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Abstract
For proper distribution-free learning of linear classifiers in d dimensions from m examples, we
prove a lower bound on the optimal expected error of d−o(1)

m , improving on the best previous lower
bound of d/

√
e−o(1)
m , and nearly matching a d+1

m+1 upper bound achieved by the linear support vector
machine.
Keywords: Statistical learning theory, lower bounds, linear classifiers.

1. Introduction

This paper is about the following learning problem. A learner seeks to approximate an unknown
linear classifier f in Fd = {fw,b : w ∈ Rd, b ∈ R}, where fw,b(x) = + if w · x ≥ b, and otherwise
fw,b(x) = −. For x1, ..., xm, drawn independently at random from a probability distribution D
over Rd, the learner receives examples (x1, f(x1)), ..., (xm, f(xm)), and outputs h ∈ Fd. The
accuracy of the learner is measured using another independent draw xm+1 from D; its goal is to
minimize the probability, with respect to all m + 1 random draws and any internal randomization,
that h(xm+1) 6= f(xm+1). Let optd(m) be best possible upper bound on this probability of error
that a learner can achieve for every f and D. (A formal definition of optd(m) can be found in
Section 2.)

It is known that, for all d,

d/
√
e− o(1)

m
≤ optd(m) ≤ d+ 1

m+ 1
. (1)

The upper bound is achieved by the linear SVM algorithm (Boser et al., 1992). (Because we could
not find a proof, we have included one in Appendix A.) The lower bound, which also holds for
learners that may output arbitrary classifiers, is implicit in the analysis of (Helmbold and Long,
2012). When d ≤ 2, a better upper bound is known: optd(m) ≤ d+o(1)

m (Blumer and Littlestone,
1989; Haussler et al., 1994).

In this paper, we show that, for all d,

optd(m) ≥ d− o(1)

m
,

c© 2020 P. M. Long & R. J. Long.



COMPLEXITY OF LEARNING LINEAR CLASSIFIERS

determining the leading constant for general d to within one, and matching the upper bound in the
case d ≤ 2 up to the leading constant.

We use ideas from (Haussler et al., 1994) to reduce the problem of proving lower bounds on
optd(m) to the case where d = 1. The core of our analysis is a new lower bound on opt1(m).

Since (Ehrenfeucht et al., 1989), a common lower bound technique is to (a) choose f and D
randomly, (b) characterize the optimal algorithm for minimizing the probability of error with respect
to the random choice of f and D along with the random data, and (c) analyze the probability of
error of this “Bayes optimal algorithm”. If we view the learning problem as a game between the
learner and Nature, then, informally, adopting this strategy gives away the advantage that f and D
can depend on the learner A, or, in game-theoretic terms, that Nature can “move last”. It may be
tempting to believe that no leverage is lost in this way, since the minimax theorem (von Neumann,
1928) may be loosely interpreted as saying that nothing is lost by moving first.

The minimax theorem holds for all finite games, but it has long been known that it can fail for
some infinite games (Sion and Wolfe, 1957). Here is one example. Each player chooses a member
of the open interval (0, 1), and the winner is the player with the bigger number. The player who
moves second can win with an arbitrarily high probability. For example, if Player B knows Player
A’s (mixed) strategy, and always outputs a value a tiny bit greater than the 99th percentile of A’s
distribution, then Player B will win at least 99% of the time.

The halfline learning problem at the core of this paper is somewhat like this: it can be helpful for
Nature to put probability beyond the point where the learner is likely to put its decision boundary.
Our lower bound proof constructs D and f as a function of the learner roughly in this way.

As we mentioned above, following (Haussler et al., 1994), we prove a lower bound for optd(m)
by embedding d copies of the problem of learning one-dimensional linear classifiers into the d-
dimensional problem. Using another embedding from (Haussler et al., 1994), our new lower bound
on opt1(m) implies a 2d−o(1)

m lower bound for proper learning of axis-aligned hyper-rectangles in
Rd, matching a known 2d

m+1 upper bound (Haussler et al., 1994) up to the leading constant, and

improving on the 2d/
√
e−o(1)
m lower bound implicit in (Helmbold and Long, 2012).

Related work. The most closely related previous work was mentioned earlier. For learning a
class F of VC-dimension d without the constraint that the classifier comes from F , Li et al. (2001)
proved lower bounds of d−o(1)

m for classes that they constructed, matching the general upper bound
of d

m+1 from (Haussler et al., 1994) up to the leading constant. Srebro et al. (2010) and Shamir
(2015) proved lower bounds on the complexity of distribution-free linear regression, establishing
the complexity of a formulation of this problem to within a constant factor. Some less closely
related lower bound work includes (Opper and Haussler, 1991; Devroye and Lugosi, 1995; Long,
1995; Antos and Lugosi, 1998).

2. Preliminaries and main result

For w ∈ Rd and b ∈ R, the linear classifier fw,b : Rd → {−,+} parameterized by w and b outputs
fw,b(x) = + if and only if w · x ≥ b. Let Fd = {fw,b : w ∈ Rd, b ∈ R}.

For any d, an example is a member of Rd×{−,+}, a training set is a finite multiset of examples.
Informally, a learner is a randomized mapping from training sets to Fd. A more detailed defini-

tion, which includes a measurability constraint, is given in Appendix B.
Let D be any probability distribution over Rd with respect to the Lebesgue σ-algebra. For a

learnerA and f ∈ Fd, let erD,f (A,m) be the probability that, for x1, ..., xm+1 drawn independently
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Figure 1: The distributions used in the proof of Theorem 1 concentrate probability on a negative
example at 1, and spread probability evenly among positive examples in [0, 1) that are
chosen depending on the learner A.

at random from D, if A is given (x1, f(x1)), ..., (xm, f(xm)), it produces h such that h(xm+1) 6=
f(xm+1).

Define erd(A,m) = supD,f erD,f (A,m) and optd(m) = infA erd(A,m).
The following is our main result.

Theorem 1 For all d, optd(m) ≥ d−o(1)
m .

As mentioned in the introduction, this nearly matches known upper bounds of opt1(m) ≤
d+o(1)

m for d ≤ 2 and optd(m) ≤ d+1
m+1 for d > 2.

3. The d = 1 case

In this section, we prove Theorem 1 in the case that d = 1.
First of all, define õpt1 analogously to opt1, with the additional constraint that the support of D

is finite. Then õpt1(m) ≤ opt1(m), so it suffices to prove a lower bound for õpt1(m). We will do
this. This obviates any measurability issues.

Given a learner A and a number m of examples, we will describe a probability distribution D
over [0, 1] with finite support and f ∈ F1 such that erD,f (A,m) ≥ (1− o(1))/m. Our construction
only uses a subset of F1 with a single parameter θ: classifiers that evaluate to + on x iff x ≤ θ.

We define D as follows. First, Pr(x = 1) = 1− 1
2
√
m

. The remaining probability is distributed
evenly among ` = m3 points in [0, 1). Let us call the set of these ` points T = {t1, ..., t`} where
t1 < ... < t`; each member of T thus has probability 1

2`
√
m

. The iterative construction of T will be
described later. For all t ∈ T, f(t) = +, and f(1) = −. (The behavior of f outside T ∪ {1} does
not matter.)

Let h be the output of A. Since h ∈ F1, there are v, a ∈ R such that h(x) = + iff vx ≥ a. If
v = 0, then h is either the all-+ classifier or the all-− classifier. If v > 0, there is a threshold θ̂ such
that h(x) = + exactly when x ≥ θ̂, and, otherwise, there is a θ̂ such that h(x) = + exactly when
x ≤ θ̂.

The following lemma enables us to assume without loss of generality that there is an θ̂ such that
h(x) = + if and only if x ≤ θ̂.

Lemma 2 For any learner B, there is a learner A such that

• A always outputs h for which there is an θ̂ such that h(x) = + if and only if x ≤ θ̂, and

3



COMPLEXITY OF LEARNING LINEAR CLASSIFIERS

• for any choice of T , erD,f (A,m) ≤ erD,f (B,m).

Proof Whenever B outputs a classifier that assigns all elements of [0, 1] the same class, A can also
do this, either by choosing θ̂ = 2 or θ̂ = −1. If B outputs a classifier h that predicts + on [θ̃,∞)
for θ̃ ≤ 1, then A can improve it using the all-+ classifier, since all of h’s predictions on T ∩ [0, θ)
are incorrect.

For the rest of the proof, let θ̂ refer to the threshold associated with the output of A that is
guaranteed by Lemma 2.

Let E0 be the event that all examples (xj , yj) have xj = 1, and let P0 be the probability
distribution on θ̂ obtained by conditioning Dm on E0. Since E0 is the event that none of the
examples are members of T , if we change T , this does not effect P0 – conditioning on E0 removes
any effect of the choice of T on θ̂.

The choice of t1 depends on A as follows. The first case is where Pr(θ̂ < 1|E0) ≥ 1 − 1√
m

.
Since

lim
n→∞

Pr(θ̂ < 1− 1/n | E0) = lim
n→∞

Pr(θ̂ < 1 | E0)− Pr(θ̂ ∈ [1− 1/n, 1) | E0)

= Pr(θ̂ < 1 | E0)− lim
n→∞

Pr(θ̂ ∈ [1− 1/n, 1) | E0)

= Pr(θ̂ < 1 | E0)

there is an n such that
Pr(θ̂ < 1− 1/n | E0) ≥ 1− 2√

m
;

we choose t1 = 1− 1/n for an arbitrary such n.
In the remaining case, where Pr(θ̂ < 1|E0) < 1− 1√

m
, we set t1 = 0.

For j ∈ {2, ..., `}, the choice of tj is similar. The distribution over θ̂ obtained by conditioning
the m independent draws from D on the event Ej−1 that the greatest positive example is tj−1 is
unaffected by the choices of tj , ..., t`, because conditioning on Ej−1 removes any effect of tj , ..., t`
on the distribution over θ̂. We choose tj as follows. First, if Pr(θ̂ < 1 | Ej−1) ≥ 1 − 1√

m
, then,

similarly to the case j = 1, we have

lim
n→∞

Pr(θ̂ < 1− 1/n | Ej−1) = Pr(θ̂ < 1 | Ej−1)

so there is an n such that Pr(θ̂ < 1− 1/n | Ej−1) ≥ 1− 2√
m

we set tj = 1− 1/n for an arbitrary

such n that also satisfies 1 − 1/n > tj−1. If Pr(θ̂ < 1 | Ej−1) < 1 − 1√
m

, then tj is an arbitrary
member of (tj−1, 1).

Now that we have defined f and D, let us bound erD,f (A,m). If Pr(θ̂ < 1 | Ej) ≥ 1 − 1√
m

,
let us say that A is reasonable at j. (Note that this is a property of A and T , and not the random
training and/or test data.) We have

Pr(h(xm+1) 6= ym+1) =
∑̀
j=0

Pr(h(xm+1) 6= ym+1 ∧ Ej).
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Let us focus on a particular value of j. As a first case, suppose A is reasonable at j. Then, given
Ej , with probability at least 1 − 2√

m
, tj+1, and therefore tj′ for all j′ ≥ j + 1, are all greater than

θ̂. Thus, for j for which A is reasonable at j, we have

Pr(h(xm+1) 6= ym+1 | Ej) ≥ (`− j)
(

1− 2√
m

)
1

2`
√
m
. (2)

Now, suppose A is unreasonable at j. Then

Pr(h(xm+1) 6= ym+1 | Ej) = Pr(θ̂ ≥ 1 | Ej)

(
1− 1

2
√
m

)
>

(
1− 1

2
√
m

)
1√
m

> (`− j)
(

1− 2√
m

)
1

2`
√
m
.

Consider the event U that xm+1 is less than 1 but greater than all positive training examples.
Note that

Pr(U |Ej) =
`− j
2`
√
m
.

Thus, for every j, the probability of a mistake givenEj is at least 1−2/
√
m times Pr(U |Ej). Thus,

overall, the probability of a mistake is at least 1 − 2/
√
m times Pr(U). Thus, it suffices to bound

Pr(U) from below.
We bound Pr(U) by conditioning on the very likely event E that there is at least one positive

example and that no positive example is seen twice. Conditioned on E , any ordering of the m + 1
examples is equally likely (because we have conditioned a permutation-invariant distribution on a
permutation-invariant event). Given E , U holds if xm+1 is the greatest positive example, which
happens for a fraction 1

m+1 of the random permutations of the data.
Finally, we claim that Pr(E) = 1−o(1). The probability that at least one x1, ..., xm+1 is labeled

+ is at least
1− (1− 1/(2

√
m))m+1 = 1− o(1).

The probability that any positive example is seen twice is at most ` times the probability that
any particular t ∈ T is seen twice. The latter probability is at most m2 times the probability that
any particular pair of examples share x values of t, which is at most 1/`2. Therefore the probability
that any positive example is seen twice is at most `m2/`2 = 1/m = o(1), so the probability that no
examples are seen twice is 1− o(1).

Thus, overall, Pr(U) ≥ (1−o(1))/m, which, as argued earlier, yields Pr(h(xm+1) 6= ym+1) ≥
(1− o(1))/m.

4. The d > 1 case

As mentioned before, the extension to the d > 1 case uses ideas from (Haussler et al., 1994; Li
et al., 2001).
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Figure 2: Haussler et al. (1994) proved lower bounds for linear classifiers in d dimensions by em-
bedding d interval-learning problems.

First, we note that opt(F1,m) is a non-increasing function of m — if additional examples hurt
the learner, it could be improved by ignoring the harmful examples.

Suppose D is some distribution supported on {cei : i ∈ {1, ..., d}, c ∈ [1, 2]}, where ei is the
ith natural basis vector. Any linear classifier fw,b restricted to the support of D can be decomposed
into d pieces that are applied to Xi = {cei : c ∈ [1, 2]} for different choices of i (see Figure 2). For
each piece, the restriction of fw,b to Xi is isomorphic to a one-dimensional classifier on the interval
[0, 1]. Thus, any learner A from Fd produces d learners A1, ..., Ad for the class of restrictions of the
members of F1 to [0, 1]. (In particular, the hypothesis of A1, ..., Ad are linear classifiers.)

Suppose we put negative examples on each of {2ei : i ∈ {1, ..., d}}, and, if Ti is the support
set associated with Ai, put positive examples on {1 + tei : i ∈ {1, ..., d}, t ∈ Ti}. This data is
collectively linearly separable. We may therefore apply our construction from Section 3 indepen-
dently to each piece, viewing examples from the other pieces as randomization. If h1, ..., hd are the
classifiers produced by A1, ..., Ad, we have

Pr(h(xm+1) 6= ym+1) =
1

d

d∑
i=1

Pr(hi(xm+1) 6= ym+1 | ym+1 ∈ Xi).

Thus, it suffices to prove a lower bound for Pr(hi(xm+1) 6= ym+1 | ym+1 ∈ Xi). Applying a
standard Hoeffding bound, with probability 1 − o(1), the number of examples falling in Xi is at
most m/d+

√
m lnm. Applying our lower bound construction from the case d = 1, we get

Pr(h(xm+1) 6= ym+1 | ym+1 ∈ Xi) ≥
1− o(1)

m/d+
√
m lnm

=
d− o(1)

m
.
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Appendix A. Upper bound proof

This is a proof of an upper bound of d+1
m+1 for the linear SVM algorithm in Rd. The linear SVM

algorithm behaves as follows. When all training examples are the same class, the algorithm outputs
that class. Otherwise, it predicts using the linear classifier that separates the positive examples from
the negative examples while maximizing the distance from the closest example to its separating
hyperplane.

Suppose the training and test examples are

(x1, y1), ..., (xm+1, ym+1),

where y1, ..., ym+1 ∈ {−1, 1}. Since any permutation of these m+ 1 examples is equally likely, it
suffices to bound from above the probability of a mistake when a uniform random choice of these
m+ 1 examples is the test example.

It is known (see (Cristianini et al., 2000)), that the parameters (w∗, b∗) of the linear SVM applied
to all of the data (both training and test) are the solution to the problem of choosing w and b to
minimize ||w||2 subject to

∀t, yt(w · xt − b) ≥ 1.

It also is known that there are non-negative α1, ..., αm+1 such that

• w∗ =
∑m+1

t=1 αtytxt, and

•
∑m+1

t=1 αtyt = 0.

Finally, the maximum-margin hyperplane is unique. If w′ = (w∗1, ..., w
∗
d, 0), and, for each xt =

(xt,1, ..., xt,d), we define x′t = (xt,1, ..., xt,d, 1), the above two conditions can be consolidated into

w′ =
m+1∑
t=1

αtytx′t.

By Carathéodory’s Theorem for cones, there is U ⊆ {1, ...,m + 1} of size d + 1, and non-
negative β1, ..., βm+1 such that w′ =

∑m+1
t=1 βtytx′t and βt = 0 for all t 6∈ U , so that w′ =∑

t∈U βtytx
′
t. Unwrapping this, w∗ =

∑m+1
t=1 βtytxt and

∑m+1
t=1 βtyt = 0.

Now, consider the case, for some s 6∈ U , that (xs, ys) is the test example. Using the βt’s
for s 6= t, in part since βs = 0, w∗ and b∗ still satisfy the Karush-Kuhn-Tucker conditions for
a global optimum for the optimization problem obtained by excluding example number s. Thus,
the hyperplane parameterized by w∗ and b∗ is output when (xs, ys) is the test example, and xs was
classified correctly by w∗ and b∗. Since this holds for all s 6∈ U , the linear SVM only makes
mistakes on elements of U , and, since |U | ≤ d+ 1, this completes the proof.
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Appendix B. Detailed definition of a learner

A learner can be built using any probability space (Ω,Σ, P ) as a source of randomness. It is a
function from Ω×(Rd×{−,+})∗ to Fd. Associated with each learnerA is a predictor φA that maps
Ω×(Rd×{−,+})∗×Rd to {+,−} defined by φA(ω, S, x) = (A(ω, S))(x). For any finite number
m of examples, the restriction of φA to the case of training sets of size m must be measurable with
respect to the product distribution of (Ω,Σ, P ) and any m + 1-fold product distribution used to
generate the training examples and the test point; the distributions used to generate examples use
the Lebesgue σ-algebra.
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