A.1.2 we upper bound
(1∙) in (A.6) and (1) in (A.18). In Section A.1.3 we bound (2) in (A.19) and put the bounds together
to obtain (for some 𝐶7),⃦⃦⃦⃦

⃦Γ(𝑗) 1
2

[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃⃦⃦⃦⃦
⃦ ≤ 𝐶7√

ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂2

(A.29)

A.1.1. MATRIX CONCENTRATION

Lemma A.1 (Concentration of sample covariance) There are universal constants 𝐶1, 𝐶2 such
that the following hold. Let 𝑣𝑡 ∼ 𝑁(0,Σ) be iid, and let Σ𝑚 = 1

𝑚

∑︀𝑚
𝑡=1 𝑣𝑡𝑣

⊤
𝑡 ∈ R𝑚×𝑚. Then for

𝜀 = 𝐶1

(︁√︁
𝑟+𝑢
𝑚 + 𝑟+𝑢

𝑚

)︁
,

P
(︁

(1− 𝜀)Σ
1
2 ⪯ Σ𝑚 ⪯ (1 + 𝜀)Σ

1
2

)︁
≥ 1− 2𝑒−𝑢. (A.30)

17

LEE ZHANG

Moreover, when 𝜀 ≤ 1 and 𝑚 ≥
(︀
𝐶2
𝜀

)︀2 (︀
𝑟 + ln

(︀
2
𝛿

)︀)︀
, then

P
(︁

(1− 𝜀)Σ
1
2 ⪯ Σ𝑚 ⪯ (1 + 𝜀)Σ

1
2

)︁
≥ 1− 𝛿. (A.31)

Proof The first part follows from (Vershynin, 2018, 4.7.3) on Σ+ 1
2 𝑣𝑡 ∼ 𝑁(0, 𝑃) where 𝑃 is the

projection onto the column space of Σ. (𝐴+ denotes the pseudoinverse of 𝐴.)
To get the second part from the first part, note that when 𝑚 ≥ 𝑟 + ln

(︀
2
𝛿

)︀
, we can bound

𝜀1 := 𝐶1

(︂√︁
𝑟+ln(2

𝛿)
𝑚 +

𝑟+ln(2
𝛿)

𝑚

)︂
≤ 𝐶2

√︁
𝑟+ln(2

𝛿)
𝑚 for 𝐶2 = 2𝐶1. This is ≤ 𝜀 under the condition

on 𝑚. Hence

P
(︁

(1− 𝜀)Σ
1
2 ⪯ Σ𝑚 ⪯ (1 + 𝜀)Σ

1
2

)︁
≥ P

(︁
(1− 𝜀1)Σ

1
2 ⪯ Σ𝑚 ⪯ (1 + 𝜀1)Σ

1
2

)︁
≥ 1− 𝛿. (A.32)

Lemma A.2 (Bounding (0∙) in (A.6), etc.) For ℓ ≥
(︀
𝐶2
𝜀

)︀2 (︀
𝑟 + ln

(︀
2
𝛿

)︀)︀
,

P

(︃
(1− 𝜀)𝑐ℓ𝑟Γ(∙) ⪯

𝑐ℓ𝑟∑︁
𝑘=1

𝑀
(∙,𝑘)
𝑡 𝑀

(∙,𝑘)⊤
𝑡 ⪯ (1 + 𝜀)𝑐ℓ𝑟Γ(∙)

)︃
≥ 1− 𝛿

(A.33)

P

(︃
(1− 𝜀)ℓΓ

(𝑗)
cos,𝑡 ⪯

ℓ∑︁
𝑘=1

𝑀
(𝑗,𝑘)
cos,𝑡𝑀

(𝑗,𝑘)⊤
cos,𝑡 ⪯ (1 + 𝜀)ℓΓ

(𝑗)
cos,𝑡

)︃
≥ 1− 𝛿

(A.34)

P

(︃
(1− 𝜀)ℓΓ

(𝑗)
sin,𝑡 ⪯

ℓ∑︁
𝑘=1

𝑀
(𝑗,𝑘)
sin,𝑡 𝑀

(𝑗,𝑘)⊤
sin,𝑡 ⪯ (1 + 𝜀)ℓΓ

(𝑗)
sin,𝑡

)︃
≥ 1− 𝛿

(A.35)

P

(︃
(1− 𝜀)𝑐ℓ𝑇𝑟Γ(∙) ⪯

𝑇∑︁
𝑡=1

𝑐ℓ𝑟∑︁
𝑘=1

𝑀
(∙,𝑘)
𝑡 𝑀

(∙,𝑘)⊤
𝑡⏟ ⏞

𝑄(∙)

⪯ (1 + 𝜀)𝑐ℓ𝑟Γ(∙)

)︃
≥ 1− 𝑇𝛿

(A.36)

P

(︃
(1− 𝜀)ℓ𝑇Γ(𝑗) ⪯

𝑇∑︁
𝑡=1

ℓ∑︁
𝑘=1

[︁
𝑀

(𝑗,𝑘)
cos,𝑡𝑀

(𝑗,𝑘)⊤
cos,𝑡 + 𝑀

(𝑗,𝑘)
sin,𝑡 𝑀

(𝑗,𝑘)⊤
sin,𝑡

]︁
⏟ ⏞

𝑄(𝑗)

⪯ (1 + 𝜀)ℓ𝑇Γ(𝑗)

)︃
≥ 1− 2𝑇𝛿.

(A.37)

Proof The first three inequalities follow from applying Lemma A.1 to 𝑀
(∙,𝑘)
𝑡 ∼ 𝑁(0,Γ(∙)),

𝑀
(𝑗,𝑘)
cos,𝑡 ∼ 𝑁(0,Γ

(𝑗)
cos,𝑡) and 𝑀

(𝑗,𝑘)
sin,𝑡 ∼ 𝑁(0,Γ

(𝑗)
sin,𝑡). The last two inequalities follow from a union

18

LEARNING AN AUTOREGRESSIVE FILTER

bound.

Note that we used independence between rollouts to obtain concentration, and union-bound within
the rollouts.

A.1.2. VECTOR CONCENTRATION

We use the following two lemmas.

Lemma A.3 (𝜒2
𝑑-tail bound, Laurent and Massart (2000)) For 𝑡 ≥ 0,

P𝑥∼𝑁(0,𝐼𝑑)

(︁
‖𝑥‖2 ≥ (𝑑 + 2(

√
𝑑𝑡 + 𝑡))

)︁
≤ 𝑒−𝑡 (A.38)

Thus letting 𝐶(𝑑, 𝛿) :=
(︁
𝑑 + 2

(︁√︁
𝑑 ln

(︀
1
𝛿

)︀
+ ln

(︀
1
𝛿

)︀)︁)︁ 1
2
, P𝑥∼𝑁(0,𝐼𝑑)(‖𝑥‖ ≥ 𝐶(𝑑, 𝛿)) ≤ 𝛿.

Note that 𝐶(𝑑, 𝛿) = 𝑂
(︁√

𝑑 +
√︁

ln
(︀
1
𝛿

)︀)︁
.

Lemma A.4 (Azuma’s inequality for vectors, Hayes (2005)) Let 𝑋𝑡, 𝑡 ≥ 0 be a discrete-time
martingale taking values in a real Euclidean space. Suppose that 𝑋0 = 0 and for all 𝑛 ≥ 1,
‖𝑋𝑛 −𝑋𝑛−1‖ ≤ 𝑐. Then

P(‖𝑋𝑛‖ ≥ 𝑎) ≤ 2𝑒1−
(𝑎𝑐 −1)2

2𝑛 . (A.39)

Lemma A.5 (Bounding (1∙), (1) in (A.6) and (A.18)) The following hold:

P

(︃⃦⃦⃦⃦
⃦

𝑐ℓ𝑟∑︁
𝑘=1

Γ(∙)− 1
2𝑀 (∙,𝑘)𝜂(∙,𝑘)

⃦⃦⃦⃦
⃦ ≥ 3𝐶

(︂
𝑟,

𝛿

4𝑐ℓ𝑟𝑇

)︂
𝐶

(︂
1,

𝛿

4𝑐ℓ𝑟𝑇

)︂√︃
𝑐ℓ𝑟𝑇 ln

(︂
4

𝛿

)︂)︃
≤ 𝛿 (A.40)

P

(︃⃦⃦⃦⃦
⃦

ℓ∑︁
𝑘=1

Γ
(𝑗)+ 1

2
𝑋 [X(𝑗)

cos𝜂
(𝑗,𝑘)
cos + X

(𝑗)
sin,𝑡𝜂

(𝑗,𝑘)
sin]

⃦⃦⃦⃦
⃦ ≥ 3𝐶

(︂
1,

𝛿

4ℓ𝑇

)︂√︃
2ℓ𝑇 ln

(︂
4

𝛿

)︂)︃
≤ 𝛿. (A.41)

Proof Consider the 𝑐ℓ𝑟𝑇 partial sums of
∑︀𝑐ℓ𝑟

𝑘=1

∑︀𝑇
𝑡=1 1[(𝐴𝑡,𝑘 ∪ 𝐵∙,𝑡,𝑘)𝑐]Γ(∙)− 1

2𝑀
(∙,𝑘)
𝑡 𝜂(∙,𝑘)(𝑡)

where the events are defined as

𝐴∙,𝑡,𝑘 =

{︂⃦⃦⃦
𝜂(∙,𝑘)(𝑡)

⃦⃦⃦
> 𝐶

(︂
1,

𝛿

4𝑐ℓ𝑟𝑇

)︂}︂
(A.42)

𝐵∙,𝑡,𝑘 =

{︂⃦⃦⃦
Γ(∙)− 1

2𝑀
(∙,𝑘)
𝑡

⃦⃦⃦
> 𝐶

(︂
𝑟,

𝛿

4𝑐ℓ𝑟𝑇

)︂}︂
. (A.43)

Note this is a martingale as 𝑀 (∙,𝑘)
𝑡 is determined by 𝜂(∙,𝑘)(𝑠) for 𝑠 < 𝑡, so Lemma A.4 applies. Note

that Γ(∙)− 1
2𝑀

(∙,𝑘)
𝑡 ∼ 𝑁(0, 𝐼𝑟). We have by Lemma A.3 that for 𝑎 = 3𝐶

(︀
𝑟, 𝛿

4𝑐ℓ𝑟𝑇

)︀
𝐶
(︀
1, 𝛿

4𝑐ℓ𝑟𝑇

)︀√︁
𝑐ℓ𝑟𝑇 ln

(︀
4
𝛿

)︀
,

19

LEE ZHANG

P(𝐴∙,𝑡,𝑘),P(𝐵∙,𝑡,𝑘) ≤ 𝛿
4𝑐ℓ𝑟𝑇 . Hence

P

(︃⃦⃦⃦⃦
⃦

𝑐ℓ𝑟∑︁
𝑘=1

[︁
Γ(∙)− 1

2𝑀 (∙,𝑘)𝜂(∙,𝑘)
]︁⃦⃦⃦⃦⃦ ≥ 𝑎

)︃
(A.44)

≤
𝑐ℓ𝑟∑︁
𝑘=1

𝑇∑︁
𝑡=1

[P(𝐴∙,𝑡,𝑘) + P(𝐵∙,𝑡,𝑘)] + P

(︃⃦⃦⃦⃦
⃦

𝑐ℓ𝑟∑︁
𝑘=1

𝑇∑︁
𝑡=1

[︁
1[(𝐴∙,𝑡,𝑘 ∪𝐵∙,𝑡,𝑘)𝑐]Γ(∙)+ 1

2𝑀
(∙,𝑘)
𝑡 𝜂(∙,𝑘)(𝑡)

]︁⃦⃦⃦⃦⃦ ≥ 𝑎

)︃
(A.45)

≤ 2𝑐ℓ𝑟𝑇
𝛿

4𝑐ℓ𝑟𝑇
+

𝛿

2
= 𝛿 (A.46)

where in the last inequality, we use Lemma A.5 and note that the definition of 𝑎 implies because the
following implications hold:

𝑎 ≥ 𝐶

(︂
𝑟,

𝛿

4𝑐ℓ𝑟𝑇

)︂
𝐶

(︂
1,

𝛿

4𝑐ℓ𝑟𝑇

)︂(︃
1 +

√︃
2𝑐ℓ𝑟𝑇

(︂
1 + ln

(︂
4

𝛿

)︂)︂)︃
(A.47)

𝛿

2
≥ 2𝑒1−

⎛⎝ 𝑎

𝐶(𝑟, 𝛿
4𝑐ℓ𝑟𝑇)𝐶(1, 𝛿

4𝑐ℓ𝑟𝑇)
−1

⎞⎠2

2𝑐ℓ𝑟𝑇 . (A.48)

Similarly, consider the 2ℓ𝑇 partial sums of
∑︀ℓ

𝑘=1

∑︀𝑇
𝑡=1

∑︀
*∈{cos,sin} 1

[︁
𝐴𝑐

*,𝑡,𝑘

]︁
Γ
(𝑗)+ 1

2
𝑋 X

(𝑗)
*,𝑡𝜂

(𝑗,𝑘)
* (𝑡)

where 𝐴*,𝑡,𝑘 =
{︀⃦⃦

𝜂(∙,𝑘)(𝑡)
⃦⃦
> 𝐶(1, 𝛿

4𝑟𝑇)
}︀

. By Lemma A.4 and Lemma A.3, for 𝑎 = 3𝐶
(︀
1, 𝛿

4ℓ𝑇

)︀√︁
2ℓ𝑇 ln

(︀
4
𝛿

)︀
,

P

⎛⎝⃦⃦⃦⃦⃦⃦ ℓ∑︁
𝑘=1

𝑇∑︁
𝑡=1

∑︁
*∈{cos,sin}

[︂
Γ
(𝑗)+ 1

2
𝑋 X

(𝑗,𝑘)
*,𝑡 𝜂

(𝑗,𝑘)
* (𝑡)

]︂⃦⃦⃦⃦⃦⃦ ≥ 𝑎

⎞⎠ (A.49)

≤
ℓ∑︁

𝑘=1

𝑇∑︁
𝑡=1

P(𝐴*,𝑡,𝑘) +
ℓ∑︁

𝑘=1

𝑇∑︁
𝑡=1

∑︁
*∈{cos,sin}

1
[︀
𝐴𝑐

*,𝑡,𝑘
]︀

Γ
(𝑗)+ 1

2
𝑋 X

(𝑗)
*,𝑡𝜂

(𝑗,𝑘)
* (𝑡) (A.50)

≤ 2ℓ𝑇

(︂
𝛿

4ℓ𝑇

)︂
+

𝛿

2
= 𝛿. (A.51)

A.1.3. PUTTING IT TOGETHER

Recall we are trying to bound
(︁
𝑥
(𝑗)
cos(𝑟 : 1)⊤ 𝑦

(𝑗)
cos(𝑟 : 1)⊤

)︁[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃
by bounding (A.18)–

(A.19). There are constants 𝐶3, 𝐶4, . . . so that the following hold.

Bounding (1) in (A.18). By (A.41) in Lemma A.5,

P

(︃⃦⃦⃦⃦
⃦

ℓ∑︁
𝑘=1

Γ
(𝑗)+ 1

2
𝑋 [X(𝑗)

cos𝜂
(𝑗,𝑘)
cos + X

(𝑗)
sin,𝑡𝜂

(𝑗,𝑘)
sin]

⃦⃦⃦⃦
⃦ ≥ 3𝐶

(︂
1,

𝛿

4ℓ𝑇

)︂√︃
2ℓ𝑇 ln

(︂
4

𝛿

)︂)︃
≤ 𝛿. (A.52)

20

LEARNING AN AUTOREGRESSIVE FILTER

Bounding (2) in (A.19). By Lemma A.2 with 𝛿 ←[𝛿
𝑇 and 𝜀 ← [1

2 and Lemma A.5, for ℓ ≥
4𝐶2

2

(︀
𝑟 + ln

(︀
2𝑇
𝛿

)︀)︀
, with probability 1− 2𝛿,⃦⃦⃦

Γ(∙) 1
2 (ℎ𝐿𝑆 − ℎ*)

⃦⃦⃦
≤
⃦⃦⃦

(Γ(∙)− 1
2𝑄(∙)Γ(∙)− 1

2)−1
⃦⃦⃦ ⃦⃦⃦⃦⃦Γ(∙)− 1

2

𝑐ℓ𝑟∑︁
𝑘=1

𝑀 (∙,𝑘)𝜂(∙,𝑘)

⃦⃦⃦⃦
⃦ by (A.6)

(A.53)

≤ 2

𝑐ℓ𝑟𝑇
· 3𝐶

(︂
𝑟,

𝛿

4𝑐ℓ𝑟𝑇

)︂
𝐶

(︂
1,

𝛿

4𝑐ℓ𝑟𝑇

)︂√︃
𝑐ℓ𝑟𝑇 ln

(︂
4

𝛿

)︂
(A.54)

≤ 𝐶3√
𝑐ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂ 3
2

(A.55)

Note that 𝜁(𝑗,𝑘)* is distributed the same as 𝑦(∙,𝑘). Hence
∑︀ℓ

𝑘=1 Γ(∙)− 1
2 𝜁

(𝑗,𝑘)
cos (𝑡−1 : 𝑡−𝑟) ∼ 𝑁(0, ℓ𝐼𝑑),

so by Lemma A.3, for each 𝑡,

P

(︃⃦⃦⃦⃦
⃦

ℓ∑︁
𝑘=1

Γ(∙)− 1
2 𝜁(𝑗,𝑘)cos (𝑡− 1 : 𝑡− 𝑟)

⃦⃦⃦⃦
⃦ ≥ √ℓ𝐶

(︂
𝑟,

𝛿

2𝑇

)︂)︃
≤ 𝛿

2𝑇
(A.56)

and similarly for sin. Thus,

P

(︃⃦⃦⃦⃦
⃦

ℓ∑︁
𝑘=1

(︃
Z
(𝑗,𝑘)⊤
cos

Z
(𝑗,𝑘)⊤
sin

)︃
Γ(∙)− 1

2

⃦⃦⃦⃦
⃦ ≥ √2𝑇ℓ𝐶

(︂
𝑟,

𝛿

2𝑇

)︂)︃
≤ 𝛿 (A.57)

Thus with probability ≥ 1− 3𝛿,⃦⃦⃦⃦
⃦

ℓ∑︁
𝑘=1

(︃
Z
(𝑗,𝑘)⊤
cos

Z
(𝑗,𝑘)⊤
sin

)︃
(ℎ𝐿𝑆 − ℎ*)

⃦⃦⃦⃦
⃦ =

⃦⃦⃦⃦
⃦

ℓ∑︁
𝑘=1

(︃
Z
(𝑗,𝑘)⊤
cos

Z
(𝑗,𝑘)⊤
sin

)︃
Γ(∙)− 1

2

⃦⃦⃦⃦
⃦ ⃦⃦⃦Γ(∙) 1

2 (ℎ𝐿𝑆 − ℎ*)
⃦⃦⃦

(A.58)

≤
√

2𝑇ℓ𝐶

(︂
𝑟,

𝛿

2𝑇

)︂
𝐶3√
𝑐ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂ 3
2

(A.59)

≤ 𝐶4

√︂
𝑟

𝑐

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂2

. (A.60)

For Σ ⪰ 0, 𝑣⊤(𝑣𝑣⊤ + Σ)+𝑣 ≤ 15, so each column of Γ(𝑗)+ 1
2 (X

(𝑗)
cos X

(𝑗)
sin) has norm ≤ 1. Then,⃦⃦⃦⃦

⃦Γ
(𝑗)+ 1

2
𝑋 (X(𝑗)

cos X
(𝑗)
sin)

ℓ∑︁
𝑘=1

(︃
Z
(𝑗,𝑘)⊤
cos

Z
(𝑗,𝑘)⊤
sin

)︃
(ℎ𝐿𝑆 − ℎ*)

⃦⃦⃦⃦
⃦ ≤ 𝐶4

√
2𝑇𝑟

(︀
ln
(︀
𝑐ℓ𝑟𝑇
𝛿

)︀)︀2
√
𝑐

. (A.61)

Bounding
(︁
𝑥
(𝑗)
cos(𝑟 : 1)⊤ 𝑦

(𝑗)
cos(𝑟 : 1)⊤

)︁[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃
. Combining (A.52) and (A.61), with

probability 1− 4𝛿,

1

ℓ𝑇
[(1) + (2)] ≤ 𝐶5

(︂
1

ℓ𝑇

)︂(︃√
ℓ𝑇 ln

(︂
ℓ𝑇

𝛿

)︂
+

√︂
𝑇𝑟

𝑐

(︂
ln

(︂
ℓ𝑟𝑇

𝛿

)︂)︂2
)︃
≤ 𝐶6√

ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂2

(A.62)

5. By the Sherman-Morrison formula, 𝑣⊤(𝑣𝑣⊤ +Σ)−1𝑣 = 𝑣⊤Σ−1𝑣 − (𝑣⊤Σ−1𝑣)2

1+𝑣⊤Σ−1𝑣
≤ 𝑣⊤Σ−1𝑣.

21

LEE ZHANG

because ℓ ≥ 𝑟
𝑐 . Thus by (A.18)–(A.19),⃦⃦⃦⃦

⃦(︁𝑥(𝑗)cos(𝑟 : 1)⊤ 𝑦
(𝑗)
cos(𝑟 : 1)⊤

)︁[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃⃦⃦⃦⃦
⃦ ≤ ⃦⃦⃦𝑥(𝑗)cos(𝑟 : 1)⊤Γ(𝑗)+ 1

2

⃦⃦⃦ 𝐶6√
ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂2

(A.63)

≤ 𝐶6√
ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂2

(A.64)

The analogous bound holds for sin.

Bounding

⃦⃦⃦⃦
⃦Γ(𝑗) 1

2

[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃⃦⃦⃦⃦
⃦. First, note that 𝜁(𝑗)* (𝑟 : 1) ∼ 𝑁(0,Γ(∙)) so

E
𝜂
(𝑗)
*

⃦⃦⃦
𝜁
(𝑗)
* (𝑟 : 1)⊤(ℎ𝐿𝑆 − ℎ*)

⃦⃦⃦2
≤
⃦⃦⃦
Γ(∙) 1

2 (ℎ𝐿𝑆 − ℎ*)
⃦⃦⃦2

(A.65)

≤ 𝐶3√
𝑐ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂ 3
2

(A.66)

provided that (A.55) holds. Now replace 𝛿 ←[𝛿8 . By (A.28), (A.64), and (A.66), with probability
1− 𝛿, ⃦⃦⃦⃦

⃦Γ(𝑗) 1
2

[︃(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃
−
(︂
𝑔*

ℎ*

)︂]︃⃦⃦⃦⃦
⃦ ≤ 𝐶7√

ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂2

. (A.67)

A.2. Generalization

We now compute the performance of 𝑔*, ℎ* on the minimax problem. Let

𝐿(∙)(ℎ) =
1

𝑟

𝑐ℓ𝑟∑︁
𝑘=1

⃦⃦⃦
𝑀 (∙,𝑘)⊤(ℎ− ℎ𝐿𝑆)

⃦⃦⃦2
(A.68)

𝐿(𝑗)(𝑔, ℎ) =

ℓ∑︁
𝑘=1

[︃⃦⃦⃦⃦
𝑀 (𝑗,𝑘)⊤

cos

(︂
𝑔
ℎ

)︂
− 𝑦(𝑗,𝑘)cos

⃦⃦⃦⃦2
+

⃦⃦⃦⃦
𝑀

(𝑗,𝑘)⊤
sin

(︂
𝑔
ℎ

)︂
− 𝑦

(𝑗,𝑘)
sin

⃦⃦⃦⃦2]︃
. (A.69)

Note that

𝐿(∙)(ℎ)− 𝐿(∙)(ℎ𝐿𝑆) =
1

𝑟
(ℎ− ℎ𝐿𝑆)⊤𝑄(∙)(ℎ− ℎ𝐿𝑆) (A.70)

𝐿(𝑗)(𝑔, ℎ)− 𝐿(𝑗)(𝑔𝐿𝑆 , ℎ𝐿𝑆) =

[︃(︂
𝑔
ℎ

)︂
−

(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃]︃⊤
𝑄(𝑗)

[︃(︂
𝑔
ℎ

)︂
−

(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃]︃
. (A.71)

We have that with probability ≥ 1− 𝛿, by (A.33) in Lemma A.2 and (A.55),

𝐿(∙)(ℎ*)− 𝐿(𝑗)(ℎ𝐿𝑆) ≤ 1

𝑟

⃦⃦⃦
Γ(∙)− 1

2𝑄(∙)Γ(∙)− 1
2

⃦⃦⃦ ⃦⃦⃦
Γ(∙) 1

2 (ℎ* − ℎ𝐿𝑆)
⃦⃦⃦2

(A.72)

≤ 𝐶8
1

𝑟
(𝑐ℓ𝑟𝑇)

1

𝑐ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂3

= 𝐶8

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂3

(A.73)

22

LEARNING AN AUTOREGRESSIVE FILTER

By (A.37) in Lemma A.2 and (A.67),

𝐿(𝑗)(𝑔*, ℎ*)− 𝐿(𝑗)(𝑔
(𝑗)
𝐿𝑆 , ℎ𝐿𝑆) ≤

⃦⃦⃦
Γ(𝑗)+ 1

2𝑄(𝑗)Γ(𝑗)+ 1
2

⃦⃦⃦ ⃦⃦⃦⃦⃦Γ(𝑗) 1
2

[︃(︂
𝑔*

ℎ*

)︂
−

(︃
𝑔
(𝑗)
𝐿𝑆

ℎ𝐿𝑆

)︃]︃⃦⃦⃦⃦
⃦
2

(A.74)

≤ 𝐶8ℓ𝑇
1

ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂3

= 𝐶8

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂3

. (A.75)

Because
(︂
𝑔
ℎ

)︂
is the argmin of (3.7), we have

⃦⃦⃦
𝑄(∙) 1

2 (ℎ− ℎ𝐿𝑆)
⃦⃦⃦2
2

= 𝑟[𝐿(∙)(ℎ) − 𝐿(∙)(ℎ𝐿𝑆)] ≤

𝐶8𝑟
(︀
ln
(︀
ℓ𝑟𝑇
𝛿

)︀)︀3
. Hence⃦⃦⃦

Γ(∙) 1
2 (ℎ− ℎ*)

⃦⃦⃦2
≤ 2

(︂⃦⃦⃦
Γ(∙) 1

2 (ℎ− ℎ𝐿𝑆)
⃦⃦⃦2

+
⃦⃦⃦
Γ(∙) 1

2 (ℎ𝐿𝑆 − ℎ*)
⃦⃦⃦2)︂

(A.76)

≤ 2

(︂⃦⃦⃦
𝑄(∙)− 1

2 Γ(∙)𝑄(∙)− 1
2

⃦⃦⃦ ⃦⃦⃦
𝑄(∙) 1

2 (ℎ− ℎ𝐿𝑆)
⃦⃦⃦2
2

+
⃦⃦⃦

Γ(∙) 1
2 (ℎ𝐿𝑆 − ℎ*)

⃦⃦⃦2)︂
(A.77)

≤ 𝐶9

(︃
1

𝑐ℓ𝑟𝑇
𝑟

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂3

+
1

𝑐ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂3
)︃

by (A.55)

(A.78)

≤ 𝐶9

𝑐ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂3

(A.79)

and similarly ⃦⃦⃦⃦
Γ(𝑗) 1

2

(︂(︂
𝑔
ℎ

)︂
−
(︂
𝑔*

ℎ*

)︂)︂⃦⃦⃦⃦2
2

≤ 𝐶10

ℓ𝑇

(︂
ln

(︂
ℓ𝑟𝑇

𝛿

)︂)︂4

. (A.80)

Now
⃦⃦⃦
Γ(∙) 1

2 (ℎ− ℎ*)
⃦⃦⃦2
2

represents the mean square estimation error when the input is 0 and the

noise is 𝑁(0, 𝜎2), so

𝜎 ‖(𝐻 −𝐻*)𝐻*
unr‖2 =

⃦⃦⃦
Γ(∙) 1

2 (ℎ− ℎ*)
⃦⃦⃦
≤ 𝐶9√

𝑐ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂ 3
2

. (A.81)

This establishes one-half of Theorem 4.1.
We can decompose

𝑀
(𝑗,𝑘)
cos,𝑡 =

(︃
𝑥(𝑗,𝑘)(𝑡− 1 : 𝑡− 𝑟)

𝑦
(𝑗,𝑘)
cos (𝑡− 1 : 𝑡− 𝑟)

)︃
+

(︃
0

𝜁
(𝑗,𝑘)
cos (𝑡− 1 : 𝑡− 𝑟)

)︃
(A.82)

and similarly for sin. Define 𝑀 (𝑗,𝑘)
𝑡 as follows: letting 𝑦(𝑡) be the response to 𝑥(𝑡) = 𝑒

2𝜋𝑖𝑗𝑡
𝑐𝑟 , 𝑗 ≤ 𝑐𝑟

2 ,

with noise 𝜂(𝑗)(𝑡) = 𝜂
(𝑗)
cos(𝑡) + 𝑖𝜂

(𝑗)
sin(𝑡), let 𝑀 (𝑗,𝑘)

𝑡 =

(︂
𝑥(𝑡− 1 : 𝑡− 𝑟)
𝑦(𝑡− 1 : 𝑡− 𝑟)

)︂
. We can decompose the

23

LEE ZHANG

mean response E𝑀 (𝑗,𝑘)
𝑡 = E[𝑀

(𝑗,𝑘)
cos,𝑡 + 𝑖𝑀

(𝑗,𝑘)
sin,𝑡]. We obtain an upper bound on the difference in the

square mean response:[︂(︂
𝑔
ℎ

)︂
−
(︂
𝑔*

ℎ*

)︂]︂⊤
(E𝑀 (𝑗,𝑘)

𝑡)(E𝑀 (𝑗,𝑘)
𝑡)⊤

[︂(︂
𝑔
ℎ

)︂
−
(︂
𝑔*

ℎ*

)︂]︂
(A.83)

=

[︂(︂
𝑔
ℎ

)︂
−
(︂
𝑔*

ℎ*

)︂]︂⊤
E[𝑀

(𝑗,𝑘)
cos,𝑡 − 𝑖𝑀

(𝑗,𝑘)
sin,𝑡]E[𝑀

(𝑗,𝑘)
cos,𝑡 + 𝑖𝑀

(𝑗,𝑘)
sin,𝑡]⊤

[︂(︂
𝑔
ℎ

)︂
−
(︂
𝑔*

ℎ*

)︂]︂
(A.84)

≤
⃦⃦⃦⃦

Γ(𝑗) 1
2

(︂(︂
𝑔
ℎ

)︂
−
(︂
𝑔*

ℎ*

)︂)︂⃦⃦⃦⃦2
2

(A.85)

≤ 𝐶10

ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂4

(A.86)

using (A.80). Since the square mean response is exactly
⃒⃒⃒
[(𝐺−𝐺*) + (𝐻 −𝐻*)𝐻*

unr𝐺
*](𝑒

2𝜋𝑖𝑗
𝑐𝑟)
⃒⃒⃒2

,
we get ⃒⃒⃒

[(𝐺−𝐺*) + 𝑧−1(𝐻 −𝐻*)𝐻*
unr𝐺](𝑒

2𝜋𝑖𝑗
𝑐𝑟)
⃒⃒⃒
≤ 𝐶10√

ℓ𝑇

(︂
ln

(︂
𝑐ℓ𝑟𝑇

𝛿

)︂)︂2

. (A.87)

Note the same inequality holds for 𝑗 replaced by 𝑟 − 𝑗 and 𝑀
(𝑗,𝑘)
cos,𝑡 + 𝑖𝑀

(𝑗,𝑘)
sin,𝑡 replaced by 𝑀

(𝑗,𝑘)
cos,𝑡 −

𝑖𝑀
(𝑗,𝑘)
sin,𝑡 , so (A.87) holds for all 𝑗 ∈ Z.

A.3. Interpolation

Lemma A.6 Let 𝑄(𝑧) :=
∑︀𝑟−1

𝑘=0 𝑎𝑘𝑧
𝑘, where 𝑎𝑘 ∈ C.

1. (Trefethen, 2013, Theorem 15.2) For any 𝑁 ≥ 𝑟, ‖𝑄‖∞ ≤
(︀
2
𝜋 ln(𝑟 + 1) + 1

)︀
max𝑗=0,...,𝑁−1 |𝑄(𝑒

2𝜋𝑖𝑗
𝑁)|.

2. (Bhaskar et al., 2013) For any 𝑁 ≥ 4𝜋𝑟, ‖𝑄‖∞ ≤
(︀
1 + 4𝜋𝑟

𝑁

)︀
max𝑗=0,...,𝑁−1 |𝑄(𝑒

2𝜋𝑖𝑗
𝑁)|.

From (A.87) we get that for 𝜀 = 𝐶10√
ℓ𝑇

(︀
ln
(︀
ℓ𝑟𝑇
𝛿

)︀)︀2
, 𝜔 = 𝑒

2𝜋𝑖
𝑐𝑟 , 𝑗 ∈ Z, that⃒⃒

[(𝐺−𝐺*) + 𝑧−1(𝐻 −𝐻*)𝐺*𝐻*
unr](𝜔

𝑗)
⃒⃒
≤ 𝜀 (A.88)

=⇒
⃒⃒
[(𝐺−𝐺*)(1− 𝑧−1𝐻*) + 𝑧−1(𝐻 −𝐻*)𝐺*](𝜔𝑗)

⃒⃒
≤ 𝜀

⃒⃒
1− 𝜔−𝑗𝐻*(𝜔𝑗)

⃒⃒
≤ 𝜀(1 + ‖𝐻*‖∞).

(A.89)

Suppose 𝑐 > 8𝜋. By Lemma A.6, since (𝐺−𝐺*)(1− 𝑧−1𝐻*) + 𝑧−1(𝐻 −𝐻*)𝐺* has degree ≤ 2𝑟
in 𝑧−1,⃦⃦

(𝐺−𝐺*)(1− 𝑧−1𝐻) + 𝑧−1(𝐻 −𝐻*)𝐺*⃦⃦
∞ ≤ 𝜀

(︂
1 +

8𝜋

𝑐

)︂
(1 + ‖𝐻*‖∞) (A.90)

=⇒
⃦⃦

(𝐺−𝐺*) + 𝑧−1(𝐻 −𝐻*)𝐺*𝐻*
unr
⃦⃦
∞ ≤ 𝜀

(︂
1 +

8𝜋

𝑐

)︂
(1 + ‖𝐻*‖∞) ‖𝐻*

unr‖∞ . (A.91)

This finishes the proof of Theorem 4.1.

24

LEARNING AN AUTOREGRESSIVE FILTER

A.4. Truncation error

We need the following lemma.

Lemma A.7 Let 𝐹 (𝑧) =
∑︀∞

𝑡=0 𝑓(𝑡)𝑧−𝑡, 𝑓(0) = 1 and 𝐺(𝑧) = 1
𝐹 (𝑧) =

∑︀∞
𝑡=0 𝑔(𝑡)𝑧−𝑡. Let 𝐾 =(︁∑︀𝑟−1

𝑡=0 |𝑔(𝑡)|
)︁2

. Then letting 𝑓(𝑡) = 0 for 𝑡 < 0,
∑︀𝑟

𝑡=1 𝑓(𝑡− 𝑟 : 𝑡− 1)𝑓(𝑡− 𝑟 : 𝑡− 1)⊤ ⪰ 1
𝐾2 𝐼𝑟.

Proof For any power series 𝐹 (𝑧) =
∑︀∞

𝑡=0 𝑓(𝑡)𝑧−𝑡, define 𝑍𝐹 ∈ R𝑑×𝑑 by (𝑍𝐹)𝑖,𝑗 = 𝑓(𝑖−𝑗). (Here,
𝑓(𝑖) = 0 for 𝑖 < 0.) Note that 𝑍𝐹𝑍𝐺 = 𝑍𝐹𝐺. Let 𝐴 = 𝑍𝐹𝑍

⊤
𝐹 =

∑︀𝑟
𝑡=1 𝑓(𝑡 − 𝑟 : 𝑡 − 1)𝑓(𝑡 − 𝑟 :

𝑡− 1)⊤. From 𝐹 (𝑧)𝐺(𝑧) = 1 we get 𝑍𝐺𝑍𝐹 = 𝐼𝑑, hence 𝑍𝐺𝐴𝑍
⊤
𝐺 = 𝑍𝐺𝑍𝐹𝑍

⊤
𝐹 𝑍⊤

𝐺 = 𝐼𝑑. Because
𝑍𝐺 is invertible, we have 𝐴 ⪰ 𝜆𝐼𝑑 iff 𝑍𝐺(𝐴− 𝜆𝐼𝑑)𝑍⊤

𝐺 ⪰ 0. Now 𝑍𝐺(𝐴− 𝜆𝐼𝑑)𝑍⊤
𝐺 = 𝐼 − 𝜆𝑍𝐺𝑍

⊤
𝐺 .

Letting 𝐵 = 𝐼 − 𝜆𝑆𝑆⊤, we have

𝐵𝑖𝑖 −
∑︁
𝑗 ̸=𝑖

𝐵𝑖𝑗 = 1− 𝜆
∑︁
𝑗,𝑘

𝑆𝑖𝑘𝑆𝑗𝑘 ≥ 1− 𝜆𝐾2 ≥ 0. (A.92)

Thus by Gerschgorin’s Disk Theorem, all eigenvalues of 𝐵 are ≥ 0.

Proof [Proof of Theorem 3.1] The proof of Theorem 3.1 relies on the following simple fact: If
𝐷1, 𝐷2 are two distributions on Ω with TV-distance ≤ 𝛿, and 𝒜 is any algorithm with input space Ω,
then 𝒜(𝑥), 𝑥 ∼ 𝐷1 and 𝒜(𝑥), 𝑥 ∼ 𝐷2 also have TV-distance ≤ 𝛿.

Consider Algorithm 1 run with signals 𝑥∞ stretching back to −∞ and signals 𝑥≥−𝐿 only
stretching back to −𝐿. Consider the distributions they induce on 𝑦(1 : 𝑇). Suppose we choose
𝐿 so that the TV-distance between those distributions is ≤ 𝛿′ := 𝛿

8𝑐ℓ𝑟 . Because there are < 4𝑐ℓ𝑟

independent rollouts, the total TV-distance is ≤ 𝛿
2 . Then we can apply Theorem 4.1 with 𝛿 ←[𝛿2 to

get the desired result.
Let 𝑦∞ and 𝑦fin be the output signals given input signals 𝑥∞ and 𝑥≥−𝐿, and noise 𝜂∞ and 𝜂≥−𝐿.

We have (using the shorthand 𝑓𝑃 := 𝑓1𝑃)

𝑦∞(𝑡 + 1) = ℎ*unr * 𝑔* * 𝑥∞(𝑡) + ℎ*unr * 𝜂∞(𝑡 + 1) (A.93)

𝑦fin(𝑡 + 1) = ℎ*unr * 𝑔* * (𝑥∞1≥−𝐿)(𝑡) + [ℎ*unr * (𝜂∞1≥−𝐿)](𝑡 + 1) (A.94)

= [(ℎ*unr * 𝑔*)≤𝐿+𝑡 * 𝑥∞](𝑡) + (ℎ*unr,≤𝐿+𝑡+1 * 𝜂∞)(𝑡 + 1) (A.95)

𝑦∞(𝑡 + 1)− 𝑦fin(𝑡 + 1) = [(ℎ*unr * 𝑔*)>𝐿+𝑡 * 𝑥∞](𝑡) + (ℎ*unr,>𝐿+𝑡+2 * 𝜂∞)(𝑡 + 1) (A.96)

To calculate the TV distance between the distributions of 𝑦∞(1 : 𝑇) and 𝑦fin(1 : 𝑇), we need to
bound the difference between the means and covariances.

Bounding difference in means. Note for 𝑡 ≥ 0, by the assumption 𝐿 ≥ 𝑅𝐻*
unr𝐺

*(𝜀2) − 1 and
Lemma 2.6, we have

[(ℎ*unr * 𝑔*)>𝐿+𝑡 * 𝑥∞](𝑡) ≤ ‖(ℎ*unr * 𝑔*)≥𝐿+1‖1 ≤ 𝜀2 (A.97)

so ‖E(𝑦∞ − 𝑦fin)(1 : 𝑇)‖ ≤ 𝜀2
√
𝑇 .

25

LEE ZHANG

Bounding difference in covariances. Because E[𝜂∞(𝑖)𝜂∞(𝑗)] = 1𝑖=𝑗 ,

Cov[𝑦∞(1 : 𝑇)]𝑖,𝑗 = E[𝑦∞(𝑖)𝑦∞(𝑗)] (A.98)

= E[(ℎ*unr * 𝜂∞)(𝑖)(ℎ*unr * 𝜂∞)(𝑗)] (A.99)

= E

⎡⎣min{𝑖,𝑗}∑︁
𝑘=−∞

ℎ*unr(𝑖− 𝑘)ℎ*unr(𝑗 − 𝑘)

⎤⎦ (A.100)

so

Cov[𝑦∞(1 : 𝑇)] =
∞∑︁
𝑗=1

ℎ*unr(𝑗 − 𝑇 : 𝑗 − 1)ℎ*unr(𝑗 − 𝑇 : 𝑗 − 1)⊤. (A.101)

Similarly

Cov[𝑦fin(1 : 𝑇)] =

∞∑︁
𝑗=1

ℎ*unr,≤𝐿+𝑡+1(𝑗 − 𝑇 : 𝑗 − 1)ℎ*unr,≤𝐿+𝑡+1(𝑗 − 𝑇 : 𝑗 − 1)⊤ (A.102)

Let 𝐾 =
(︁

1 +
∑︀𝑇−2

𝑡=0 |ℎ*(𝑡)|
)︁2

. When 𝐿 + 𝑡 + 2 ≥ 𝑇 , by Lemma A.7 we can lower-bound this by

Cov[𝑦fin(1 : 𝑇)] ⪰
𝐿+𝑡+2∑︁
𝑗=1

ℎ*unr(𝑗 − 𝑇 : 𝑗 − 1)ℎ*unr(𝑗 − 𝑇 : 𝑗 − 1)⊤ ⪰ 1

𝐾2
𝐼𝑇 (A.103)

Also,

Cov[𝑦∞(1 : 𝑇)]− Cov[𝑦fin(1 : 𝑇)] ⪯
∞∑︁

𝑗=𝐿+𝑇+2

ℎ*unr(𝑗 − 𝑇 + 1 : 𝑗)ℎ*unr(𝑗 − 𝑇 + 1 : 𝑗)⊤

(A.104)

⪯

⎛⎝ ∞∑︁
𝑗=𝐿+𝑇+2

‖ℎ*unr(𝑗 − 𝑇 + 1 : 𝑗)‖2
⎞⎠ 𝐼𝑇 (A.105)

⪯ 𝑇

⎛⎝ ∞∑︁
𝑗=𝐿+2

ℎ*unr(𝑗)
2

⎞⎠ 𝐼𝑇 (A.106)

⪯ 𝑇

⎛⎝ ∞∑︁
𝑗=𝐿+2

|ℎ*unr(𝑗)|

⎞⎠2

𝐼𝑇 ≤ 𝑇𝜀21𝐼𝑇 (A.107)

where in the last inequality we used the assumption 𝐿 ≥ 𝑅𝐻*
unr

(𝜀1)− 2 (for the 𝜀1 we will choose)
and Lemma 2.6.

Bounding TV distance. For a random variable let 𝒟(𝑋) denote its distribution. We apply the
following formula for KL-divergence,

𝑑𝐾𝐿(𝑁(𝜇1,Σ1)||𝑁(𝜇2,Σ2)) =
1

2

[︂
ln
|Σ1|
|Σ2|

− 𝑑 + Tr(Σ−1
1 Σ2) + (𝜇1 − 𝜇2)

⊤Σ−1
1 (𝜇1 − 𝜇2)

]︂
,

(A.108)

26

LEARNING AN AUTOREGRESSIVE FILTER

for 𝒟(𝑦fin(1 : 𝑇)) = 𝑁(𝜇1,Σ1) and 𝒟(𝑦∞(1 : 𝑇)) = 𝑁(𝜇2,Σ2). Here, Σ1 ⪰ 1
𝐾2 𝐼𝑇 and

Σ2 − Σ1 ⪯ 𝑇𝜀21𝐼𝑇 , so

𝑑𝐾𝐿(𝒟(𝑦fin(1 : 𝑇))||𝒟(𝑦∞(1 : 𝑇))) ≤ 1

2

[︂
𝑇 ln

(︂
1/𝐾2

1/𝐾2 + 𝜀

)︂
− 𝑇 + 𝑇 (1 + 𝐾2𝑇𝜀2) + 𝐾2𝑇𝜀22

]︂
(A.109)

≤ 1

2
(𝐾2𝑇 2𝜀21 + 𝐾2𝑇𝜀22). (A.110)

Now choose 𝜀1 =
√︁

𝛿′2

2𝑇 2𝐾2 and 𝜀2 =
√︁

𝛿′2

2𝑇𝐾2 to get this is ≤ 𝛿′2

2 . Then by Pinsker’s inequality,

𝑑𝑇𝑉 (𝒟(𝑦fin(1 : 𝑇)),𝒟(𝑦∞(1 : 𝑇))) ≤
√︂

1

2
· 𝛿

′2

2
=

𝛿′

2
. (A.111)

This gives the desired result, noting that the assumption 𝐿 ≥ max
{︁
𝑅𝐻*

unr

(︁
𝛿

4𝐾𝑇
√
𝑐ℓ𝑟

)︁
, 𝑅𝐻*

unr𝐺
*

(︁
𝛿

4𝐾
√
𝑐ℓ𝑟𝑇

)︁}︁
does indeed imply that the inequalities for 𝐿 are indeed satisfied for the values of 𝜀1, 𝜀2 and 𝛿′ = 𝛿

8𝑐ℓ𝑟

we chose. Thus the TV-distance between the 𝑦(1 : 𝑇) of all the rollouts is at most 𝛿
2 , as needed.

27

LEE ZHANG

Appendix B. Notation

Notation Definition
𝐻*

unr(𝑧) 1
1−𝑧−1𝐻*(𝑧)

𝑥(∙,𝑘) = 𝑥(∙) 0 (the zero signal)

𝑥
(𝑗,𝑘)
cos = 𝑥

(𝑗)
cos 𝑡 ↦→ cos

(︁
2𝜋𝑗𝑡
𝑐𝑟

)︁
𝑥
(𝑗,𝑘)
sin = 𝑥

(𝑗)
sin 𝑡 ↦→ sin

(︁
2𝜋𝑗𝑡
𝑐𝑟

)︁
𝑦(∙,𝑘), 𝑦

(𝑗,𝑘)
* (* = cos, sin) Outputs for the above inputs
𝑦(∙,𝑘), 𝑦

(𝑗,𝑘)
* Expected value given 𝑦(𝑠), 𝑥(𝑠) for 𝑠 < 𝑡

𝜂(∙,𝑘), 𝜂
(𝑗,𝑘)
* 𝑁(0, 𝜎2) noise in the rollouts; 𝑦(𝑗,𝑘)* = 𝑦

(𝑗,𝑘)
* + 𝜂

(𝑗,𝑘)
*

𝑦
(𝑗)
* Expected value given only 𝑥

𝜁
(𝑗,𝑘)
* Accumulated noise for the inputs, 𝑦(𝑗,𝑘)* = 𝑦

(𝑗,𝑘)
* + 𝜁

(𝑗,𝑘)
*

𝑀 (∙,𝑘) Matrix with columns 𝑦(∙,𝑘)(𝑡− 1 : 𝑡− 𝑟), 1 ≤ 𝑡 ≤ 𝑇

𝑀
(𝑗,𝑘)
*,𝑡 Matrix with columns

(︃
𝑥
(𝑗)
* (𝑡− 1 : 𝑡− 𝑟)

𝑦
(𝑗,𝑘)
* (𝑡− 1 : 𝑡− 𝑟)

)︃
, 1 ≤ 𝑡 ≤ 𝑇

X
(𝑗)
* Matrix with columns 𝑥(𝑗)* (𝑡− 1 : 𝑡− 𝑟), 1 ≤ 𝑡 ≤ 𝑇

Y
(𝑗,𝑘)
* Matrix with columns 𝑦(𝑗,𝑘)* (𝑡− 1 : 𝑡− 𝑟), 1 ≤ 𝑡 ≤ 𝑇

Z
(𝑗,𝑘)
* Matrix with columns 𝜁(𝑗,𝑘)* (𝑡− 1 : 𝑡− 𝑟), 1 ≤ 𝑡 ≤ 𝑇

𝑥(𝑗) 𝑡 ↦→ 𝑒
2𝜋𝑖𝑗𝑡
𝑐𝑟

𝜂(𝑗) 𝜂(𝑗)(𝑡) = 𝜂
(𝑗)
cos(𝑡) + 𝑖𝜂

(𝑗)
sin(𝑡), 𝜂(𝑗)cos(𝑡), 𝜂

(𝑗)
sin(𝑡) ∼ 𝑁(0, 𝜎2)

𝑀 (𝑗) Matrix with columns
(︂
𝑥(𝑗)(𝑡− 1 : 𝑡− 𝑟)

𝑦(𝑗)(𝑡− 1 : 𝑡− 𝑟)

)︂
, 1 ≤ 𝑡 ≤ 𝑇

ℎ𝐿𝑆 Solution to (3.5)
𝑔
(𝑗)
𝐿𝑆 Solution to (3.6)
𝑔, ℎ Solution to (3.7)
Γ(∙) E𝜂(∙,𝑘)𝑀

(∙,𝑘)𝑀 (∙,𝑘)⊤

Γ
(𝑗)
*,𝑡 E

𝜂
(𝑗,𝑘)
*

𝑀
(𝑗,𝑘)
*,𝑡 𝑀

(𝑗,𝑘)⊤
*,𝑡

Γ
(𝑗)
𝑋,*,𝑡 X

(𝑗)
*,𝑡X

(𝑗)⊤
*,𝑡

Γ(𝑗) Γ
(𝑗)
cos,𝑡 + Γ

(𝑗)
sin,𝑡

Γ
(𝑗)
𝑋 Γ

(𝑗)
𝑋,cos,𝑡 + Γ

(𝑗)
𝑋,sin,𝑡

𝑄(∙) ∑︀𝑐ℓ𝑟
𝑘=1𝑀

(∙,𝑘)𝑀 (∙,𝑘)⊤

𝑄(𝑗)
∑︀ℓ

𝑘=1(𝑀
(𝑗,𝑘)
cos 𝑀

(𝑗,𝑘)⊤
cos + 𝑀

(𝑗,𝑘)
sin 𝑀

(𝑗,𝑘)⊤
sin)

𝑃
(𝑗)
𝑋 Projection onto column space of Γ

(𝑗)
𝑋

𝐿(∙)(ℎ) 1
𝑟

∑︀𝑐ℓ𝑟
𝑘=1

⃦⃦
𝑀 (∙,𝑘)⊤(ℎ− ℎ𝐿𝑆)

⃦⃦2
𝐿(𝑗)(𝑔, ℎ)

∑︀ℓ
𝑘=1

[︃⃦⃦⃦⃦
𝑀

(𝑗,𝑘)⊤
cos

(︂
𝑔
ℎ

)︂
− 𝑦

(𝑗,𝑘)
cos

⃦⃦⃦⃦2
+

⃦⃦⃦⃦
𝑀

(𝑗,𝑘)⊤
sin

(︂
𝑔
ℎ

)︂
− 𝑦

(𝑗,𝑘)
sin

⃦⃦⃦⃦2]︃

28

	Introduction
	Background
	Our results
	Related work

	Problem setting and preliminaries
	Problem statement
	Inadequacy of learning an FIR filter
	Connection to the Kalman filter
	Preliminaries on control theory

	Algorithm and main theorem
	Proof sketch
	Conclusion and further directions
	Proof
	Concentration
	Matrix concentration
	Vector concentration
	Putting it together

	Generalization
	Interpolation
	Truncation error

	Notation

