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Abstract
We study the Thompson sampling algorithm in an adversarial setting, specifically, for adversarial
bit prediction. We characterize the bit sequences with the smallest and largest expected regret.
Among sequences of length T with k < T

2 zeros, the sequences of largest regret consist of alter-
nating zeros and ones followed by the remaining ones, and the sequence of smallest regret consists
of ones followed by zeros. We also bound the regret of those sequences, the worst case sequences
have regret O(

√
T ) and the best case sequence have regret O(1).

We extend our results to a model where false positive and false negative errors have different
weights. We characterize the sequences with largest expected regret in this generalized setting, and
derive their regret bounds. We also show that there are sequences with O(1) regret.
Keywords: Thompson sampling, Bit prediction, Adversarial setting, Regret, Multi-armed bandits

1. Introduction

Online learning and multi-arm bandits (MAB) are one of the most basic models for uncertainty,
which are widely studied in machine learning. The main performance criteria used in this model is
regret, which is the difference between the expected loss of the online algorithm, and the loss of the
best algorithm from a benchmark class. (See, Cesa-Bianchi and Lugosi (2006); Bubeck and Cesa-
Bianchi (2012); Lattimore and Szepesvári (2019); Slivkins (2019)). Bit prediction is one of the first
problems for which online learning regret was analyzed (Cover, 1966), and has been extensively
studied throughout the years (see, Rakhlin and Sridharan (2014)).

Thompson sampling (Thompson (1933)) is one of the earliest algorithms for MAB. It was orig-
inally motivated by a Bayesian setting, where the rewards are stochastic, and the reward of each
action has a prior distribution. The algorithm maintains a posterior distribution for the reward of
each action, and in each step, samples the posterior distribution of the mean reward of each action,
and uses the action with the highest sampled value. In recent years, there has been a renewed inter-
est in the Thompson sampling algorithm and its applications (see, Russo et al. (2018)), mainly due
to its simplicity and good performance in practice.

Since Thompson sampling was designed for a Bayesian setting, it is natural to analyze its
Bayesian regret (i.e., average the regret with respect to the prior). In many settings, we get an
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elegant analysis and asymptotically optimal regret bounds. (See, Lattimore and Szepesvári (2019);
Slivkins (2019); Russo and Roy (2016)).

While Thompson sampling was designed for a Bayesian setting, it was also recently analyzed in
worst-case stochastic setting. More specifically, assume that the reward of each action is a Bernoulli
random variable with unknown success probability. Unlike the Bayesian setting, there is no true
prior over these parameters (success probabilities), and we want to bound the regret for the worst
choice of the parameters. In this setting we start the Thompson sampling algorithm with a fictitious
prior, say, a uniform distribution (of the success probability) for each action, and we update the
posterior as though we were in the Bayesian setting. The works of Agrawal and Goyal (2017,
2013) show that Thompson sampling guarantees almost optimal regret bounds in the adversarial
stochastic setting. Improved regret bounds which are parameter dependent are given in Kaufmann
et al. (2012).

The papers mentioned above show the great success of Thompson sampling in stochastic set-
tings, thus it is natural to investigate its performance in adversarial online model. In this model TS
starts with a fictitious prior and an adversary selects the arbitrary input sequence. The completely
adversatial model can be viewed as bounding the regret of the worst-case sequence possible, rather
then the expected regret over some distribution in the stochastic settings. Specifically in this paper,
our goal is to show that Thompson Sampling is successful for the adversarial bit sequence settings.

Our work considers the performance of Thompson sampling in an adversarial setting. Specif-
ically, we consider the case of adversarial bit prediction, where the learner observes an arbitrary
binary sequence, and at each time step predicts the next bit. The loss of the learner is the number
of errors it makes, and the regret is the difference between the number of errors the online learner
algorithm makes and best static bit prediction, i.e., the minimum between the number of ones and
zeros in the sequence. We characterize the bit sequences on which Thompson sampling algorithm
has the largest and smallest regret. We bound the regret of these sequences, and show that the worst
case regret is Θ(

√
T ), for a sequence of length T , and best case regret of Θ(1).

More specifically, we initialize our Thompson sampling algorithm with a uniform (i.e., β(1, 1))
prior distribution, and maintain a posterior beta distribution (whose parameters correspond to the
number of ones and zeros seen so far). To predict the next bit, we draw a value from the beta
posterior and predict one if the value is larger than 1

2 . Once we observe the bit we update our
posterior.

For sequences of length T with k ≤ T
2 zeros, we show that the sequences with the largest regret

are of the form {01, 10}k1T−2k, and the sequence with the smallest regret is 1T−k0k (for k = T
2

both sequences 1T/20T/2 and 0T/21T/2 have the same smallest regret). For example, if k = 2 and
T = 7, the sequences with the largest regret are 0101111, 0110111, 1001111 and 1010111, and the
sequence with the smallest regret is 1111100. For k > T

2 , we have the same characterization with 1
and 0 interchanged. We also bound the regret of these sequences and show that the expected regret
on the worst case sequences is Θ(

√
T ) and that the expected regret on the best case sequences is

Θ(1).
We extend the model to have different losses for false positive and false negative errors. Specif-

ically, we have a trade-off parameter q ∈ [0, 1] and we define the cost of a false positive to be q and
the cost of a false negative to be 1 − q. We call this extended model the generalized bit-prediction
model. Note that for q = 1

2 this loss is simply the number of errors multiplied by 1
2 , so this is

a strict generalization our previous loss. Thompson sampling adapts naturally to the parameter q,
by simply predicting one when the sampled value is larger than q (rather than larger than 1

2 ). We
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characterize for each q ∈ [0, 1] the bit sequences with the largest regret for this model and bound
their regret. For example, for sequences of length T = 100 with 20 zeros and q = 1

3 , the worst case
sequences are of the form {010, 001}10170. In general, we show a family of bit-sequences with the
highest regret for every trade-off parameter q ∈ [0, 1], number of zeros and number of ones. From
that we conclude that the regret of Thompson sampling in the adversarial bit-prediction model is
bounded by O(

√
q(1− q)T ). We also show that there are sequences with regret equals or less then

1 without characterizing the best sequences.
Our work shows the great versatility of Thompson sampling. Namely, the same algorithm,

with a prior of β(1, 1), can be analysed in Bayesian setting, when it is given the true prior, in an
adversarial stochastic setting, when it is given a fictitious prior, and in the adversarial bit prediction
problem, which we analyse in this work. Thompson sampling is not the only algorithm that achieves
good performance both for adversarial and stochastic rewards (See, Bubeck and Slivkins (2012);
Seldin and Slivkins (2014); Mourtada and Gaiffas (2018)), but it achieves this in a simple natural
way, and as a side-product of a general Bayesian methodology, without trying to identify the nature
of the environment.

1.1. Other related work

Adversarial bit prediction has a long history, starting with Cover (1966), and followed up by many
additional works (see, Cesa-Bianchi and Lugosi (2006)). The exact min-max optimal strategy can
be derived, when we view the problem as a zero-sum game (see, Rakhlin and Sridharan (2014)).
The min-max optimal regret bound for the case of two actions was derived by Cover (1966) and for
three actions by Gravin et al. (2016). Prediction of the next character in non-binary sequences has
also received considerable attention, with respect to various benchmarks Feder et al. (1992); Cesa-
Bianchi and Lugosi (1999). For the stochastic case, prediction of the next character in non-binary
sequences was studied using Bayesian methods by Hutter (2003). Prediction of binary sequences
with the log-loss in online adversarial environment has been studied by many due to its relation to
data compression and information-theory (see for example, Freund et al. (1996), Merhav and Feder
(1998) and Xie and Barron (2000)).

Adversarial online learning and multi-arm bandits have received significant attention in machine
learning in the last two decades. (See the following books and surveys, Cesa-Bianchi and Lugosi
(2006); Bubeck and Cesa-Bianchi (2012); Lattimore and Szepesvári (2019); Slivkins (2019)). A
lower bound for the adversarial MAB problem was presented by Seldin and Lugosi. Notable results
in adversarial online learning are the algorithm EXP3 (see, Auer et al. (2002b)) for adversarial
bandits, the algorithm UCB1 (see, Auer et al. (2002a)) for stochastic bandits, and the regret analysis
of the min-max algorithm (see, Audibert and Bubeck (2009)).

Thompson sampling has been studied in different environments over the years. In Gopalan
(2013) it was observed that Thompson sampling with a Gaussian prior is equivalent to ”Follow
the Perturbed Leader” (FPL) of Kalai and Vempala (2005), and that fact was used to deduced the
worst case regret of Thompson sampling with Gaussian distributions. A prior-dependent analysis
was introduced by Russo and Roy (2016) using an information-theoretic tools, and the idea was
expanded for first and second-order regret bounds by Bubeck and Sellke (2019).

Thompson sampling also showed good experimental results (see, Scott (2010); Chapelle and
Li (2011)). Because of that, the algorithm is used in practice, with recommendation systems as an
example (see, Kawale et al. (2015)). In Reinforcement Learning, a version of Thompson sampling
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called ”Posterior Sampling for Reinforcement Learning” (PSRL) is used (see, Osband et al. (2013);
Osband and Van Roy (2017)). Bounds for the algorithm were proved in Agrawal and Jia (2017).

2. Model

A bit prediction game proceeds as follows. At time t ∈ [T ] = {1, ..., T} the learner outputs a bit
γ̂t ∈ {0, 1}. Then, the learner observes a bit γt ∈ {0, 1} and suffers a loss of ` (γ̂t, γt) = I{γ̂t 6= γt}.

We compare the loss of the online algorithm to a benchmark, which is the loss of the best
static bit prediction. Given a bit sequence Γ = (γ1, ..., γT ), let the number of ones up to t be
Ot (Γ) = |{i ∈ [t] : γi = 1}| =

∑t
i=1 γi and the number of zeros be Zt (Γ) = |{i ∈ [t] : γi = 0}|

=
∑t

i=1 (1− γi). The loss of the best static bit prediction is

static (Γ) = min

{
T∑
t=1

` (1, γt) ,

T∑
t=1

` (0, γt)

}
= min {ZT (Γ) , OT (Γ)} .

The goal of the learner is to minimize the regret, which is the difference between the online
cumulative loss and the loss of the best static bit prediction. Specifically, for an algorithm A,

RegretA(Γ) =

T∑
t=1

Eγ̂t∼A[`(γ̂t, γt) | Γ]− static(Γ),

where Γ ∈ {0, 1}T is a fixed bit sequence, and the expectation is taken over the predictions of
algorithm A. We extend the standard bit prediction game and define a generalized bit prediction
game, where the false positive (FP) and false negative (FN) errors have different weights.1 Given a
trade-off parameter q ∈ [0, 1], we define a loss `q, as follows,

`q (γ̂t, γt) = qI{γ̂t = 1, γt = 0}+ (1− q)I{γ̂t = 0, γt = 1}.

Namely, the false positive errors are weighted by q while the false negative errors are weighted by
1− q. Note that for q = 1

2 , for any (γ̂t, γt) we have that `1/2(γ̂t, γt) = 1
2`(γ̂t, γt), so for q = 1

2 the
extended loss is essentially the 0-1 loss.

Similarly, the benchmark for the generalized bit prediction is the best static bit prediction,
namely,

staticq(Γ) = min

{
T∑
t=1

`q(1, γt),

T∑
t=1

`q(0, γt)

}
= min{qZT (Γ), (1− q)OT (Γ)},

and the regret of algorithm A on a given bit sequence Γ ∈ {0, 1}T is

RegretqA(Γ) =
T∑
t=1

Eγ̂t∼A [`q(γ̂t, γt) | Γ]− staticq (Γ) .

1. A false positive error is when the learner predicts γ̂t = 1 and γt = 0, and false negative error is when γ̂t = 0 and
γt = 1.
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2.1. Distributions

We use extensively the Beta distribution, denoted by β(a, b), where a, b > 0, and the Binomial
distribution, denoted by Bin(n, p) where n is the number of trials and p ∈ [0, 1] is the success
probability. We denote by Ber(p) a Bernoulli random variable with success probability p ∈ [0, 1].
For a distribution D, the Cumulative Distribution Function (CDF) is denoted by FD.

The following identity is a well known fact related to the the Beta distribution (see, DLMF,
Eq. 8.17.4)

Fact 1 For a, b ∈ N+ and p ∈ [0, 1] we have Fβ(a,b)(p) = 1− Fβ(b,a)(1− p).

The β(a, b) distribution is widely used in Bayesian setting to define the uncertainty over the
parameter p of a Bernoulli random variable Ber(p). The distribution β(1, 1), which is the uniform
distribution over [0, 1], is used as the prior distribution of p. Given a + b observations of the ran-
dom variable Ber(p), where a is the number of realizations which are 1 and b is the number of
realizations which are 0, then the posterior distribution of p is β(a + 1, b + 1) (assuming the prior
distribution is β(1, 1)).

The following is a well known property of the CDF of the Beta distribution.

Fact 2 (DLMF, Eq. 8.17.20-21) For every x ∈ [0, 1] and a, b ∈ R s.t. a, b > 0, the following holds

Fβ(a+1,b)(x) = Fβ(a,b) −
xa(1− x)b

aB (a, b)
and Fβ(a,b+1)(x) = Fβ(a,b)(x) +

xa(1− x)b

bB (a, b)

where B(a, b) = (a−1)!(b−1)!
(a+b−1)! is the Beta function.

For the analysis we use the following theorems regarding the tail of the β(a, b) distribution,
when we fix the parameter b = n+ 1 and sum over parameters a ≥ 1.

Theorem 3 For every n ≥ 1 we have
∑∞

i=n+1 Fβ(i+1,n+1)

(
1
2

)
= O(

√
n).

2.2. Notations

When the bit sequence Γ = (γ1, . . . , γT ) can be inferred from the context, we use Ot and Zt rather
than Ot(Γ) and Zt(Γ).

We also define the sign function as sign(x) =
{

1 x>0
0 x=0
−1 x<0

.
For functions f, g ∈ R → R we denote g = O(f) iff there exist c1, c2 ∈ R such that g(x) ≤

c1f(x) + c2 for every x ∈ R.

3. Thompson sampling for bit prediction

The Thompson sampling algorithm requires a prior distribution for its initialization. Given the ob-
servations, it updates the prior distribution to a posterior distribution. The learner samples the pos-
terior distribution, and thresholds the sampled value at half (for bit prediction) or q (for generalized
bit prediction).

More specifically. We consider the prior distribution β(1, 1), which is a uniform distribution
over [0, 1]. Note that this prior is fictitious, and used only to initialize the Thompson sampling
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Algorithm 1: Thompson sampling with Beta prior for bit prediction
input : Trade-off parameter q ∈ [0, 1].
initialize: Set O0 = 0, Z0 = 0.

for each time t in [T ] do
Sample xt from the β (Ot−1 + 1, Zt−1 + 1) distribution.
Predict bit γ̂t = I{xt > q}.
Observe bit γt and suffer loss `t = `q(γ̂t, γt).
Update Ot = Ot−1 + γt and Zt = Zt−1 + (1− γt).

end

algorithm. At time t the learner samples a value xt from the distribution β(Ot−1 + 1, Zt−1 + 1),
where Ot−1 and Zt−1 are the number of observed 1’s and 0’s up to time t − 1, respectively. At
time t the learner predicts γ̂t = I{xt > q}, where q is the trade-off parameter of the loss. Then the
learner observes the feedback bit γt and suffers loss `q(γ̂t, γt). The resulting Thompson sampling
algorithm is described in Algorithm 1, and in the analysis we refer to this algorithm as TS(q).

In Section 4 we prove the “Swapping Lemma”, which analyses the effect of a single swap on
the regret, which allows us to identify the sequences with the largest and smallest regret. In Section
5 we bound the regret of these sequences, thereby obtaining tight upper and lower bounds on the
regret. Section 6 addresses the generalized bit prediction case.

4. Swapping lemma

In this section we compare the regret of two bit sequences which differ by a single swap. This is an
essential building block in our analysis of the worst case and the best case regret of the Thompson
sampling algorithm.
Swap operation: Given a bit sequence Γ = (γ1, . . . , γT ), performing the swap operation at position
t ∈ [T ] results in a sequence that swaps γt and γt+1 in Γ and keeps all other bits unchanged.
Formally, Swap(Γ, t) = (γ1, . . . , γt−1, γt+1, γt, γt+2, . . . , γT ).

The swapping lemma that compares the regret of Thompson sampling, TS(q), on the bit se-
quences Γ and Swap(Γ, t).

To illustrate the swapping lemma consider the case q = 1
2 , so q

1−q = 1. If we had more zeros up
to position t-1 then having the one earlier increases the regret. If we had more ones up to position t-1
then having zero earlier increases the regret. More precisely, for each t such that γt = 0, γt+1 = 1
and Ot−1 < Zt−1, swapping γt and γt+1 increases the regret. Similarly, if γt = 1, γt+1 = 0 and
Ot−1 > Zt−1 then swapping γt and γt+1 increases the regret. In other words,

Lemma 4 (Swapping Lemma) Fix a bit sequence Γ = (γ1, . . . , γT ) ∈ {0, 1}T . For every t, such
that γt = 0 and γt+1 = 1, we have

RegretqTS(q)(Γ) < RegretqTS(q)(Swap(Γ, t))⇐⇒
q

1− q
>
Ot−1 + 1

Zt−1 + 1
.

For every t, such that γt = 1 and γt+1 = 0, we have

RegretqTS(q)(Γ) < RegretqTS(q)(Swap(Γ, t))⇐⇒
q

1− q
<
Ot−1 + 1

Zt−1 + 1
.
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In addition,

RegretqTS(q)(Γ) = RegretqTS(q)(Swap(Γ, t))⇐⇒
q

1− q
=
Ot−1 + 1

Zt−1 + 1
.

Proof Sketch We consider the difference between the regret of TS(q) on the bit sequence Γ and on
the bit sequence Swap(Γ, t). The two bit sequences differ only at locations t and t + 1. Since the
benchmark of a sequence depends only on the total number of zeros and ones in the sequence, the
benchmarks on Γ and Swap(Γ, t) are identical, i.e., staticq(Γ) = staticq(Swap(Γ, t)). Therefore,
the difference between the regrets is equals to the difference between the losses at time t and t+ 1.

Consider time t ∈ [T ] such that γt = 0 and γt+1 = 1.Using the insights above it is easy to show
that,

RegretqTS(q) (Γ)−RegretqTS(q) (Swap(Γ, t))

= (1− q)Fβ(Ot−1+1,Zt−1+2)(q) + qFβ(Ot−1+2,Zt−1+1)(q)− Fβ(Ot−1+1,Zt−1+1)(q),

Using the recurrence relations in Fact 2 we show that,

RegretqTS(q)(Γ)−RegretqTS(q)(Swap(Γ, t))

=
qOt−1+1(1− q)Zt−1+1

B (Ot−1 + 1, Zt−1 + 1)

(
1− q

Zt−1 + 1
− q

Ot−1 + 1

)
,

Since qOt−1+1(1−q)Zt−1+1

B(Ot−1+1,Zt−1+1) > 0, we have

RegretqTS(q) (Γ) < RegretqTS(q) (Swap(Γ, t))⇐⇒ q

1− q
>
Ot−1 + 1

Zt−1 + 1
,

and equality holds iff q
1−q = Ot−1+1

Zt−1+1 . The second case, where γt = 1 and γt+1 = 0, is similar.

5. Regret characterization for q = 1
2

In this section we use the swapping lemma to characterize the sequences on which TS(1
2) has the

largest and smallest regret. We denote by k the number of zeros in the sequence and characterize
the sequences of worst and best regret for each k. Notice that we may assume that k ≤ T

2 since any
sequence Γ has the same regret as the sequence Γ′ obtained from Γ by flipping each bit. Indeed,
static(Γ) = static(Γ′) and the expected loss of TS(1

2) on Γ and Γ′ is the same (by Fact 1).

5.1. Worst-case regret

Consider bit sequences Γ = (γ1, . . . , γT ) with k zeros, where k ≤ T
2 . We first show that among

these bit sequences the ones of largest regret are of the form {01, 10}k1T−2k. Then, we prove that
the regret of each of these sequences is Θ(

√
k).

Theorem 5 For any Γ1,Γ2 ∈ {01, 10}k1T−2k we have Regret1/2
TS( 1

2
)
(Γ1) = Regret

1/2

TS( 1
2

)
(Γ2). In

addition, for any Γ3 /∈ {01, 10}k1T−2k we have Regret1/2
TS( 1

2
)
(Γ1) > Regret

1/2

TS( 1
2

)
(Γ3).
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Proof Note that for any i ∈ [k] we have O2i(Γ1) = Z2i(Γ1) = i. By Lemma 4 this implies that
Regret

1/2

TS( 1
2

)
(Γ1) = Regret

1/2

TS( 1
2

)
(Swap(Γ1, i)). Since we can transform Γ1 to Γ2 by a sequence

of swap operations at certain locations 2i, it follows that Regret1/2
TS( 1

2
)
(Γ1) = Regret

1/2

TS( 1
2

)
(Γ2).

This implies that all the sequences of the form {01, 10}k1T−2k have the same regret.
Let Γ3 = (γ1, . . . , γT ) ∈ {0, 1}T be a bit sequence of length T with k zeros such that Γ3 /∈

{01, 10}k1T−2k. We show that for some t ∈ [T ], the sequence Swap(Γ3, t) has a regret larger than
Γ3.

Since Γ3 /∈ {01, 10}k1T−2k, there is an index i ≤ k − 1 such that either γ2i+1 = γ2i+2 = 1
or γ2i+1 = γ2i+2 = 0. Let i to be the smallest such index. Assume that γ2i+1 = γ2i+2 = 1. (The
case of γ2i+1 = γ2i+2 = 0 is similar.) It follows that O2i = Z2i and O2i+1 = Z2i+1 + 1. Let
j > 2i + 2 be the minimal index such that γj = 0. Such an index must exist, since there are k
zeros in Γ3 and until index 2i there were only i ≤ k − 1 zeros. Since γj−1 = γj−2 = 1 we have
Oj−1

Zj−1
>

Oj−2

Zj−2
≥ O2i+1

Z2i+1
> 1. By Lemma 4, the sequence Swap(Γ3, j − 1) has regret larger than Γ3,

i.e., Regret1/2
TS( 1

2
)
(Γ3) < Regret

1/2

TS( 1
2

)
(Swap(Γ3, t)).

Since there are finite number of bit sequences of length T with k zeros, we get that sequences
with the largest regret must be of the form {01, 10}k1T−2k.

Given the above theorem, to bound the worst case regret of TS(1
2), we can focus on the sequence

W k
T = {01}k1T−2k and bound Regret1/2

TS( 1
2

)
(W k

T ).

Theorem 6 For every T ∈ N+ and k ≤ T
2 we have, Regret1/2

TS( 1
2

)
(W k

T ) = Θ(
√
k).

Proof Sketch LetW k
T = (w1, . . . , wT ), where we have: (1)wt = 0 for t ∈ A1 = {2i−1 | i ∈ [k]},

(2) wt = 1 for t ∈ A2 = {2i | i ∈ [k]}, and (3) wt = 1 for t ∈ A3 = {i | i ≥ 2k + 1}. We
bound the expected number of errors made by TS(1

2) on each of these three subsets. Then, from
these bounds we derive a bound on the loss and the regret. Specifically we prove the following:

1. For t ∈ A1, Zt = Ot and thus the probability to predict the next bit is 1
2 . Therefore, the

expected number of false positive errors in A1 is

k∑
t=1

E
[
I{γ̂t 6= wt} |W k

T

]
=
k

2
.

2. For t ∈ A2, Zt = Ot + 1 and the difference between the probability to predict 0 and the
probability to predict 1 is small and can be bounded. Therefore, the expected number of false
negative errors in A2 is

k∑
i=1

E
[
I{γ̂2i 6= w2i} |W k

T

]
=
k

2
+ Θ(

√
k).

3. The expected number of false negative in A3 is show to be

T∑
t=2k+1

E
[
I{γ̂t 6= wt} |W k

T

]
=

T∑
t=2k+1

Fβ(t−k+1,k+1)

(
1

2

)
= O(

√
k),
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where the last equality follows from Theorem 3.

Summing up the errors overA1,A2, andA3, and recalling that the static prediction makes min{T −
k, k} = k errors, we bound the regret as follows

T∑
t=1

E
[
I{γ̂t 6= wt} |W k

T

]
−min {T − k, k} =

k

2
+

(
k

2
+ Θ(

√
k)

)
+O(

√
k)− k = Θ(

√
k).

Since k ≤ T
2 , we have the following corollary.

Corollary 7 For any sequence of length T , the regret of TS(1
2) is at most O(

√
T ).

Remark 8 Note that in fact we proved that Regret1/2
TS( 1

2
)
(Γ) = Θ(

√
min{OT (Γ), ZT (Γ)}).

5.2. Best-case regret

In this subsection, we characterize the sequences with the lowest regret and bound them.

Theorem 9 The bit sequence with the lowest regret of length T with k < T
2 zeros isBk

T = 1T−k0k.
For k = T

2 , both 1T/20T/2 and 0T/21T/2 have the lowest regret.

We now bound the regret of Bk
T .

Theorem 10 For every T ∈ N+ and k ≤ T
2 we have, Regret1/2

TS( 1
2

)
(Bk

T ) ≤ 1, where Bk
T =

1T−k0k.

6. Regret characterization for a general q

To get some intuition regarding this generalization to an arbitrary trade-off parameter q consider the
following simple example. Assume that q = 1

3 , and thereby q
1−q = 1

2 and lets construct a sequence
such that we cannot increase the regret by swapping any pair of consecutive bits. This sequence
cannot start with a 1, since if it does then by the swapping lemma (Lemma 4 we will be able to
increase the regret by swapping the first 0 with the 1 preceding it. So we must start with a 0. In
general we determine bit t+ 1 by comparing Ot+1

Zt+1 to 1
2 (i.e., q

1−q ). If they are equal then the bit in
position t + 1 is either 0 or 1. If Ot+1

Zt+1 > 1
2 the bit in position t + 1 is 0 since otherwise we will

be able to increase the regret by swapping the first 0 following position t + 1 with its preceding 1.
Similarly, if Ot+1

Zt+1 <
1
2 the bit in position t + 1 is 1 since otherwise we will be able to increase the

regret by swapping the first 1 following position t+ 1 with its preceding 0.
It follows that the second bit could be either 0 or 1 since O1+1

Z1+1 = q
1−q = 1

2 . If we have a 0 at
position 2 then O2+1

Z2+1 = 1
3 <

1
2 and therefore we must continue with a 1 at position 3. Then we have

that O3+1
Z3+1 = 2

3 >
1
2 so we put 0 at position 4, and we are back in the situation where O4+1

Z4+1 = 1
2 so

we can choose either 0 or 1 at position 5. Similarly, if we place a 1 at position 2 then we will have
to continue with two 0’s and then we will be free to choose at position 5 either 0 or 1. It follows

9
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that the family of sequences of the form 0{100, 010}∗x{1∗, 0∗} (where x could be any prefix of 100
or 010) contains all sequences of largest regret. (We will in fact show that they all have the same
regret.)

To gain some deeper intuition assume now that q is a rational number and q
1−q = n1

n2
(where n1

and n2 do not have common divisors) and lets try to construct a sequence that we cannot increase
its regret by applying the swapping lemma. Whenever Ot+1

Zt+1 = n1
n2

we can choose any bit to position
t+1. At this point we have that n2(Ot+1) = n1(Zt+1) and therefore n1(Zt+1) is a multiple of n2

and n2(Ot+1) is a multiple of n1. Once we choose, say 0, then we are forced to choose a particular
sequence in the following n1 +n2−1 steps, until we will again have that n2(Ot′+1) = n1(Zt′+1)
for t′ = t + n1 + n2 among these bits n2 would be zeros and n1 would be ones so Zt′ = Zt + n2

Ot′ = Ot + n1.
The structure of this section is similar to the structure of Section 5. First, we characterize the bit

sequences of largest regret. Then, we bound the regret of these sequences.

6.1. Worst-case sequences

Consider the following function that maps a bit-sequence to a set of bits

∀Φ ∈ {0, 1}∗ : Hq (Φ) =


{0} O(Φ)+1

Z(Φ)+1 >
q

1−q
{1} O(Φ)+1

Z(Φ)+1 <
q

1−q
{0, 1} O(Φ)+1

Z(Φ)+1 = q
1−q

, (1)

where O(Φ) is the total number of 1s in Φ and Z(Φ) is the total number of 0s in Φ.
For every sequence Γ = (γ1, . . . , γT ) ∈ {0, 1}T we define p(Γ) to be the largest index t s.t.

∀i ∈ [t] : γi ∈ Hq(Γ1:i−1), where Γ1:n = (γ1, . . . , γn). We call a bit sequence Γ = (γ1, . . . , γT )
a worst-case sequence if γp(Γ)+1 = . . . = γT . We define the subsequence (γ1, . . . , γp(Γ)) as the
head of Γ and denote it head(Γ) and the subsequence (γp(Γ)+1, . . . , γT ) as the tail of Γ and denote
it tail(Γ).

For start, we characterize the tail of a worst-case sequence.

Theorem 11 Let Γ be a worst-case sequence. If ZT ≤ (1− q)T − q then the tail(Γ) is filled with
ones. Otherwise, the tail(Γ) is filled with zeros.

6.2. Worst-case regret

In this subsection we prove that all the worst-case sequences have the largest regret and prove an
upper bound on this regret.

Theorem 12 Let Γ ∈ {0, 1}T , s.t. Γ is not a worst-case sequence. Then, there exists t ∈ [T ] such
that RegretqTS(q)(Γ) < RegretqTS(q)(Swap(Γ, t)).

Proof Let i = p(Γ) + 1. Since Γ is not a worst-case sequence, there is an index j > i such that
γj 6= γi (since, from Theorem 11, tail(Γ) contains both 0’s and 1’s). Assume j is the smallest index
with this property.
Case 1 Assume γi = 0 and γj = 1. Since γi /∈ Hq(Γ1:i−1) we have Oi−1(Γ)+1

Zi−1(Γ)+1 < q
1−q . From the

definition of j follows that γi = γi+1 = . . . = γj−1 = 0 and thus Oj−2(Γ)+1
Zj−2(Γ)+1 ≤

Oi−1(Γ)+1
Zi−1(Γ)+1 <

q
1−q .

By Lemma 4, the sequence Swap(Γ, j − 1) has a regret larger than Γ.

10
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Case 2 Assume γi = 1 and γj = 0. Since γi /∈ Hq(Γ1:i−1) we have Oi−1(Γ)+1
Zi−1(Γ)+1 > q

1−q . From the

definition of j follows that γi = γi+1 = . . . = γj−1 = 1 and thus Oj−2(Γ)+1
Zj−2(Γ)+1 ≥

Oi−1(Γ)+1
Zi−1(Γ)+1 >

q
1−q .

By Lemma 4, the sequence Swap(Γ, j − 1) has a regret larger than Γ.

Theorem 12 implies that any sequence of largest regret is a worst-case sequence. Next we prove
that all worst-case sequences of length T with k zeros have the same regret.

Lemma 13 All the worst-case sequences of length T with k zeros have the same regret.

Let W k
T = (w1, . . . , wT ) ∈ {0, 1}T be a worst-case sequence with k zeros such that for all

t ≤ p(W k
T ) with Ot−1+1

Zt−1+1 = q
1−q we have γt = 0. Since by Lemma 13 all the worst-case sequences

with the same number of zeros have the same regret, we can focus on bounding the regret of W k
T .

Theorem 14 For every T ∈ N+, q ∈
[
0, 1

2

]
and k zeros we have

RegretqTS(q)(W
k
T ) =

{
O(
√
qk) k ≤ (1− q)T − q

O(
√

(1− q)(T − k)) k > (1− q)T − q .

The regret bounds for q ∈ [1
2 , 1] are derived from the Theorem 14 using the following lemma.

Lemma 15 For every bit sequence Γ = (γ1, . . . , γT ) define Γ̄ = (1 − γ1, . . . , 1 − γT ). Then,
RegretqTS(q) (Γ) = Regret1−qTS(1−q)

The following theorem derives the worst-case sequences regret bound for general q.

Theorem 16 For any observation sequence of length T , the regret of TS(q) is O
(√

q(1− q)T
)

.

6.3. Best-case regret bound

We do not characterize the exact best-case regret sequences2, but only show that there are sequence
with regret at most 1.

Theorem 17 For every q ∈ (0, 1) and m,n ∈ N, if qm ≤ (1− q)n, then RegretqTS(q)(1
n0m) ≤ 1

and otherwise RegretqTS(q)(0
m1n) ≤ 1.

7. Conclusion and further research

This paper studies Thompson sampling in an adversarial bit prediction setting. We give a full
characterization for this particular environment, which enables us to understand the best and worst
case behaviour. Our results show that TS has asymptomatically optimal results in the adversarial
bit-prediction setting (i.e. O(

√
T ) regret).

We also consider an extension for the bit prediction environment by adding weights to false
positive and false negative mistakes. Using the same proof techniques, we managed to characterize
this environment as well.

There are several natural directions for further research.

2. Finding the best-case sequence characterization for a general trade-off parameter q is harder than the previous cases.
With the tools we presented, it is difficult even to compare the regrets of the bit sequences 10k and 0k1 for k ∈ N.

11
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• In order to get a full understanding of TS in an adversarial environment, we would want to
extend the result to an adversarial MAB environment. This is important for a full-information
environment as well as a partial one. We expect TS to be asymptotically as good as the known
algorithms today.

• It would be interesting to find lower and upper bounds for the generalized bit-prediction
environment. It is also interesting to compare our O(

√
q(1− q)T ) regret bound to the per-

formance of other known algorithms in this environment.
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Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Foundations and Trends in Machine Learning, 5(1):1–122, 2012.
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Appendix A. Beta and Binomial concentration bounds

The following identities are well known (see, for example, Agrawal and Goyal (2017), Fact 3 and
DLMF, Eq. 8.17.4).

The first relates the CDFs of the Beta and the Binomial distributions. The second is a property
of the Beta distribution.

Fact 18 For a, b ∈ N+ and p ∈ [0, 1] we have Fβ(a,b)(p) = 1− FBin(a+b−1,p)(a− 1).

Fact 19 For a ∈ N+ and p ∈ [0, 1] we have Fβ(a,1)(p) = pa.

Next, we present concentration bounds and inequalities that we need for our proofs.

Fact 20 (Gaussian Half CDF)

Let σ ∈ R+. Then 1√
2πσ2

∞∫
0

e−
x2

2σ2 dx = 1
2 .

Fact 21 (Multiplicative Chernoff bound) Mitzenmacher and Upfal (2005)
Let X1, ..., Xn be random variables with values of {0, 1} such that E[Xt|X1, ..., Xt−1] = µ.

Let Sn =
n∑
i=1

Xi.

1. For 1 ≥ a ≥ 0, Pr (Sn ≥ (1 + a)nµ) ≤ e−
a2nµ

3 .

2. For a ≥ 1, Pr (Sn ≥ (1 + a)nµ) ≤ e−
anµ
3 .

Fact 22 (Chernoff-Hoeffding) Hoeffding (1963)
Let X1, ..., Xn be random variables with common range [0, 1] such that E[Xt|X1, ..., Xt−1] =

µ. Let Sn =
n∑
i=1

Xi.

1. For all a ≥ 0, Pr (|Sn − nµ| ≥ a) ≤ 2e−
2a2

n .

2. For µ ≥ 1
2 and a ≥ 0, Pr (Sn > nµ+ a) ≤ e−

a2

2nµ(1−µ) .

Appendix B. Proof of bounds on sums of Beta CDFs (Theorems 3 and 25)

We present two bounds for sums of Beta CDFs. In the first subsection we prove a simple version of
our bound, which appears Theorem 3. In the second subsection we expend the result to a general
q ∈ (0, 1).

B.1. Proof of Theorem 3

The proof is divided into two parts. First we prove a bound on a series of exponents and then use
Hoeffding bound to show that the exponent series is an upper bound for the sum of beta-distribution
CDFs appears in Theorem 3.

Lemma 23 For every n ≥ 1,
∞∑

i=n+1
e
− (i−(n+1))2

2(i+n+1) = Θ(
√
n).
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Proof Let j = i− (n+ 1), then
∞∑

i=n+1

e
− (i−(n+1))2

2(i+n+1) =

∞∑
j=0

e
− j2

2(j+2(n+1)) . (2)

We bound from below and above the exponents. For the upper bound we use the fact that
j ≥ 0 and for lower bounding the exponent we consider two cases: (a) j > 2(n + 1) and (b)
2(n+ 1) ≥ j ≥ 0. We have,

j2

4(n+ 1)
≥ j2

2 (j + 2 (n+ 1))
≥

{
j2

8(n+1) 2(n+ 1) ≥ j ≥ 0
j
4 j > 2(n+ 1)

.

We bound the sum (2) from below using Fact 20, where σ2 = 2(n+ 1), as follows

∞∑
j=0

e
− j2

2(j+2(n+1)) ≥
∞∑
j=0

e
− j2

4(n+1) ≥
√

4π(n+ 1)
1√

4π(n+ 1)

∞∫
0

e
− x2

4(n+1)dx =
√
π(n+ 1).

For upper bounding Eq. (2) we have,

∞∑
j=0

e
− j2

2(j+2(n+1)) ≤
2(n+1)∑
j=0

e
− j2

8(n+1) +

∞∑
j=2(n+1)

e−
j
4 . (3)

The first sum of the right side of Eq. (3) is bounded, by using Fact 20 with σ2 = 4(n + 1), as
follows

2(n+1)∑
j=0

e
− j2

8(n+1) ≤ 1 +

2(n+1)∫
0

e
− x2

8(n+1)dx ≤ 1 +
√

2π (n+ 1).

The second sum of the right hand side of Eq. (3) is an exponential sum and bounded as follows,

∞∑
j=2(n+1)

e−
j
4 =

1

1− e−
1
4

−
1−

(
e−

1
4

)2n+3

1− e−
1
4

≤ 1

1− e−
1
4

.

By combining the previous inequalities and Eq. (3) we get
∞∑

i=n+1
e
− (i−(n+1))2

2(i+n+1) = Θ(
√
n).

Theorem 3 For every n ≥ 1 we have
∑∞

i=n+1 Fβ(i+1,n+1)

(
1
2

)
= O(

√
n).

Proof Using Fact 18
∞∑

i=n+1

Fβ(i+1,n+1)

(
1

2

)
=

∞∑
i=n+1

(
1− FBin(i+n+1, 1

2)(i)
)

=
∞∑

i=n+1

1− Pr
xj∼Ber( 1

2)

i+n+1∑
j=1

xj ≤ i


=

∞∑
i=n+1

Pr
xj∼Ber( 1

2)

i+n+1∑
j=1

xj −
i+ n+ 1

2
≥ i− (n+ 1)

2

 .
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Note that i−(n+1)
2 ≥ 0 when i ≥ n + 1, therefore we can use the Chernoff-Hoffding bound

(Fact 22.1) to achieve

∞∑
i=n+1

Fβ(i+1,n+1)

(
1

2

)
≤ 2

∞∑
i=n+1

e
− (i−(n+1))2

2(i+n+1) = Θ(
√
n).

where the last equality follows from Lemma 23.

B.2. Proof of Theorem 25

The following subsection generalizes the proof of Theorem 3, as presented in Appendix B.1. We
divide the generalized theorem version proof into two parts similarly to Appendix B.1.

Lemma 24 For every n ∈ N+, a > 0 and p ∈ (0, 1) we have

1.
∞∑

i=
⌈

p
1−p (n+1)

⌉
+1

e
− ((1−p)i−p(n+1))2

a(i+n+1) ≤
√
πa(n+1)√

2(1−p)3/2 + 2a
(1−p)2 e

− 1−p
2a

(n+1),

2.
∞∑

i=
⌊
2p(n+1)
1−2p

⌋
+1

e−
(1−p)i−p(n+1)

a ≤ 1 + a
1−pe

− p(n+1)
a(1−2p) .

Proof
1. We bound the sum as follows

∞∑
i=

⌈
p

1−p (n+1)
⌉
+1

e
− ((1−p)i−p(n+1))2

a(i+n+1) ≤
∞∫

p
1−p (n+1)

e
− ((1−p)x−p(n+1))2

a(x+n+1) dx.

Using a substitution of y = (1− p)x− p(n+ 1),

∞∫
p

1−p (n+1)

e
− ((1−p)x−p(n+1))2

a(x+n+1) dx ≤ 1

1− p

∞∫
0

e
− y2

a(
y+p(n+1)

1−p +n+1)dy =
1

1− p

∞∫
0

e
− 1−p
a(y+n+1)

y2
dy. (4)

We bound the exponent from below by considering two cases y > n + 1 and n + 1 ≥ y ≥ 0.
We have,

1− p
a(y + n+ 1)

y2 ≥

{
1−p

2a(n+1)y
2 n+ 1 ≥ y ≥ 0

1−p
2a y y > n+ 1

.

Hence, we have

∞∫
0

e
− 1−p
a(y+n+1)

y2
dy ≤

n+1∫
0

e
− 1−p

2a(n+1)
y2
dy +

∞∫
n+1

e−
1−p
2a

ydy. (5)
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We bound the first integral of Eq. (5) using Fact 20, where σ2 = a(n+1)
1−p , as follows

n+1∫
0

e
− 1−p

2a(n+1)
y2
dy ≤

√
2πa(n+ 1)

1− p

√
1− p

2πa(n+ 1)

∞∫
0

e
− 1−p

2a(n+1)
y2
dy =

√
πa(n+ 1)

2(1− p)
. (6)

The second integral in Eq. (5) equals
∞∫

n+1

e−
1−p
2a

ydy =
2a

1− p
e−

1−p
2a

(n+1). (7)

Combining Eq. (4 - 7) we have
∞∑

i=
⌈

p
1−p (n+1)

⌉
+1

e
− ((1−p)i−p(n+1))2

a(i+n+1) ≤
√
πa(n+ 1)√

2(1− p)3/2
+

2a

(1− p)2
e−

1−p
2a

(n+1).

2. We bound the sum as follows
∞∑

i=
⌊
2p(n+1)
1−2p

⌋
+1

e−
(1−p)i−p(n+1)

a ≤ 1 +

∞∫
2p(n+1)
1−2p

e−
(1−p)x−p(n+1)

a dx.

Using a substitution of y = (1− p)x− p(n+ 1),

1 +

∞∫
2p(n+1)
1−2p

e−
(1−p)x−p(n+1)

a dx ≤ 1 +
1

1− p

∞∫
p(n+1)
1−2p

e−
y
ady = 1 +

a

1− p
e
− p(n+1)
a(1−2p) .

Theorem 25 For every n ≥ 1 and p ∈ (0, 1) we have

∞∑
i=

⌊
p

1−pn
⌋
+1

Fβ(i+1,n+1)(p) =

{
2
√

3πp(n+ 1) +O(1) p ≤ 1
2

1 + p
1−p +

√
πp(n+1)

1−p + 4p
1−pe

− 1
4p

(n+1)
p ≥ 1

2

.

Proof Using Fact 18
∞∑

i=
⌊

p
1−pn

⌋
+1

Fβ(i+1,n+1)(p) =
∞∑

i=
⌊

p
1−pn

⌋
+1

(
1− FBin(i+n+1,p)(i)

)
(8)

=

∞∑
i=

⌊
p

1−pn
⌋
+1

1− Pr
Xj∼Ber(p)

i+n+1∑
j=1

Xj ≤ i



=
∞∑

i=
⌊

p
1−pn

⌋
+1

Pr
Xj∼Ber(p)

i+n+1∑
j=1

Xj > i

 .
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Let Ni = i+ n+ 1 and ri = (1− p)i− p(n+ 1). We have i = pNi + ri and therefore, we rewrite
Eq. (8) as

∞∑
i=

⌊
p

1−pn
⌋
+1

Fβ(i+1,n+1)(p) =

∞∑
i=

⌊
p

1−pn
⌋
+1

Pr
Xj∼Ber(p)

 Ni∑
j=1

Xj > pNi + ri

 . (9)

1. First, we focus on the case of p ≤ 1
2 .

Consider ri
pNi

and notice that 1 > ri
pNi
≥ 0 when 1 > (1−p)i−p(n+1)

p(i+n+1) ≥ 0, which is equivalent to

2p
1−2p(n + 1) > i ≥ p

1−p(n + 1). Also, we note that EXj∼Ber(p)[
Ni∑
j=1

Xj ] = pNi. Using Chernoff

bound (Fact 21.1) and Lemma 24.1, with a = 3p, we have
⌊

2p
1−2p

(n+1)
⌋∑

i=
⌈

p
1−p (n+1)

⌉
+1

Pr
Xj∼Ber(p)

 Ni∑
j=1

Xj > pNi + ri

 ≤
⌊

2p
1−2p

(n+1)
⌋∑

i=
⌈

p
1−p (n+1)

⌉
+1

e
− r2i

3pNi (10)

≤
∞∑

i=
⌈

p
1−p (n+1)

⌉
+1

e
− ((1−p)i−p(n+1))2

3p(i+n+1) ≤
√

3πp(n+ 1)√
2(1− p)3/2

+
6p

(1− p)2
e
− 1−p

6p
(n+1)

.

When i > 2p
1−2p(n + 1) we use the second form of Chernoff bound (Fact 21.2), followed by

Lemma 24.2, with a = 3, to have

∞∑
i=

⌊
2p

1−2p
(n+1)

⌋
+1

Pr
Xj∼Ber(p)

 Ni∑
j=1

Xj > pNi + ri

 ≤ ∞∑
i=

⌊
2p

1−2p
(n+1)

⌋
+1

e−
ri
3 (11)

=
∞∑

i=
⌊

2p
1−2p

(n+1)
⌋
+1

e−
(1−p)i−p(n+1)

3 ≤ 1 +
3

1− p
e
− p(n+1)

3(1−2p) .

When p
1−p(n+ 1) > i we can assume worst-case to get

⌈
p

1−p (n+1)
⌉∑

i=
⌊

p
1−pn

⌋
+1

Pr
Xj∼Ber(p)

 Ni∑
j=1

Xj > pNi + ri

 ≤ 1 +
p

1− p
. (12)

By substituting Eq. (10-12) in Eq. (9) we have

∞∑
i=

⌊
p

1−pn
⌋
+1

Fβ(i+1,n+1)(p) ≤ 2 +
p

1− p
+

√
3πp(n+ 1)√
2(1− p)3/2

+
6p

(1− p)2
e
− 1−p

6p
(n+1)

+
3

1− p
e
− p(n+1)

3(1−2p) .
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Since p ≤ 1
2 , we have 1

2 ≤ 1− p, thus

∞∑
i=

⌊
p

1−pn
⌋
+1

Fβ(i+1,n+1)(p) = 2
√

3πp(n+ 1) +O(1).

2. Now, consider p ≥ 1
2 . Assume i ≥ p

1−p(n + 1) and therefore ri = (1 − p)i − p(n + 1) ≥
pn+ p− pn− p = 0. Using Hoeffding bound (Fact 22.2) we get that

Pr
Xj∼Ber(p)

 Ni∑
j=1

Xj > pNi + ri

 ≤ e− r2i
2p(1−p)Ni .

Thus, by using Lemma 24.1, with a = 2p(1− p), we have

∞∑
i=

⌈
p

1−p (n+1)
⌉
+1

Pr
Xj∼Ber(p)

 Ni∑
j=1

Xj > pNi + ri

 ≤ ∞∑
i=

⌈
p

1−p (n+1)
⌉
+1

e
− r2i

2p(1−p)Ni

≤
√
πp(n+ 1)

1− p
+

4p

(1− p)
e
− 1

4p
(n+1)

. (13)

For i ≤ p
1−p(n+ 1) we assume the worst-case bound to get

⌈
p

1−p (n+1)
⌉∑

i=
⌊

p
1−pn

⌋
+1

Pr
Xj∼Ber(p)

 Ni∑
j=1

Xj > pNi + ri

 ≤ 1 +
p

1− p
. (14)

By substituting Eq. (13, 14) in Eq. (9) and using Lemma 24.1, with a = 2p(1− p), to have

∞∑
i=

⌊
p

1−pn
⌋
+1

Fβ(i+1,n+1)(p) ≤ 1 +
p

1− p
+

√
πp(n+ 1)

1− p
+

4p

(1− p)
e
− 1

4p
(n+1)

.

Appendix C. Proof of the Swapping Lemma (Lemma 4)

We start with the following preliminary lemma that states the probability of an error for TS(q)
given a history.

Lemma 26 Fix a bit sequence Γ = (γ1, . . . , γT ) ∈ {0, 1}T . For any t ∈ [T ] we have,

Pr[γ̂t 6= γt | Γ] = E[I{γ̂t 6= γt}|Γ] =

{
1− Fβ(Ot−1+1,Zt−1+1)(q) γt = 0

Fβ(Ot−1+1,Zt−1+1)(q) γt = 1
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Proof At time t, algorithm TS(q) samples xt ∼ β (Ot−1 + 1, Zt−1 + 1), and predicts γ̂t = 1 if
xt > q and γ̂t = 0 if xt ≤ q. Thus, for the case of γt = 0,

Pr (γ̂t 6= γt = 0) = Pr (xt > q) = 1− Fβ(Ot−1+1,Zt−1+1)(q),

and for the case of γt = 1,

Pr (γ̂t 6= γt = 1) = Pr (xt ≤ q) = Fβ(Ot−1+1,Zt−1+1)(q).

Now we can prove the Swapping Lemma, which compares the regret of two sequences that
differ by a single swap operation.

Lemma 27 (Swapping Lemma) Fix a bit sequence Γ = (γ1, . . . , γT ) ∈ {0, 1}T . For every t, such
that γt = 0 and γt+1 = 1, we have

RegretqTS(q)(Γ) < RegretqTS(q)(Swap(Γ, t))⇐⇒
q

1− q
>
Ot−1 + 1

Zt−1 + 1
.

For every t, such that γt = 1 and γt+1 = 0, we have

RegretqTS(q)(Γ) < RegretqTS(q)(Swap(Γ, t))⇐⇒
q

1− q
<
Ot−1 + 1

Zt−1 + 1
.

In addition,

RegretqTS(q)(Γ) = RegretqTS(q)(Swap(Γ, t))⇐⇒
q

1− q
=
Ot−1 + 1

Zt−1 + 1
.

Proof We consider the difference between the regret of TS(q) on the bit sequence Γ and the bit se-
quence Swap(Γ, t). The two bit sequences differ only at locations t and t+1. Since the benchmark
of a sequence depends only on the total number of zeros and ones in the sequence, the benchmarks
on Γ and Swap(Γ, t) are identical, i.e., statisq(Γ) = staticq(Swap(Γ, t)). Therefore, the differ-
ence between the regrets is equals to the loss difference at time t and t+ 1.

Consider time t ∈ [T ] such that γt = 0 and γt+1 = 1.We have,

RegretqTS(q) (Γ)−RegretqTS(q) (Swap(Γ, t))

=
T∑
t=1

E [`q(γ̂t, γt) | Γ]−
T∑
t=1

E [`q(γ̂t, γt) | Swap(Γ, t)]

= E [`q(γ̂t, γt) | Γ] + E [`q(γ̂t+1, γt+1) | Γ]

− (E [`q(γ̂t, γt) | Swap(Γ, t)] + E [`q(γ̂t+1, γt+1) | Swap(Γ, t)])
= E [`q(γ̂t, 0) | Γ] + E [`q(γ̂t+1, 1) | Γ]

− (E [`q(γ̂t, 1) | Swap(Γ, t)] + E [`q(γ̂t+1, 0) | Swap(Γ, t)])
= q

(
1− Fβ(Ot−1+1,Zt−1+1)(q)

)
+ (1− q)Fβ(Ot−1+1,Zt−1+2)(q)

−
(
(1− q)Fβ(Ot−1+1,Zt−1+1)(q) + q

(
1− Fβ(Ot−1+2,Zt−1+1)(q)

))
= (1− q)Fβ(Ot−1+1,Zt−1+2)(q) + qFβ(Ot−1+2,Zt−1+1)(q)− Fβ(Ot−1+1,Zt−1+1)(q),
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where we used Lemma 26 for the equality before last.
By Fact 2, we have the following recurrence relations:

Fβ(a+1,b)(x) = Fβ(a,b)(x)− xa(1− x)b

aB(a, b)
and Fβ(a,b+1)(x) = Fβ(a,b)(x) +

xa(1− x)b

bB(a, b)
.

where B(a, b) is the Beta function. Therefore,

RegretqTS(q)(Γ)−RegretqTS(q)(Swap(Γ, t))

= (1− q)Fβ(Ot−1+1,Zt−1+2)(q) + qFβ(Ot−1+2,Zt−1+1)(q)− Fβ(Ot−1+1,Zt−1+1)(q)

= (1− q)
(
Fβ(Ot−1+1,Zt−1+1)(q) +

qOt−1+1(1− q)Zt−1+1

(Zt−1 + 1)B (Ot−1 + 1, Zt−1 + 1)

)
+ q

(
Fβ(Ot−1+1,Zt−1+1) −

qOt−1+1(1− q)Zt−1+1

(Ot−1 + 1)B(Ot−1 + 1, Zt−1 + 1)

)
− Fβ(Ot−1+1,Zt−1+1)

=
qOt−1+1(1− q)Zt−1+1

B (Ot−1 + 1, Zt−1 + 1)

(
1− q

Zt−1 + 1
− q

Ot−1 + 1

)
,

(15)

We now analyse the sign of the terms in Eq. (15). Since qOt−1+1(1−q)Zt−1+1

B(Ot−1+1,Zt−1+1) > 0,

sign
(
RegretqTS(q) (Γ)−RegretqTS(q) (Swap (Γ, t))

)
= sign

(
(1− q)
Zt−1 + 1

− q

Ot−1 + 1

)
.

Thus,

RegretqTS(q) (Γ) < RegretqTS(q) (Swap(Γ, t))⇐⇒ q

1− q
>
Ot−1 + 1

Zt−1 + 1
,

and equality holds iff q
1−q = Ot−1+1

Zt−1+1 .
The second case, where γt = 1 and γt+1 = 0, is similar.

Appendix D. Worst-case regret proofs for q = 1
2

(Section 5.1)

Consider bit sequences Γ = (γ1, . . . , γT ) with k zeros, where k ≤ T
2 zeros. We first show that

among these bit sequences the ones of largest regret are of the form {01, 10}k1T−2k. Then, we
prove that the regret of each of these sequences is Θ(

√
k).

Theorem 5 For any Γ1,Γ2 ∈ {01, 10}k1T−2k we have Regret1/2
TS( 1

2
)
(Γ1) = Regret

1/2

TS( 1
2

)
(Γ2). In

addition, for any Γ3 /∈ {01, 10}k1T−2k we have Regret1/2
TS( 1

2
)
(Γ1) > Regret

1/2

TS( 1
2

)
(Γ3).

Given the above theorem, to bound the worst case regret of TS(1
2), we can focus on the sequence

W k
T = {01}k1T−2k and bound Regret1/2

TS( 1
2

)
(W k

T ).

Theorem 6 For every T ∈ N+ and k ≤ T
2 we have, Regret1/2

TS( 1
2

)
(W k

T ) = Θ(
√
k).
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Proof Let W k
T = (w1, . . . , wT ), where we have: (1) wt = 0 for t ∈ A1 = {2i − 1 | i ∈ [k]}, (2)

wt = 1 for t ∈ A2 = {2i | i ∈ [k]}, and (3) wt = 1 for t ∈ A3 = {i | i ≥ 2k + 1}. We bound the
expected number of errors made by TS(1

2) on each of these three subsets. Then, from these bounds
we derive a bound on the loss and the regret.

The expected number of false positive errors in A1: Note that the only errors at times t ∈ A1 are
false positive since wt = 0 for these t’s. For t ∈ A1 we have that t = 2i − 1, and Ot−1 = Zt−1 =
i− 1. Hence the algorithm TS(1

2) predicts γ̂t = 0 and γ̂t = 1 each with probability of 1
2 and

E
[
I{γ̂t 6= wt} |W k

T

]
=

1

2
.

When we sum over t ∈ A1, we have

k∑
t=1

E
[
I{γ̂t 6= wt} |W k

T

]
=
k

2
.

The expected number of false negative errors in A2: Note that the only errors at times t ∈ A2

are false negatives since wt = 1. For t ∈ A2 we have t = 2i, and Ot−1 = i− 1 and Zt−1 = i. By
Lemma 26 and Fact 18 we have

E
[
I{γ̂t 6= wt} |W k

T

]
= Fβ(i,i+1)

(
1

2

)
= 1− FBin(2i, 1

2
)(i− 1).

We can bound FBin(2i, 1
2

)(i− 1) using Fact 32, in the following way

FBin(2i, 1
2

)(i− 1) = Pr
X∼Bin(2i, 1

2
)
(X ≤ i)− Pr

X∼Bin(2i, 1
2

)
(X = i)

=
1

2
− (1 + o(1))

1√
πi

Summing over t ∈ A2 we have,

k∑
i=1

E
[
I{γ̂2i 6= w2i} |W k

T

]
=
k

2
+

k∑
i=1

(1 + o(1))
1√
πi

=
k

2
+ Θ(

√
k)

The expected number of false negative in A3: Note that the only errors at times t ∈ A3 are false
negative since wt = 1 for these t’s. For any t ∈ A3 we have Zt = k. Therefore,

E
[
I{γ̂t 6= wt} |W k

T

]
= Fβ(t−k+1,k+1)

(
1

2

)
.

From Theorem 3 we have

T∑
t=2k+1

E
[
I{γ̂t 6= wt} |W k

T

]
=

T∑
t=2k+1

Fβ(t−k+1,k+1)

(
1

2

)
= O(

√
k).
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Summing up the errors over A1, A2, and A3 we get that the total number of errors is

T∑
t=1

E
[
I{γ̂t 6= wt} |W k

T

]
=
k

2
+

(
k

2
+ Θ(

√
k)

)
+O(

√
k) = k + Θ(

√
k)

Recall that the regret is the total loss minus the best static bit prediction. Since we assume that
k ≤ T

2 it is equal to

Regret
1/2

TS( 1
2

)
(W k

T ) =
1

2

T∑
t=1

E
[
I{γ̂t 6= wt} |W k

T

]
− 1

2
min {T − k, k} = Θ(

√
k).

Appendix E. Best-case regret proofs for q = 1
2

(Section 5.2)

We show that for k ≤ T
2 , the lowest regret is for the bit sequence Bk

T = 1T−k0k. Then, we prove
that its regret is O(1) for any k ≤ T

2 .

Lemma 28 For any Φ ∈ {0, 1}T−2m, Regret1/2
TS( 1

2)
(0m1mΦ) = Regret

1/2

TS( 1
2)

(1m0mΦ).

Proof Let Γ1 = (γ1
1 , . . . , γ

1
T ) = (0m1m,Φ) and Γ2 = (γ2

1 , . . . , γ
2
T ) = (1m0m,Φ). We show, using

Lemma 26, that for each t ∈ [T ], we have E[I{γ̂t = γ1
t } | Γ1] = E[I{γ̂t = γ2

t } | Γ2], which implies
that Γ1 and Γ2 have the same expected loss. Since static bit prediction also has the same loss on Γ1

and Γ2 then they have the same regret.
For t ≤ m, by Fact 1, we have

E
[
I{γ̂t = γ1

t } | Γ1
]

= 1− Fβ(1,i+1)

(
1

2

)
= Fβ(i+1,1)

(
1

2

)
= E

[
I{γ̂t = γ2

t } | Γ2
]
.

For m < t ≤ 2m we have,

E
[
I{γ̂t = γ1

t } | Γ1
]

= Fβ(i+1,m+1)

(
1

2

)
= 1− Fβ(m+1,i+1)

(
1

2

)
= E

[
I{γ̂t = γ2

t } | Γ2
]
.

For t > 2m we have Ot(Γ1) = Ot(Γ
2) and Zt(Γ1) = Zt(Γ

2) and thus E[I{γ̂t = γ1
t } | Γ1] =

E[I{γ̂t = γ2
t } | Γ2].

From that we can induce that Bk
T has the lowest regret on TS(q).

Theorem 9 The bit sequence with the lowest regret of length T with k < T
2 zeros is Bk

T = 1T−k0k.
For k = T

2 , both 1T/20T/2 and 0T/21T/2 have the lowest regret.

Proof Let Γ = (γ1, . . . , γT ) ∈ {0, 1}T be a bit sequence of length T with k ≤ T
2 zeros such that

Γ 6= 1T−k0k. We show that there is a bit sequence Γ̃, that has the same regret as Γ, and for some
t ∈ [T ] the sequence Swap(Γ̃, t) has regret smaller than Γ̃.
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Since Γ 6= 1T−k0k, then either Γ = 0k1T−k or it has a prefix of the form 0m1n0 or 1n0m1,
where n,m > 0.

First, we look at the case where Γ = 0k1T−k. By Lemma 28, the sequence Γ̃ = 1k0k1T−2k has
the same regret as Γ and by Lemma 4, the sequence Swap(Γ̃, 2k) has regret smaller than the regret
of Γ̃.

Second, assume Γ has a prefix of 0m1n0 (the case of 1n0m1 is similar). We have two sub-
cases: (a) If m ≥ n then On+m−1 < Zn+m−1 and γn+m = 1, γn+m+1 = 0. By Lemma 4, the
sequence Swap(Γ, n+m) has regret lower than Γ. (b) If m < n, by Lemma 28, the bit sequences
Γ = (0m1m1n−m0, γm+n+2, . . . , γT ) and Γ̃ = (1m0m1n−m0, γm+n+2, . . . , γT ) have the same
regret. By Lemma 4, the sequence Swap(Γ̃, 2m) has regret smaller than the regret of Γ̃.

For k = T
2 , by Lemma 28, both 0T/21T/2 and 1T/20T/2 have the same regret.

We now bound the regret of Bk
T = 1T−k0k.

Theorem 10 For every T ∈ N+ and k ≤ T
2 we have, Regret1/2

TS( 1
2

)
(Bk

T ) ≤ 1, where Bk
T =

1T−k0k.

Proof For t ≤ T − k we have bt = 1. Thus

E
[
I{γ̂t 6= bt} | Bk

T

]
= Fβ(Ot−1+1,Zt−1+1)

(
1

2

)
= Fβ(t,1)

(
1

2

)
.

Using Fact 19, we have

E
[
I{γ̂t 6= bt} | Bk

T

]
=

(
1

2

)t
.

This implies that the expected number of false negative errors, in steps t ≤ T − k, is

T−k∑
t=1

E
[
I{γ̂t 6= bt} | Bk

T

]
=

T−k∑
t=1

(
1

2

)t
≤ 1.

For t ≥ T − k + 1 we can have at most k errors so

T∑
t=T−k+1

E
[
I{γ̂t 6= bt} | Bk

T

]
≤ k.

Therefore, the regret of TS(1
2) on Bk

T is bounded by

Regret
1/2

TS( 1
2

)
(Bk

T ) =
1

2

T∑
t=1

E
[
I{γ̂t 6= bt} | Bk

T

]
− 1

2
min {T − k, k}

≤ 1

2
(k + 1)− 1

2
min {T − k, k} ≤ 1.
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Appendix F. Worst-case regret proofs for a general q (Sections 6.1 and 6.2)

Recall Hq,

∀Φ ∈ {0, 1}∗ : Hq (Φ) =


{0} O(Φ)+1

Z(Φ)+1 >
q

1−q
{1} O(Φ)+1

Z(Φ)+1 <
q

1−q
{0, 1} O(Φ)+1

Z(Φ)+1 = q
1−q

, (16)

where O(Φ) is the total number of 1s in Φ and Z(Φ) is the total number of 0s in Φ. For every
sequence Γ = (γ1, . . . , γT ) ∈ {0, 1}T we define p(Γ) to be the largest index t s.t. ∀i ∈ [t] : γi ∈
Hq(Γ1:i−1), where Γ1:n = (γ1, . . . , γn). We call a bit sequence Γ = (γ1, . . . , γT ) a worst-case
sequence if γp(Γ)+1 = . . . = γT . We define the subsequence (γ1, . . . , γp(Γ)) as the head of Γ and
denote it head(Γ) and the subsequence (γp(Γ)+1, . . . , γT ) as the tail of Γ and denote it tail(Γ).

For start, we want to bound the number of 0s and 1s in the head of a worst-case sequence.

Lemma 29 Fix a worst-case sequence Γ = (γ1, . . . , γT ) and let t ≤ p(Γ). Then, if γt = 0 then
(1 − q)t ≤ Zt ≤ (1 − q)t + (1 − q) and qt − (1 − q) ≤ Ot ≤ qt, if γt = 1 then (1 − q)t − q ≤
Zt ≤ (1− q)t and qt ≤ Ot ≤ qt+ q.

Proof The proof is by induction on t. For t = 1 and q < 1
2 we have that q

1−q < 1 and therefore
Hq of an empty sequence equals {0}. Thus, as t ≤ p(Γ), we must place γ1 = 0. In case of such
sequence (1− q) ≤ 1 ≤ 2(1− q) and 2q − 1 ≤ 0 ≤ q.

By the induction hypothesis for both γt−1 = 0 and γt−1 = 1 we have, (1 − q)(t − 1) − q ≤
Zt−1 ≤ (1− q)(t− 1) + (1− q) and q(t− 1)− (1− q) ≤ Ot−1 ≤ q(t− 1) + q.

Case 1 γt = 0. Since t ≤ p(Γ), we have that 0 ∈ Hq(Γ1:t−1) and therefore Ot−1+1
Zt−1+1 ≥

q
1−q .

Since Ot−1 = Ot and Zt−1 + 1 = Zt we get that

Ot + 1

Zt
≥ q

1− q
. (17)

Since Zt + Ot = t we can substitute Zt = t − Ot in Eq. (17) and get that Ot ≥ qt − (1 − q).
Similarly by substituting Ot = t− Zt in Eq. (17) we get that Zt ≤ (1− q)t + (1− q). The upper
bound on Ot and the lower bound on Zt follow directly from our assumption: Zt = Zt−1 + 1 ≥
(1− q)(t− 1)− q + 1 = (1− q)t and Ot = Ot−1 ≤ q(t− 1) + q = qt.

Case 2 γt = 1. Since t ≤ p(Γ), we have that 1 ∈ Hq(Γ1:t−1) and therefore Ot−1+1
Zt−1+1 ≤

q
1−q .

Since Ot−1 + 1 = Ot and Zt−1 = Zt we get that

Ot
Zt + 1

≤ q

1− q
. (18)

Since Zt +Ot = t we can substitute Zt = t−Ot in Eq. (18) and get that Ot ≤ qt+ q. Similarly by
substituting Ot = t−Zt in Eq. (18) we get that Zt ≥ (1− q)t− q. The lower bound on Ot and the
upper bound on Zt follow directly from our assumption: Zt = Zt−1 ≤ (1− q)(t− 1) + (1− q) =
(1− q)t and Ot = Ot−1 + 1 ≥ q(t− 1)− (1− q) + 1 = qt.

From Lemma 29 we characterize the tail of a worst-case sequence.

Theorem 11 Let Γ be a worst-case sequence. If ZT ≤ (1− q)T − q then the tail(Γ) is filled with
ones. Otherwise, the tail(Γ) is filled with zeros.
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Proof Let j = p(Γ).
Consider first the case where ZT ≤ (1 − q)T − q and assume by contradiction that tail(Γ) is

not empty and it is filled with zeros. It follows from this assumption that ZT = Zj + (T − j). By
Lemma 29 we have that Zj ≥ (1 − q)j − q, and by combining this inequality with the equality
ZT = Zj + (T − j) we get that ZT ≥ (1 − q)j − q + T − j = T − qj − q. On the other hand
we assumed that ZT ≤ (1 − q)T − q. So by combining these upper and lower bounds on ZT we
get that (1− q)T − q ≥ T − qj − q and thus j ≥ T . This is a contradiction to the assumption that
tail(Γ) is not empty.

Consider now the case where ZT ≥ (1− q)T − q+ 1 and assume by contradiction that tail(Γ)
is not empty and it is filled with ones. It follows from this assumption that OT = Oj + (T − j).
By Lemma 29 we have that Oj ≥ qj − (1− q), and by combining this inequality with the equality
OT = Oj + (T − j) we get that OT ≥ qj − (1 − q) + T − j = T − (1 − q)j − (1 − q). On the
other hand we assumed that OT = T − ZT ≤ qT − (1 − q). So by combining these upper and
lower bounds on OT we get that qT − (1− q) ≥ T − (1− q)j − (1− q) and thus j ≥ T . This is a
contradiction to the assumption that tail(Γ) is not empty.

Now we prove that all the worst-case sequences have the largest regret and bound it.

Theorem 12 Let Γ ∈ {0, 1}T , s.t. Γ is not a worst-case sequence. Then, there exists t ∈ [T ] such
that RegretqTS(q)(Γ) < RegretqTS(q)(Swap(Γ, t)).

Proof Let i = p(Γ) + 1. Since Γ is not a worst-case sequence, there is an index j > i such that
γj 6= γi (since tail(Γ) contains both 0’s and 1’s). Assume j is the smallest index with this property.
Case 1 Assume γi = 0 and γj = 1. Since γi /∈ Hq(Γ1:i−1) we have Oi−1(Γ)+1

Zi−1(Γ)+1 < q
1−q . From the

definition of j follows that γi = γi+1 = . . . = γj−1 = 0 and thus Oj−2(Γ)+1
Zj−2(Γ)+1 ≤

Oi−1(Γ)+1
Zi−1(Γ)+1 <

q
1−q .

By Lemma 4, the sequence Swap(Γ, j − 1) has a regret larger than Γ.
Case 2 Assume γi = 1 and γj = 0. Since γi /∈ Hq(Γ1:i−1) we have Oi−1(Γ)+1

Zi−1(Γ)+1 > q
1−q . From the

definition of j follows that γi = γi+1 = . . . = γj−1 = 1 and thus Oj−2(Γ)+1
Zj−2(Γ)+1 ≥

Oi−1(Γ)+1
Zi−1(Γ)+1 >

q
1−q .

By Lemma 4, the sequence Swap(Γ, j − 1) has a regret larger than Γ.

Theorem 12 implies that any sequence of largest regret is a worst-case sequence. Next we prove
that all worst-case sequences of length T with k zeros have the same regret.

Lemma 30 All the worst-case sequences of length T with k zeros have the same regret.

Proof Assume by contradiction that there are two worst-case sequences such that
RegretqTS(q)(Γ

1) = r1, RegretqTS(q)(Γ
2) = r2 and r1 6= r2. We assume further that Γ1 and Γ2

have the longest common prefix among all worst-case sequences of length T with k zeros and regret
r1 and r2, respectively.

Since Γ1 and Γ2 both have k zeros then by Corollary 11 their tails are filled with the same bit. It
follows that head(Γ1) 6= head(Γ2). Assume without loss of generality that head(Γ2) is not shorter
than head(Γ1). We claim that head(Γ1) is not a prefix of Γ2. This follows since otherwise Γ1 and
Γ2 cannot both have k zeros.

It follows that there exists an index t ≤ p(Γ1) such that γ1
t 6= γ2

t . Let t be the smallest such
index. Since Γ1

1:t−1 = Γ2
1:t−1 we have that Ot−1(Γ1)+1

Zt−1(Γ1)+1
= Ot−1(Γ2)+1

Zt−1(Γ2)+1
= q

1−q . Assume that γ1
t = 0
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and γ2
t = 1. Therefore, there is an index t′ > t such that γ1

t′ = 1 and γ2
t′ = 0. Since the tails of both

sequences are filled with the same bit then this implies that t′ ≤ p(Γ2) and therefore since t+1 ≤ t′
we have that t+ 1 ≤ p(Γ2).

Since γ2
t = 1 we have that Ot(Γ

2)+1
Zt(Γ2)+1

> Ot−1(Γ2)+1
Zt−1(Γ2)+1

= q
1−q , and since t + 1 ≤ p(Γ2) we must

have that γ2
t+1 = 0. By Lemma 4, RegretqTS(q)(Γ

2) = RegretqTS(q)

(
Swap(Γ2, t)

)
= r2. It is easy

to check that Swap(Γ2, t) is still a worst-case sequence and since it has a longer common prefix
with Γ1 we get a contradiction to the choice of Γ1 and Γ2.

The case where γ1
t = 1 and γ2

t = 0 is analogous.

Let W k
T = (w1, . . . , wT ) ∈ {0, 1}T be a worst-case sequence with k zeros such that for all

t ≤ p(W k
T ) with Ot−1+1

Zt−1+1 = q
1−q we have γt = 0. Since by Lemma 13 all the worst-case sequences

with the same number of zeros have the same regret, we can focus on bounding the regret of W k
T .

Theorem 14 For every T ∈ N+, q ∈
[
0, 1

2

]
and k zeros we have

RegretqTS(q)(W
k
T ) =

{
O(
√
qk) k ≤ (1− q)T − q

O(
√

(1− q)(T − k)) k > (1− q)T − q .

Proof We first consider the case that k ≤ (1 − q)T − q. We partition W k
T into the following sets

(1) A1 = {t | t ∈ [p(W k
T )] and wt = 0}, (2) A2 = {t | t ∈ [p(W k

T )] and wt = 1}, and (3)
A3 = {t | t ≥ p(W k

T ) + 1}. We bound the expected number of errors made by TS(q) on each of
these three subsets. Then, from these bounds we derive a bound on the loss and the regret.

The expected number of false positive errors in A1: Note that the only errors at times t ∈ A1 are
false positive since wt = 0 for these t’s. Therefore, by Lemma 26 and Fact 18 we have

E
[
I{γ̂t 6= wt} |W k

T

]
= 1− Fβ(Ot−1+1,Zt−1+1)(q) = Fβ(Zt−1+1,Ot−1+1)(1− q)

= 1− FBin(t,1−q)(Zt−1) = 1− FBin(t,1−q)(Zt − 1). (19)

By the definition of A1, t ≤ p(W k
T ), and therefore by Lemma 29, (1− q)t ≤ Zt. Thus, t ≤ Zt

1−q ≤
Zt+1−1+q

1−q = Zt+1
1−q − 1 ≤

⌊
Zt+1
1−q

⌋
. Let m =

⌊
Zt+1
1−q

⌋
and X ∼ Bin (m, 1− q). We can bound the

right side of Eq. (19) as follows.

FBin(t,1−q)(Zt − 1) ≥ FBin(m,1−q)(Zt − 1)

= Pr(X ≤ Zt + 1)− Pr(X = Zt + 1)− Pr(X = Zt). (20)

We now bound the different probabilities in Eq. (20). Since X is a Binomial random variable,
its median is bm(1− q)c = Zt or dm(1− q)e = Zt + 1 and thereby

Pr(X ≤ Zt + 1) ≥ 1

2
. (21)

For any Zt ≥ 2(1−q)
q − 1, we bound Pr(X = Zt + 1) by Lemma 33 as follows

Pr(X = Zt + 1) = O

(
1√
qZt

)
. (22)
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The probability Pr(X = Zt) is bounded using the previous equality,

Pr(X = Zt)

Pr(X = Zt + 1)
=

q(Zt + 1)

(1− q)(m− Zt)
≤ q(Zt + 1)

(1− q)(Zt+1
1−q − 1− Zt)

=
q(Zt + 1)

(1− q)(Zt+1−(1−q)(Zt+1)
1−q )

=
q(Zt + 1)

q(Zt + 1)
= 1. (23)

Therefore by using Eq. (22) and (23) we have

Pr(X = Zt) = O

(
1√
qZt

)
. (24)

By substituting Eq. (20-22,24) into (19) we get that for Zt ≥ 2(1−q)
q − 1

E
[
I{γ̂t 6= wt} |W k

T

]
≤ 1

2
+O

(
1√
qZt

)
. (25)

For Zt <
2(1−q)
q − 1 we assume the worst-case to have

E
[
I{γ̂t 6= wt} |W k

T

]
≤ 1. (26)

Notice that since k ≤ (1 − q)T − q, by Corollary 11 there are no zeros in the tail.Thus, all the
zeros of W k

T are in A1. Thus, we use Eq. (25-26) to sum over all t ∈ A1.∑
t∈A1

E
[
I{γ̂t 6= wt} |W k

T

]
=

∑
{t∈A1|Zt< 2(1−q)

q
−1}

E
[
I{γ̂t 6= wt} |W k

T

]
+

∑
{t∈A1|Zt≥ 2(1−q)

q
−1}

E
[
I{γ̂t 6= wt} |W k

T

]

≤ 2(1− q)
q

− 1 +
∑
t∈A1

(
1

2
+O

(
1√

2πqZt

))

≤ O
(

1− q
q

)
+
k

2
+

k∑
i=1

O

(
1√

2πqi

)
=
k

2
+O

(√
k

q
+

1− q
q

)
. (27)

The expected number of false negative errors in A2: Note that the only errors at times t ∈ A2

are false negative since wt = 1. Therefore, by Lemma 26 and Fact 18 we have

E
[
I{γ̂t 6= wt} |W k

T

]
= Fβ(Ot−1+1,Zt−1+1)(q) = 1− FBin(t,q)(Ot−1) = 1− FBin(t,q)(Ot − 1).

(28)
By the definition of A2, t ≤ p(W k

T ), and therefore by Lemma 29, qt ≤ Ot. Thus, t ≤ Ot
q ≤

Ot+1−q
q = Ot+1

q − 1 ≤
⌊
Ot+1
q

⌋
. Let m =

⌊
Ot+1
q

⌋
and X ∼ Bin (m, q). We can continue and

bound the right side of Equation (28) as follows.

FBin(t,q)(Ot − 1) ≥ FBin(m,q)(Ot − 1)

= Pr(X ≤ Ot + 1)− Pr(X = Ot + 1)− Pr(X = Ot). (29)
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Note that we have analogous bounds to the previous case of A1, since by substituting Zt and 1− q
by Ot and q respectively in Eq. (19,20) we get Eq. (28,29). Thereby,

E
[
I{γ̂t 6= wt} |W k

T

]
≤

1
2 +O

(
1√

(1−q)Ot

)
Ot ≥ 2q

1−q − 1

1 Ot <
2q

1−q − 1
. (30)

Since head(W k
T ) contains all the zeros inW k

T we have Zp(Wk
T ) = k. By using Lemma 29 we get

that (1−q)p(W k
T )−q ≤ Zp(Wk

T ) and thus p(W k
T ) ≤ k+q

1−q . Therefore,Op(Wk
T ) = p(W k

T )−Zp(Wk
T ) ≤

k+q
1−q − k ≤

q
1−qk + 1.

Let n =
⌈

q
1−qk

⌉
+ 1. By Eq. (30), we sum over all t ∈ A2 to have

∑
t∈A2

E
[
I{γ̂t 6= wt} |W k

T

]
≤ 2q

1− q
− 1 +

∑
{t∈A2|Ot≥ 2q

1−q−1}

O

(
1

2
+

1√
2π(1− q)Ot

)
(31)

≤ 2q

1− q
− 1 +

n

2
+

n∑
i=1

O

(
1√

(1− q)i

)
=
n

2
+O

(√
n

1− q
+

q

1− q

)

≤
q

1−qk + 2

2
+O

√ q
1−qk + 2

1− q
+

q

1− q

 =
qk

2(1− q)
+O

( √
qk

1− q
+

q

1− q

)
,

where the one before last inequality follows from substitution of n =
⌈

q
1−qk

⌉
+ 1 ≤ q

1−qk + 2.

The expected number of false negative in A3: By Corollary 11 the only errors at times t ∈ A3 are
false negative since wt = 1. For any t ∈ A3 we have Zt = k. Therefore,

E
[
I{γ̂t 6= wt} |W k

T

]
= Fβ(t−k+1,k+1)(q).

From Lemma 29, (1 − q)p(W k
T ) + (1 − q) ≥ Zp(Wk

T ) = k and thus p(W k
T ) ≥ k

1−q − 1. From
Theorem 25 we have

T∑
t=

⌊
k

1−q

⌋
−1

E
[
I{γ̂t 6= wt} |W k

T

]
=

T∑
t=

⌊
k

1−q

⌋
−1

Fβ(t−k+1,k+1)(q) ≤
∞∑

i=
⌊
qk
1−q

⌋
−2

Fβ(i+1,k+1)(q)

≤ 3 +

∞∑
i=

⌊
qk
1−q

⌋
+1

Fβ(i+1,k+1)(q) = O
(√

qk
)
, (32)

where the inequality follows from t− k =
⌊

k
1−q

⌋
− 1− k ≥ k

1−q − k − 2 = qk
1−q − 2 = i.

Since k ≤ (1− q)T − q, the best static bit predictor is

staticq(W k
T ) = min{(1− q)(T − k), qk} = qk.
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By using Eq. (27), (31) and (32), the regret is the total loss minus the best static bit prediction

RegretqTS(q)(W
k
T ) =

T∑
t=1

Eγ̂t∼TS(q)

[
`q(γ̂t, wt) |W k

T

]
− staticq

(
W k
T

)
= q

(
k

2
+O

(√
k

q
+

1− q
q

))
+ (1− q)

(
qk

2(1− q)
+O

( √
qk

1− q
+

q

1− q

))
+ (1− q)O(

√
qk)−min {(1− q)(T − k), qk}

= O
(√

qk
)
.

We now look at the regret for k ≥ (1 − q)T − q. In this proof, we split the calculations into
A1, A2 and A3 as in the prior part.

The expected number of false positive errors in A1: At each t ∈ A1 the expected errors are
bounded in the same way as in the previous case. The only change is the size of A1. Notice that
since k > (1 − q)T − q, by Corollary 11 all ones of W k

T are in A1. By the definition of A1,
t ≤ p(W k

T ), and therefore by Lemma 29, qt − (1 − q) ≤ Op(Wk
T ) = T − k and thus t ≤ T−k+1

q .

From Lemma 29 we also conclude thatZp(Wk
T ) ≤ (1−q)p(W k

T )+(1−q) ≤ (1−q)T−k+1
q +(1−q).

In total, |A1| ≤ (1− q)T−k+1
q + (1− q). Thereby, the expected number of errors in A1 is bounded

by
1−q
q

(T−k)

2 +O

(√
(1−q)(T−k)

q + 1−q
q

)
.

The expected number of false negative errors in A2: At each t ∈ A2 the expected errors are
bounded in the same way as in the previous case. The only change is the size ofA2, which equals to
T −k since from Corollary 11 all the ones ofW k

T are in head(W k
T ). Thus we have that the expected

number of errors is bounded by T−k
2 +O

(√
T−k
1−q + q

1−q

)
.

The expected number of false negative in A3 : By Corollary 11 the only errors at times t ∈ A3

are false negative since wt = 0. For any t ∈ A3 we have Ot = T − k. Therefore,

E
[
I{γ̂t 6= wt} |W k

T

]
= 1− Fβ(T−k+1,t−(T−k)+1)(q) = Fβ(t−(T−k)+1,T−k+1)(1− q).

From Lemma 29, qp(W k
T ) + q ≥ Op(Wk

T ) = T − k and thus p(W k
T ) ≥ T−k

q − 1. From Theorem 25,
since 1− q ≥ 1

2 , we have

T∑
t=

⌊
T−k
q

⌋
−1

E
[
I{γ̂t 6= wt} |W k

T

]
=

T∑
t=

⌊
T−k
q

⌋
−1

Fβ(t−(T−k)+1,T−k+1)(1− q)

≤ 3 +

∞∑
i=

⌊
1−q
q

(T−k)
⌋
+1

Fβ(i+1,T−k+1)(1− q)

= O

(√
(1− q)(T − k + 1)

q
+

1− q
q

e
− 1

4(1−q) (T−k+1)
+

1− q
q

)
.
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Since k > (1− q)T − q, the best static bit predictor is

staticq(W k
T ) = min{(1− q)(T − k), qk} = (1− q)(T − k).

Hence, the regret in the case is

RegretqTS(q)

(
W k
T

)
=

T∑
t=1

Eγ̂t∼TS(q)

[
`q(γ̂t, wt) |W k

T

]
− staticq

(
W k
T

)
= q

(
1−q
q (T − k)

2
+O

(√
(1− q)(T − k)

q
+

1− q
q

))

+ (1− q)

(
T − k

2
+O

(√
T − k
1− q

+
q

1− q

))

+ qO

(√
(1− q)(T − k + 1)

q
+

1− q
q

e
− 1

4(1−q) ((T−k+1)+1)
+

1− q
q

)
−min {(1− q)(T − k), qk}

= O
(√

(1− q)(T − k)
)

Lemma 31 For every bit sequence Γ = (γ1, . . . , γT ) define Γ̄ = (1 − γ1, . . . , 1 − γT ). Then,
RegretqTS(q) (Γ) = Regret1−qTS(1−q)

Proof Fix q ∈
[

1
2 , 1
]

and a bit sequence Γ = (γ1, . . . , γT ). We show that RegretqTS(q) (Γ) =

RegretqTS(1−q)
(
Γ̄
)
. At each step t ∈ [T ], Ot (Γ) = Zt

(
Γ̄
)
. Therefore by Fact 1 we have

Eγ̂t∼TS(q) [I{γ̂it = 1} | Γ] = Pr
xt∼β(Ot−1(Γ)+1,Zt−1(Γ)+1)

(xt > q)

= Pr
xt∼β(Zt−1(Γ)+1,Ot−1(Γ)+1)

(xt < 1− q)

= Pr
xt∼β(Ot−1(Γ̄)+1,Zt−1(Γ̄)+1)

(xt < 1− q)

= Eγ̂t∼TS(1−q)
[
I{γ̂it = 0} | Γ̄

]
.

The benchmarks are the same as,

staticq (Γ) = min{(1− q)OT (Γ) , qZT (Γ)}
= min

{
qOT

(
Γ̄
)
, (1− q)ZT

(
Γ̄
)}

= static1−q
(
Γ̄
)
.

We conclude that RegretqTS(q) (Γ) = Regret1−qTS(1−q)
(
Γ̄
)
.

Theorem 16 For any observation sequence of length T , the regret of TS(q) is O
(√

q(1− q)T
)

.
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Proof Assume q ∈
[
0, 1

2

]
. From Theorem 12 the bit sequences that generate the largest regret, with

k zeros, are worst-case sequences. Theorem 14 shows that the regret of these bit sequences is{
O
(√
qk
)

k ≤ (1− q)T − q
O
(√

(1− q)(T − k)
)

otherwise
.

Thus, the worst-case regret over all k’s is

max
{
O
(√

q(1− q)T
)
, O
(√

(1− q)(T − (1− q)T )
)}

= O
(√

q(1− q)T
)
.

For q ∈
[

1
2 , 1
]
, Lemma 15 with Theorem 14 gives us the same regret of O

(√
q(1− q)T

)
.

Appendix G. Best-case regret proofs for a general q (Section 6.3)

Theorem 17 For every q ∈ (0, 1) and m,n ∈ N, if qm ≤ (1− q)n, then RegretqTS(q)(1
n0m) ≤ 1

and otherwise RegretqTS(q)(0
m1n) ≤ 1.

Proof First we calculate the loss of Γ1 = 1n0m. For t ≤ n we have γt = 1. Thus, by using
Lemma 26,

E
[
I{γ̂t 6= γ

(1)
t } | Γ1

]
= Fβ(Ot−1+1,Zt−1+1)(q) = Fβ(t,1)(q).

Using Fact 19, we have
Fβ(t,1)(q) = qt.

This implies that the expected number of false negative errors, in steps t ≤ n, is

n∑
t=1

E
[
I{γ̂t 6= γ

(1)
t } | Γ1

]
=

n∑
t=1

qt ≤ 1

1− q
.

For t ≥ n+ 1 we can have at most m errors so

T∑
t=n+1

E
[
I{γ̂t 6= γ

(1)
t } | Γ1

]
≤ m.

Therefore, the expected loss of TS(q) on Γ1 is bounded by

T∑
t=1

E
[
`q(γ̂t, γ

(1)
t ) | Γ1

]
= (1− q)

n∑
t=1

E
[
I{γ̂t 6= γ

(1)
t } | Γ1

]
+ q

n+m∑
t=n+1

E
[
I{γ̂t 6= γ

(1)
t } | Γ1

]
≤ (1− q) 1

1− q
+ qm = 1 + qm. (33)

Analogously, we bound the expected loss of TS(q) on Γ2 = 0m1n by

T∑
t=1

E
[
`q(γ̂t, γ

(2)
t ) | Γ2

]
≤ 1 + (1− q)n. (34)
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The benchmark of the two sequences is the same and equals

staticq(Γ1) = staticq(Γ2) = min{qm, (1− q)n}.

Therefore, if min{qm, (1− q)n} = qm then by Eq. (33)

RegretqTS(q)(Γ1) ≤ 1 + qm− qm = 1.

Otherwise min{qm, (1− q)n} = (1− q)n and by Eq. (34)

RegretqTS(q)(Γ2) ≤ 1 + (1− q)n− (1− q)n = 1.

Appendix H. Binomial coefficient approximations

We use the following well known approximation of the Binomial coefficient using Stirling’s ap-
proximation. (see for example, Das)

Fact 32 For every m ∈ N+ and n ≤ m we have(
m

n

)
= (1 + o(1))

√
m

2πn(m− n)

(m
n

)n( m

m− n

)m−n
.

From the fact above we conclude the following lemma.

Lemma 33 For every constant p ∈ (0, 1) and n ≥ 2p
1−p , we have

Pr
X∼Bin(

⌊
n
p

⌋
,p)

(X = n) = O

(
1√

(1− p)n

)
.

Proof Let m =
⌊
n
p

⌋
. We bound

(
m
n

)
using Fact 32 as follows(

m

n

)
= (1 + o(1))

√
m

2πn(m− n)

(m
n

)n( m

m− n

)m−n
.

From the definition of floor ∃ω ∈ [0, 1) : m = n
p − ω and therefore

(
m

n

)
= (1 + o(1))

√
n
p − ω

2πn(np − ω − n)

(
n
p − ω
n

)n( n
p − ω

n
p − ω − n

)n
p
−ω−n

= O(1)

√√√√ n−pω
p

n( (1−p)n−pω
p )

(
n−pω
p

n

)n n−pω
p

(1−p)n−pω
p

n
p
−ω−n

= O(1)

√
n− pω

n((1− p)n− pω)

(
n− pω
pn

)n( n− pω
(1− p)n− pω

)n
p
−ω−n

.
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Since 0 ≤ pω < p we have(
m

n

)
≤ O(1)

√
n

n((1− p)n− p)

(
n

pn

)n( n

(1− p)n− p

)n
p
−ω−n

= O(1)

√
1

(1− p)n− p

(
1

p

)n( n

(1− p)n− p

)n
p
−ω−n

. (35)

Since n ≥ 2p
1−p we get that (1−p)n

2 ≥ p and therefore (1 − p)n − p ≥ (1−p)n
2 . Thus, by using Eq.

(35), (
m

n

)
≤ O(1)

√
2

(1− p)n

(
1

p

)n( n

(1− p)n− p

)n
p
−ω−n

. (36)

We bound
(

n
(1−p)n−p

)n
p
−ω−n

as follow

(
n

(1− p)n− p

)n
p
−ω−n

= (1− p)−(n
p
−ω−n)

(
(1− p)n

(1− p)n− p

)n
p
−ω−n

= (1− p)−(n
p
−ω−n)

(
1

1− p
(1−p)n

)n
p
−ω−n

≤ (1− p)−(n
p
−ω−n) 1(

1− p
(1−p)n

) (1−p)n
p

≤ 4(1− p)−(m−n). (37)

where the last inequality holds as
(

1− p
(1−p)n

) (1−p)n
p is a monotonic increasing function and since

n ≥ 2p
1−p , the function has a minimum at n = 2p

1−p .
From Eq. (36,37) we have

Pr
X∼Bin(m,p)

(X = n) =

(
m

n

)
pn(1− p)m−n = O

(
1√

(1− p)n

)
.
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