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Abstract
We study the stochastic multi-armed bandit problem with the graph-based feedback structure
introduced by Mannor and Shamir (2011). We analyze the performance of the two most prominent
stochastic bandit algorithms, Thompson Sampling and Upper Confidence Bound (UCB), in the
graph-based feedback setting. We show that these algorithms achieve regret guarantees that combine
the graph structure and the gaps between the means of the arm distributions. Surprisingly this holds
despite the fact that these algorithms do not explicitly use the graph structure to select arms; they
observe the additional feedback but do not explore based on it. Towards this result we introduce a
layering technique highlighting the commonalities in the two algorithms.
Keywords: Stochastic multi-armed bandits, feedback graphs, Thompson Sampling

1. Introduction

Online learning is a classical model for sequential decision-making under uncertainty. At each time
step the learner faces a choice between a set V of k options usually referred to as arms. We consider
the stochastic version of the problem where there is a probability distribution F (fixed over time) of
rewards over arms; we refer to the marginal distribution of arm a as F(a). If the distribution F was
known the decision-maker would always select the arm a? with highest expected reward µ(a?). The
goal of the learner is to make sequential choices while earning rewards close to the rewards of a?.

This trade-off between earning good rewards at the present (exploitation) and learning new
information about the future (exploration) crucially relies on the information the learner receives
as feedback. In the classical bandit model of online learning, the learner observes only the reward
associated with her chosen action. This results in regret guarantees that scale with the number of arms.
However in most applications of online learning the reward or loss of one arm reveals information
about other arms which can significantly facilitate the learning process. A natural model capturing
this extra information is the graph-based feedback setting of Mannor and Shamir (2011) where the
feedback is specified by a graph G with the arms as its nodes. When an action a is selected, the
rewards of all arms adjacent to a are revealed to the learner. In this setting, online learning techniques
provide guarantees that scale with graph parameters for example, the independence number of G.

Classical stochastic bandit algorithms achieve enhanced performance guarantees when the
difference between the mean of a? and the means of other arms a ∈ V is large as then a? is more
easily identifiable as the best arm. This difference ∆(a) = µ(a?) − µ(a) is typically known as
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FEEDBACK GRAPH REGRET BOUNDS FOR THOMPSON SAMPLING AND UCB

the gap of arm a and the performance guarantees scale inversely with it. There are two prominent
practical stochastic bandit paradigms to derive these guarantees. The first is based on the idea of
optimism in the face of uncertainty (Lai and Robbins, 1985; Auer et al., 2002; Audibert and Bubeck,
2009; Garivier and Capp, 2011; Bubeck et al., 2013) which creates confidence intervals for the
means of all arms and treats them as an optimistic estimate of their anticipated reward. Most of these
algorithms are based on Upper Confidence Bound (UCB) algorithm of Auer et al. (2002) which was
also the first finite-time stochastic bandit algorithm. The second and more modern paradigm is based
on randomized versions of these confidence intervals (Agrawal and Goyal, 2012; Kaufmann et al.,
2012; Russo and Roy, 2014, 2016). Thompson Sampling (Thompson, 1933) lies at the heart of most
of this paradigm and has been proven useful in more complicated reinforcement learning settings
(Agrawal and Jia, 2017). However the only enhanced gap-based guarantees we have for these two
important paradigms are for the pure bandit setting which does not incorporate richer notions of
feedback such as the graph-based feedback1. This poses the natural question:

Can algorithms such as UCB and Thompson Sampling benefit from extra feedback?

1.1. Our contribution

We show that surprisingly these classical algorithms seamlessly combine the graph structure with the
gaps of the arms to provide graph-based performance guarantees without any particular modifications.
This is achieved despite the fact that they do not select arms specifically aiming to learn about the
rewards of many other arms; they just incorporate the extra information that they happen to acquire
via their selected neighbors. Our main result is to bound the regret of these algorithms in terms of∑

a∈I
1

∆(a) , where I is an independent set of the graph G and ∆(a) is the gap of arm a.
We assume that the feedback graph is fixed through time. The rewards of different time steps are

independent but the rewards of different arms in any single time step may be correlated. Allowing
such correlation makes the model more general since observations across possible actions are often
strongly correlated: observations at nearby physical locations are likely similar, patients with similar
profile may react to treatments in a similar way, effect of advertising is likely to be similar on
similar observers, etc. We note that in many of these applications the feedback structure depends on
physical structure of the alternatives and hence is not changing over time. While revealing the reward
about neighboring arms does not exactly model the information available to the learner in the above
applications, the graph based feedback model is a simple and elegant abstraction of partial feedback
and hence offers great opportunity to understand the effect of feedback structure on learning.

Our results. As a warm-up in Section 3 we show a regret guarantee of O
(

maxI∈I
∑

a∈I
log2 T
∆(a)

)
where I is the set of all independent sets (Theorem 4), for a graph-based variant of Active Arm
Elimination (Even-Dar et al., 2006) similar to the one studied by Cohen et al. (2016). Although this
result is weaker by a logarithm from the optimal bounds (Buccapatnam et al., 2017) (see Section 1.2
for elaborate comparison to related work), its analysis serves as an important building block that
allows us to extend the guarantees to UCB and Thompson Sampling. Our main results are then
presented in Sections 4 and 5 where we show how the aforementioned regret guarantees can be
extended to UCB (Theorem 6) and Thompson Sampling (Theorem 12) respectively.

1. For other algorithms offering gap-based guarantees that incorporate the graph structure see related work.
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Our techniques. The warm-up algorithm in Section 3 selects arms that lie in a maximal indepen-
dent set I in a round-robin fashion. In one round of this round-robin process we observe all the arms
since at least one of their neighbors is in I due to its maximality. This gives a gap-based upper bound
on the number of times each suboptimal arm will be selected. For UCB and Thompson Sampling, we
create a layering argument (Lemma 3) that resembles these rounds. Unlike the rounds of Active Arm
Elimination, the list of events in each layer are not contiguous in time. When an arm at is selected at
time t, we place it in the lowest layer where it has not yet been observed, and place all its neighbors
in the same layer (Figure 1). The layers created this way have a few key properties that allow us to
adapt the warm-up analysis of Active Arm Elimination to this case:

• The arms put in a layer by being selected in the algorithm form an independent set.

• At the time a selected arm is put in layer `, it has been observed at least `− 1 times.

Thus, we can think of the layers as corresponding to rounds of the active arm elimination, and this
enables us to extend the analysis to these algorithms.

1.2. Related Work

The feedback graph structure for online learning was introduced in the adversarial setting (Mannor
and Shamir, 2011). In this setting Alon et al. (2017) show regret bounds of at most O(

√
Tβ log k),

where β is the independence number of the graph. Subsequent work has focused on providing
improved data-dependent guarantees (Kocák et al., 2014; Lykouris et al., 2018), robustness to noise
(Kocák et al., 2016), and understanding the effect of different observability structures (Alon et al.,
2015; Cohen et al., 2016).

Stochastic multi-armed bandits as a model of online learning has a long history dating back
to the seminal works of Robbins (1952) and Lai and Robbins (1985); in the finite-horizon setting,
the first algorithm suggested was the Upper Confidence Bound (UCB) algorithm by Auer et al.
(2002). In the context of feedback graphs, stochastic bandits were first considered by Caron et al.
(2012) who provided the natural generalization of UCB, which they termed UCB-N where the
neighbors of selected arms also make updates. The regret guarantee they obtain is of the form∑

c∈C
(maxa∈c ∆(a))·log T

(mina∈c ∆(a))2 where C is the minimum-size partition of arms across cliques (clique
cover). We improve upon this guarantee in multiple fronts. First, even though we lose an extra
logarithm compared to this result, the maximum gap in any clique can be 1 at every round, therefore
our result has an improved dependence on the gaps (inverse linear instead of inverse quadratic). This
in particular implies that our worst-case dependence on the time-horizon (ignoring logarithms) is√
T instead of T 2/3. Maybe even more importantly, our result sums over nodes in an independent set

instead of a clique cover (the number of disjoint cliques needed to cover the graph). These quantities
can be really far apart which gives an additional big improvement on gap-based bounds for UCB-N.

The first works going beyond clique partition as a parameter of the graph structure in the context
of stochastic multi-arm bandits with feedback graphs are due to Buccapatnam et al. (2014, 2017) and
then Cohen et al. (2016), both using variants of the Active Arm Elimination algorithm of Even-Dar
et al. (2006). Buccapatnam et al. (2014, 2017) combine a version of eliminating arms suggested by
Auer and Ortner (2010) with linear programming to incorporate the graph structure in an algorithm
they term UCB-LP2 which provides a regret guarantee of

∑
a∈D

log T
∆(a) + k2 where D is a particularly

2. Despite the name, this algorithm is based on eliminating arms and does not select the arm with the higher upper
confidence bound as the algorithm suggested by Caron et al. (2012) which we study in Section 4.
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selected dominating set. Their algorithm uses the outcome of the linear program to explicitly guide
exploration which is crucial in order to obtain a guarantee that depends on the minimum dominating
set.3 In contrast, our main contribution is to shed light on the ability of classical algorithms to
seamlessly incorporate feedback without explicitly seeking to do so; in fact, we provide a unifying
analysis for gap-based guarantees for algorithms such as UCB-N and TS-N that are more practical
(for instance, they do not require knowledege of the time horizon, unlike techniques based on
eliminating arms). Comparing the bounds, our approach depends on the possibly larger independence
number (which is unavoidable for UCB-N and TS-N), loses an extra log factor, but is independent
of k. Another work that utilizes the idea of eliminating arms for feedback graphs is the one by
Cohen et al. (2016) who show a regret guarantee of

∑
a∈S

log T
∆(a) for unknown and evolving graphs

where S is the set of the β log k arms with the smalles gap and β is again the size of the maximum
independent set. For the case of fixed graphs (e.g. capturing geographic proximity), we refine the
above result to depend inversely on the gaps of a maximum independent set instead of the β log k
smaller gaps. More importantly, our layering technique shows how such a result can be extended to
more practical algorithms such as UCB-N and TS-N.

Thompson Sampling was initially suggested by Thompson (1933); it was analyzed in the
Bayesian setting (where we have priors for all arms) by Russo and Roy (2016) and in the frequentist
setting (prior-free Bayesian setting) by Agrawal and Goyal (2012, 2013, 2017). In the context
of undirected feedback graphs, Tossou et al. (2017) and Liu et al. (2018a) extend the Bayesian
guarantees incorporating the clique-cover size of the graphs in the natural graph extension of
Thompson Sampling which they term TS-N. Recently Liu et al. (2018b) replace the latter with the
independence number. The latter works also provide empirical comparisons of various stochastic
bandit algorithms on different graphs and show the superiority of Thompson Sampling on the
estimated graphs. However the regret bounds for all of Tossou et al. (2017) and Liu et al. (2018a,b)
incur a

√
T dependence on the time horizon T . In contrast, we provide the first gap-dependent

bounds for Thompson Sampling that go beyond the classical bandit setting and utilize the graph
structure, while working on the more complicated frequentist setting. We note that a concurrent and
independent work of Hu et al. (2019) also provides gap-dependent bounds for TS-N; their results are
still weaker than ours since they scale with the clique cover rather than the independent set.

2. Model

Multi-armed bandit with graph-based feedback. Our setting consists of a set V of k arms and
a probability distribution F of the rewards of the arms (where rewards of different arms may be
correlated). Let F(a) be the marginal distribution of F for each arm a ∈ V; we assume that this
distribution has support only on [0, 1] and we denote its mean by µ(a). Crucially, the means of
the different arms are unknown to the learner and the learner does not have prior distributional
information about these means.

Whenever arm a′ is selected we sample an independent reward vector r from distribution F ,
and earn reward r(a′). Let a? denote the arm with the highest mean, and for each arm a ∈ V let
∆(a) = µ(a?)−µ(a) be the gap in expected rewards between the optimal arm a? and the arm a ∈ V .

The information feedback structure is defined by an undirected graph G on the set of nodes V .
When the learner selects an arm a′, she receives reward r(a′), and also observes the rewards r(a) for

3. In Section 6, we show that one cannot hope to obtain the same guarantee for algorithms such as UCB-N and TS-N that
do not explicitly use the feedback graph to guide the exploration.
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the set of arms a ∈ N (a′), where N (a′) denotes the set of nodes adjacent to a′ in the graph G. We
use I(G) to denote the set of independent sets of G and assume that G is fixed across time steps.

More formally, the protocol is as follows: We are given a set of arms V , an undirected graph G
on these arms, and a time horizon T . The adversary selects the reward distribution F with rewards
r(a) ∈ [0, 1] for all arms a ∈ V . For each round t = 1, 2, ..., T :

1. The learner selects an arm at (possibly using a randomized algorithm).

2. Stochastic rewards are drawn for all arms a ∈ V: rt ∼ F (where rewards of different arms
may be correlated).

3. The learner earns reward rt(at), and observes the reward rt(at), as well as the rewards rt(a)
for all arms a ∈ N (at), adjacent to at in the graph G.

Regret. The goal of the learner is to maximize the expected reward earned over time. If the
distributionF was known, the learner would select a? in every round, so we measure the performance
of the learner by the expected regret, comparing its reward to the reward of the best arm

RT = E

[∑
t

rt(a?)− rt(at)

]
,

where expectation is taken over the randomness of the rewards of the arms as well as the choices of
the algorithm. For ease of presentation, we express the regret in terms of the gaps of the arms as

RT =
∑
t

E
[
∆(at)

]
,

where the expectation is now only over the choices of the algorithm.

3. Warm-up: Active Arm Elimination via the layering technique

In this section, we show how to adapt the Active Arm Elimination algorithm of Even-Dar et al.
(2006) using the graph structure to obtain regret bounds that only depend on the gaps of the nodes
lying on an independent set. The purpose of this section is to introduce our main technique, layering,
which serves as a building block for deriving the same guarantee for UCB (Section 4) and Thompson
Sampling (Section 5) that do not explicitly use the graph structure.

The Active Arm Elimination algorithm maintains the empirical mean µ̃t(a) for each arm a ∈ V
at each time step t along with a confidence interval ensuring that the actual mean µ(a) falls within
this interval with high probability at all times. An arm is eliminated if its confidence interval is fully
below the interval of some other arm. The original Active Arm Elimination algorithm plays all not
yet eliminated arms in a round robin fashion.

We adapt Active Arm Elimination by proceeding in rounds (the algorithm is formally described
in Algorithm 1). In each round, we choose a maximal independent set of the not-yet eliminated
arms4 and we play once each node in this independent set, instead of all the non-eliminated arms as
the original algorithm. By playing a maximal independent set in a round, we observe at least one

4. Maximal corresponds to an independent set that cannot be extended; such a set can be computed by adding nodes
greedily. Note that an independent set in any subgraph is also independent in the original graph.
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sample for the reward of each arm, and hence improve the estimates of all arms. We note that any
maximal independent set works well, so selecting an independent set greedily is fine.

We denote the set of active arms (that is, the set of non-eliminated arms) A and use N t
a to denote

the number of times an arm a has been observed until time step t. The empirical mean of an arm a at
the end of round t is

µ̃t(a) =
1

N t
a

∑
s≤t:as=a

or a∈N (as)

rs(a)

As a confidence interval we use the interval centered around µ̃t(a) extended by
√

ln(2Tk/δ)/(2N t
a)

in both directions. Using classical concentration bounds and the union bound we get that with high
probability the mean of each arm falls within this interval (Lemma 1); for completeness we provide
its proof in Appendix A of the supplementary material.

Algorithm 1 Active Arm Elimination using independent set
Initialize the set of active arms as A = V , time as t = 1, and rounds as γ = 0.
while t ≤ T do

Move to the next round: γ ← γ + 1
Select a maximal independent set Iγ of the subgraph of set A
for all a ∈ Iγ do

Select arm at = a and earn reward rt(at)
Observe the samples from all arms in N (at)
Move to the next time step: t← t+ 1

end for
Delete from the set of active arms A all arms a′ whose confidence interval is below the
confidence interval of some other arm a ∈ A:

µ̃t(a′) +

√
ln(2Tk/δ)

2N t
a′

< max
a∈A

(
µ̃t(a)−

√
ln(2Tk/δ)

2N t
a

)

end while

Lemma 1 For any arm a and any time t, with probability at least 1− δ
kT it holds that

|µ̃t(a)− µ(a)| ≤

√
ln(2Tk

δ )

2N t
a

.

The probability this is true for all arms throughout the algorithm is at least 1− δ.

Layering technique. The crux of our analysis lies in identifying and using two properties that the
arms selected in one particular round, which we term layers, satisfy. These properties are presented in
the following definition and are crucial in extending the guarantees to UCB and Thompson Sampling
(in the next two sections).

Definition 2 (Layering of selected arms) All selected arms are placed in layers ` ∈ {1, 2, . . .}.
Arm at is placed in the minimum layer ` such that it does not neighbor any arm already placed in
layer `.
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For the active arm elimination algorithm we presented above (Algorithm 1), layers correspond to the
respective rounds denoted by γ there. We now note two important properties of the layers.

• Arms in the same layer must be independent of one another thereby forming an independent
set. This is true as once an arm a′ is selected and put in a layer `, any neighbor a ∈ N (a′) that
is later selected, can no longer be placed in layer ` by definition of the layers.

• When an arm a is placed in layer `, it must have been observed at least `− 1 times. This is
true as ` is selected at the lowest layer in which the arm has not yet been observed.

The key lemma of the layering technique is bounding the regret of all selected arms assuming that
they are not selected after being observed too many times. In particular, let Λta be the highest layer in
which arm a is placed until time step t (upper bounding the times the arm is observed at any time it
is selected). Then the following lemma gives a graph-based upper bound on the regret coming from
all arms with appropriately bounded Λta:

Lemma 3 Let La = L
∆(a)2 for all arms a some value L. Let also Λta be the highest layer arm a is

placed until time step t. Then

T∑
t=1

∑
a∈V

P
[
1
{
at = a,Λta ≤ La

}]
∆(a) ≤ 4 · log(T ) · max

I∈I(G)

∑
a∈I

L

∆(a)
+ 1.

Proof For the purpose of our analysis, we group the layers into phases, where phase φ begins in the
first layer ` such that no arm a with ∆(a) > 2−φ+1 is placed in any layer higher than ` and ends at the
last layer `′ that still includes arms a with ∆(a) > 2−φ. All arms a with gap ∆(a) ∈ (2−φ, 2−φ+1]
are associated with phase φ.

We now evaluate the contribution to the regret of the LHS from arms associated with phase φ.
All these arms have gap at most 2−φ+1 which therefore upper bounds the expected regret at these
steps. The LHS focuses on the event that these arms appear only in layers smaller than L

∆(a)2 ≤ L
2−2φ .

Letting Vφ be the arms associated with phase φ and Gφ be the subgraph with only arms Vφ, the
contribution from these arms in the LHS is:

T∑
t=1

∑
a∈Vφ

P
[
1
{
at = a,Λta ≤ La

}]
∆(a) ≤ max

I∈I(Gφ)

∑
a∈I

L

2−2φ
· 2−φ+1 ≤ 4 · max

I∈I(G)

∑
a∈I

L

∆(a)

Phases φ ≤ log(T ) each contribute one such term which leads to the additional log(T ) in the RHS.
For arms with ∆(a) ≤ 1/T , the expected regret using such arms is bounded by at most 1 overall.

We now apply the previous lemma to directly show a regret guarantee based on the gaps of the
independet sets for the active arm elimination algorithm.

Theorem 4 Algorithm 1 has expected regret bounded as

RT ≤ 32 · ln(2kT/δ) · log(T ) max
I∈I(G)

∑
a∈I

1

∆(a)
+ Tδ + 1

Setting δ = 1
T , we obtain a bound of RT = Õ(

∑
a∈I

1
∆(a)) for some Independent Set I of the

underlying graph.
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Proof Recall that regret can be expressed as RT =
∑

t E[∆(at)]. It will be useful to write this as

RT =

T∑
t=1

∑
a∈V

P
[
1
{
at = a

}]
∆(a)

To bound the regret, we first observe that by Lemma 1, the probability that there exists an arm whose
empirical mean fails to be in its corresponding confidence interval is bounded by δ. The maximum
regret we can get over T steps is at most T as rewards at each time step are bounded in [0, 1], so the
unlikely event of an empirical mean falling outside the confidence interval (including also when the
optimal arm is eliminated) contributes at most δT to the expected regret. For the rest of the analysis
we assume that the confidence intervals include the actual mean for each arm throughout.

An arm a is definitely eliminated when the upper bound of its confidence interval is below the
lower bound of the confidence interval of a?. The distance between the actual mean and any of the

lower or upper bounds of the confidence interval of an arm a can differ by 2 ·
√

ln(2Tk/δ)
2Nt

a
as we

assume that all means lie inside the confidence interval. Since the actual mean of arm a and a? differ
by ∆(a), in order to ensure that arm a is eliminated, the lower bound of a? must be within ∆(a)

2 of
µ(a?). Similarly, the upper bound of a must be within ∆(a)

2 of µ(a). To guarantee this we need that√
ln(2Tk/δ)

2Nt
a
≤ ∆(a)

4 and
√

ln(2Tk/δ)
2Nt

a?
≤ ∆(a)

4 . This happens when N t
a and N t

a? are both at least

N t
a, N

t
a? ≥

8 ln(2Tk/δ)

∆(a)2
.

Since, via layering, the arm is added to the smallest layer that it is not yet observed, the above implies
that arm a is never added to a layer larger than L

∆(a)2 for L = 8 ln(2Tk/δ). By Lemma 3, when no

confidence interval is violated, the regret is at most 4 · log(T ) ·maxI∈I(G)

∑
a∈I

8 ln(2Tk/δ)
∆(a) + 1.

We note that the round-robin version in the algorithm is, in fact, not necessary (see Remark 8).

Remark 5 In the above analysis, we discussed fixed graphs and provided regret guarantees based
on independent set. In contrast, Buccapatnam et al. (2014) use dominating set and Cohen et al. (2016)
focus on evolving unknown graphs. Our bounds can extend in either of these directions by using a
dominating set instead of an independent set in the algorithm and by sampling uniformly at random
among active arms and applying Turan’s theorem. However, using fixed graphs and independent set
is crucial in extending our results beyond Active Arm Elimination (Thompson Sampling and UCB);
this is why we present our analysis with respect to this setting. We note that one cannot hope for
regret bounds based on the minimum dominating set for UCB and Thompson Sampling that do not
use the feedback graph to explicitly target exploration as we discuss in Section 6.

4. Upper Confidence Bound

In this section, we present our first main result: combining gaps of the arms and the independent
set of the graph G for bounding the expected regret of UCB; in the next section we extend this to
Thompson Sampling. Note that unlike our version of Active Arm Elimination in Section 3 that
explicitly selected independent sets neither UCB nor Thompson Sampling needs any change to
adapt to the graph structure. The original UCB algorithm of Auer et al. (2002) is based on the

8
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a

t3

c

t1

b

t1

d

t1

et1

Layer 1

a

t2

c

t2

b

t2

det2

Layer 2

a c

t4

b

t4

d

t4

et4

Layer 3

Figure 1: There are k = 5 arms; {a, b, c, d, e}. We show the first four steps {t1, t2, t3, t4} of the
layering construction (for the first 3 layers); the time next to a node denotes the first time
it is observed in the layer. The nodes selected in these times are c, e, a, c; we denote these
nodes by green. Orange edges show which nodes were observed for the first time in the
layer. Note that, at time t3, the selected node a is put in the first layer despite having been
observed in a higher layer (layer 2). Also note that a node may be observed by multiple
selected nodes in the same layer (e.g. node e in layer 1); this does not interfere with our
analysis as more observations only help the concentration bounds.

same confidence intervals as Active Arm Elimination5, but is using them in an optimistic way: at
each iteration it selects the arm whose upper confidence bound is as high as possible. The natural
extension of this with a graph feedback, suggested by Caron et al. (2012) and termed UCB-N, selects
the arm in precisely the same way but also updates the estimates of the neighbors of the selected arm.
The algorithm is formally described in Algorithm 2.

Algorithm 2 UCB-N
Initialize time as t = 1
while t ≤ T do

at = argmax
a∈V

(
µ̃t(a) +

√
ln( 2kT

δ
)

2Nt
a

)
Select arm at and earn reward rt(at)
Observe the samples from all arms in N (at)
Move to the next time step: t← t+ 1

end while

We analyze the expected regret of the UCB-N algorithm by relating it to a run of the variant of
Active Arm Elimination considered in Section 3. A round there corresponded to selecting arms of
an independent set over the arms not yet eliminated. We divide the run of UCB into layers where a
layer corresponds to a round of Active Arm Elimination. When we select an arm, we place it in the
minimum layer in which it has not yet been observed (see Definition 2). We illustrate this layering
construction pictorially in Figure 1, where the sequence of nodes as they are selected are put in layers
1, 2, and then layer 1 again despite being selected afterwards. Although arms in a layer are no longer
selected contiguously, Lemma 3 shows that the layering technique still applies. We formalize the
regret guarantee in the following theorem.

5. To avoid using the time horizon T in the algorithm, we can use the current time t instead of T in defining confidence
intervals.
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Theorem 6 The expected regret of the UCB-N algorithm (Algorithm 2) can be bounded as

RT ≤ 8 · ln(2kT/δ) · log(T ) max
I∈I(G)

∑
a∈I

1

∆(a)
+ Tδ + 1

By setting δ = 1
T we have RT = Õ(

∑
a∈I

1
∆(a)) for an independent set I of the graph.

Proof As in the proof of Theorem 4, we start by pointing out that by Lemma 1 with probability at
least 1− δ the means of all the arms will stay in the confidence intervals around their empirical mean
throughout the algorithm. The δ probability that this may fail can only contribute δT to the expected
regret, so for the rest of the analysis we will assume this does not happen.

Recall that the Active Arm Elimination analysis was divided into phases, where in later phases
arms with larger gaps are already eliminated. While UCB does not actively eliminate arms, we
argue next that arms with large ∆ values are not selected in high layers unless our assumption at the
beginning of the proof about confidence intervals fails. By the definition of our confidence bounds
and our assumption that the means of all arms remain in the confidence bounds throughout, once

N t
a ≥

2 ln(2kT/δ)

∆(a)2

the upper confidence bound of arm a is below the the mean of the optimal arm a?, and hence cannot
be the arm selected by UCB. This comes from the same argument that was used in Active Arm
Elimination, except we only need the upper bound for arm a to stay below µ(a) + ∆(a) and not
µ(a) + ∆(a)/2 as was the case there. (This difference is what improves the bound by a factor of
4 compared to Theorem 4.) In particular this implies that, when the confidence intervals are not
violated, arm a is never placed in any layer Λta >

L
∆(a)2 for L = 2 ln(2kT/δ). 6

Similarly to the proof of Theorem 4, applying Lemma 3, when no confidence interval is violated,
the regret is at most 4 · log(T ) ·maxI∈I(G)

2 ln(2Tk/δ)
∆(a) + 1, which concludes the proof.

By standard techniques for taking the worst case over ∆’s, we also derive a gap-independent bound.

Corollary 7 The expected regret of UCB-N is bounded by 2 + 4
√

2 · αT ln(2kT 2) · log T where α
is the size of the maximum independent set.

Proof To get the gap-independent bound, we follow the standard bandit technique using Theorem 6
for arms with gaps greater than some parameter ∆.

RT =
∑
t

E[∆(at)] ≤
∑

t:∆(at)>∆

E[∆(at)] + T∆

≤ 1 + Tδ + 8 · ln(2kT/δ) log(T )
α

∆
+ T∆.

which implies the result by choosing ∆ =

√
8α ln(2kT/δ)·log(T )

T and δ = 1/T .

6. If we use the current time in defining confidence intervals, the confidence interval of an unseen arm will grow with
time. This may cause the arm to be selected later; however, it will always go in a layer lower than the current bound.

10
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Remark 8 In the previous section, we presented active arm elimination as selecting non-eliminated
arms in a round-robin manner from a maximal independent set. This presentation helps the exposition
of the layering technique. However, we note that the above layering analysis can be used to show the
same guarantee for a simpler variant of Active Arm Elimination where we select the non-eliminated
arm observed the fewest number of times, i.e., select the arm arg mina∈AN

t
a.

5. Thompson Sampling

In this section, we show that the Thompson Sampling algorithm of Agrawal and Goyal (2013) also
obtains similar guarantees. Similar to UCB, we do not alter the decisions of Thompson Sampling
to accommodate the graph feedback structure but instead just update the information for neighbors
of the selected arm. This natural extension, termed TS-N, was initially suggested in the Bayesian
setting by Tossou et al. (2017). We now provide the main ingredients of this algorithm.

TS-N algorithm. The frequentist (prior-free) approach to Thompson Sampling starts with a Beta
distribution Beta(α, β) for all arms with α = β = 1. A Beta distribution Beta(α, β) is defined with
the following probability density function

fα,β(x) =
xα−1(1− x)β−1

B(α, β)

where B(α, β) is the normalization factor. At every time step t, the algorithm draws independent
samples θt(a) from the Beta distribution of each arm a, selects the arm with the highest sample
value and updates its posterior distribution using a Bernoulli trial with success probability equal to
the reward obtained for this arm. The only change with graph feedback is that we also observe the
reward for the neighbours of the selected arm, so we also update their distributions (see Algorithm 3
for a formal description). The two key insights for using Beta distribution are that with the Bernoulli
update used, its mean is the empirical mean of the rewards, and that the Bayesian posterior of a
Bernoulli trial to a Beta distribution is also a Beta distribution.

Outline of analysis of Thompson Sampling for Bandits. The general idea for analyzing stochas-
tic bandits is to observe samples from all arms enough times to be confident that the empirical means
are close enough to the actual means with high probability in order to identify the best arm. In Active
Arm Elimination and UCB, we already showed that the regret incurred by the algorithm is only until
all suboptimal arms have been observed enough times since thereafter, with high probability, only
the optimal arm is selected. The regret in this case is generally

∑
a∈V

ln kT
∆(a) in a non-graph setting

as observing any non-optimal arm a at most ln kT
∆(a)2 times is sufficient for the empirical means to

sufficiently concentrate.
Thompson Sampling is different in that the algorithm incurs regret from two sources. Once the

empirical means of the optimal arm a? and the suboptimal arms are all concentrated well enough,
the Thompson Sampling algorithm will also select the optimal arm with high probability. One source
of regret is the usual regret incurred until all the suboptimal arms have been observed enough times.
The other comes from the case where the optimal arm has not been observed often enough; then its
distribution is too diffuse which can cause a suboptimal arm to be selected.

For the case of bandits, Agrawal and Goyal (2017) show that the expected number of times a
suboptimal arm a can be selected in this second case is bounded by ln kT

∆(a)2 . Summing over all the

arms they thus provide a regret incurred in this case by
∑

a∈V
ln kT
∆(a) .

11
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Algorithm 3 Thompson Sampling with Graph Feedback
Initialize the success and failure observed for each arm to zero; Sa = 0, Fa = 0 ∀a ∈ V
Initialize time t = 0
while t ≤ T do

for a ∈ V do
Sample θt(a) ∼ Beta(Sa + 1, Fa + 1)

end for
at = argmaxa∈Vθ

t(a);
Select arm at and earn reward rt(at)
for all arms a = at or a ∈ N (at) do

Perform a Bernoulli trial with success probability rt(a) and observe outcome rta ∈ {0, 1}
if rta = 1 then
Sa = Sa + 1

else
Fa = Fa + 1

end if
end for

end while

Our analysis. We extend this analysis to obtain graph-based regret bounds similar to UCB. For the
first case (in Lemma 9) we use the layering argument of the previous subsection to bound the regret
obtained from suboptimal arms a until they have been observed at least La := 16 ln kT

∆(a)2 times. We call
a suboptimal arm a saturated if it has been observed at least La times and unsaturated otherwise.
We define layers as we did for UCB: when we select an unsaturated arm a, we place the selected arm
and its neighbors in the lowest layer the selected arm has not yet been observed.

Lemma 9 The regret from selecting unsaturated arms is bounded by

T∑
t=1

∑
a∈V

P{at = a;N t
a ≤ La}∆(a) ≤ 64 · log(kT ) log(T ) · max

I∈I(G)

∑
a∈I

1

∆(a)
+ 1

Proof The proof follows by applying Lemma 3 with L = 16 ln(kT ), noticing that unsaturated arms
are observed at most La times and the maximum layer Λta that an arm is ever placed is no greater
than the number of times it is observed (see second property following Definition 2).

The part of the analysis more different for Thompson Sampling is bounding the regret incurred
by selecting suboptimal arms a after they are saturated. This can happen for one of two reasons:

(a.) Despite having observed a at least La times (N t
a ≥ La), the sample θt(a) is significantly

above the mean µ(a) of the arm a.

(b.) the sample θt(a?) is significantly below the mean µ(a?) of the arm a?.

Similar to the analysis of Agrawal and Goyal (2017) we can show that option (a.) is unlikely,
analogous to the unlikely events in UCB when the confidence intervals fail to contain the mean (see
Lemma 10). The additional novel part of the analysis is to avoid the dependence on the number

12
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of arms for case (b.). For that, we adapt the analysis in (Agrawal and Goyal, 2017) which bounds
the expected number of times a suboptimal arm a is selected by O

(
ln kT
∆(a)2

)
. To prevent summing

over all arms, we divide the arms into phases where a phase φ comprises of all arms with gaps
in [2−φ, 2−φ+1). This allows us to accumulate the regret from all arms in one phase φ as lnT

2−φ

(Lemma 11). Summing across all possible phases provides a bound depending only on the arm with
the smallest gap ∆min instead of all the arms. The complete proof is provided in Theorem 12.

We now address part (a.) by bounding the regret incurred from saturated suboptimal arms which
were selected because their sample was significantly above their actual mean.

Lemma 10 The regret from selecting saturated arms a with θt(a) > µ(a) + 1
2∆(a) is bounded by

T∑
t=1

∑
a∈V

P
[
at = a,N t

a ≥ La, θt(a) > µ(a) +
1

2
∆(a)

]
∆(a) ≤ 2.

Proof The proof is analogous to Lemma 7 of Agrawal and Goyal (2012). Let µ̃t(a) be the empirical
mean of arm a till time t. For an arm a, θt(a) > µ(a) + ∆(a)

2 , can only happen due to two reasons:

(i) µ̃t(a) > µ(a) + ∆(a)
4 ,

(ii) θt(a) > µ̃t(a) + ∆(a)
4

Both are unlikely if the arm a has been observed at least La times; the first by a Chernoff bound and
the second by properties of the Beta distribution. We formalize these arguments in Appendix B.1.

Next we bound the regret due to part (b.): regret incurred by selecting a saturated suboptimal arm a
due to the fact that the optimal arm has a sample significantly below its actual mean. We adapt the
analysis from Agrawal and Goyal (2012).

Lemma 11 Let Vφ denote subset of arms Vφ = {a ∈ V : 2−φ ≤ ∆(a) < 2−φ+1} for φ > 0. The
loss of these arms a ∈ Vφ after being saturated but having sample θt(a) not too far from their actual
means is bounded by

T∑
t=1

∑
a∈Vφ

P
[
at = a,N t

a ≥ La, θt(a) ≤ µ(a) +
∆(a)

2

]
∆(a) ≤ O(

lnT

2−φ
).

Proof To bound this term, we use the fact that the samples of the optimal arm between two
consecutive observations of it come from the same Beta distribution, since the distribution is not
updated in between. We use the technique from Agrawal and Goyal (2013) to bound the probability
that the optimal arm has its sample far below its actual mean. This allows us to bound the number of
times an arm a ∈ Vφ can be selected while its sample is close to its mean because the sample of the
optimal arm a? is far enough below its mean µ(a?). We formalize the arguments in Appendix B.2.

Theorem 12 The expected regret of the TS-N algorithm (Algorithm 3) is bounded by

RT ≤ O

(
max
I∈I(G)

∑
a∈I

ln(T ) ln(kT )

∆(a)

)

13
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Proof We bound the regret incurred by the algorithm in two parts: regret of arms a, while they are
not saturated Na ≤ La, and the regret of arms played after being saturated. The first part is bounded
by Lemma 9, while Lemmas 10 and 11 are used to bound the second part. More formally, we write
the expected regret as

RT =

T∑
t=1

E[∆(at)] =

T∑
t=1

[∑
a∈V

P
(
at = a;N t

a ≤ La
)]

∆(a) +

T∑
t=1

[∑
a∈V

P(at = a;N t
a ≥ La)

]
∆(a)

The first term is bounded by 64 maxI∈I(G)

∑
a∈I

ln(T ) ln(kT )
∆(a) + 1 by Lemma 9. To bound the second

term we use we split this regret into two parts, separating the part when the sample of arm at is far
from its actual mean, and when it is not.

T∑
t=1

∑
a∈V

P
[
at = a;N t

a ≥ La
]
∆(a) =

T∑
t=1

∑
a∈V

P
[
at = a,N t

a ≥ La, θt(a) > µ(a) +
∆(a)

2

]
∆(a)

+
T∑
t=1

∑
a∈V

P
[
at = a,N t

a ≥ La, θt(a) ≤ µ(a) +
∆(a)

2

]
∆(a)

By Lemma 10 the first part is bounded by 2. The second part can be rewritten as

T∑
t=1

− log ∆min∑
φ=0

∑
a∈Vφ

P
[
at ∈ Vφ, N t

a ≥ La, θt(a) ≤ µ(a) +
∆(a

2

]
∆(a)

where ∆min to denote the smallest gap on a non-optimal arm. By Lemma 11 this is bounded by

− log2 ∆min∑
φ=1

O
(

lnT

2−φ

)
= O

(
lnT

∆min

)
Combining the above bounds we obtain:

RT = O

(
ln(T )

∆min
+ 2 + max

I∈I(G)

∑
a∈I

ln(T ) ln(kT )

∆(a)

)

= O

(
max
I∈I(G)

∑
a∈I

ln(T ) ln(kT )

∆(a)

)

As was done for Corollary 7 we can derive a gap independent bound.

Corollary 13 The expected regret of the Thompson Sampling algorithm can be bounded asO(
√
αT lnT ln(kT ))

where α is the size of the maximum independent set.
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6. Conclusion

In this paper, we analyze the performance of Thompson Sampling and UCB in the graph-based
feedback setting. We bound the regret using the gaps of arms in an independent set, despite the fact
that these algorithms do not explicitly use the graph structure to select arms. Below we discuss the
results and suggest avenues for future research.

• In contrast to our results, Buccapatnam et al. (2014) offer an algorithm with regret bounded
by the smallest dominating set of the graph and provide a lower bound based on fractional
dominating set. It is not hard to see that the regret of both UCB-N and TS-N scales with the
maximum independent set, and not the minimum dominating set of the graph. Consider a star
graph with one optimal external node, and all others arms having similar gaps. When running
TS-N initially all arms use the same Beta distribution, but over time the central arm is observed
most, it concentrates fast and once its distribution is concentrated, TS-N will select one of the
spokes, each of which is sampling a more diffuse distribution. This reduces the algorithm to
the bandit setting. A deterministic version of this argument applies for UCB-N.

• On the negative side, our results suffer an extra logarithm compared to the results of Buccapat-
nam et al. (2014). This extra logarithm seems necessary if one approaches the problem via
an argument based on phases (Cohen et al. (2016) also suffer from it due to the same reason).
Understanding whether the extra logarithm is inherent to the algorithms of TS-N and UCB-N
or is a shortcoming of our analysis is an interesting open question.
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Appendix A. Supplementary material from Section 3

Lemma 1 restated. For an arm a and any time t

|µ̃t(a)− µ(a)| ≤

√
ln(2Tk

δ )

2N t
a

with probability at least 1− δ
kT , and the probability this is true for all arms throughout the algorithm

is at least 1− δ.
Proof The claim is that for each arm and for every time step, the actual mean is within the confidence
interval of its empirical mean. This comes from applying Hoeffding’s concentration inequality for
each arm and then from taking union bound over all arms and all time steps with high probability all
arms remain in their confidence intervals.
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To apply Hoeffding’s inequality, consider the empirical mean as the sum of independent samples
from the marginal distribution F(a). By Hoeffding’s inequality, it holds that

Pr

[∣∣∣∣∣( 1

N t
a

∑
s≤t:as=a

or a∈N (as)

rs(a)
)
− µ(a)

∣∣∣∣∣ > c

]
≤ 2e−2Nt

ac
2

To bound the failure probability by δ
kT = 2e−2Nt

ac
2
, we set c =

√
ln( 2kT

δ
)

2Nt
a

. Then,

Pr

[
|µ̃t(a)− µ(a)| ≤

√
ln(2kT

δ )

2N t
a

]
≥ 1− δ

kT

The proof then follows by applying union bound across all arms and time steps.

Appendix B. Supplementary material from Section 5

In this section, we provide the proofs of Lemmas 10 and 11.

B.1. Proof of Lemma 10

Lemma 10 restated. The regret from selecting saturated arms a with θt(a) > µ(a) + 1
2∆(a) is

bounded by
T∑
t=1

∑
a∈V

P
[
at = a,N t

a ≥ La, θt(a) > µ(a) +
1

2
∆(a)

]
∆(a) ≤ 2.

Proof The proof is analogous to Lemma 7 of Agrawal and Goyal (2012). Let µ̃t(a) be the empirical
mean of arm a till time t. For an arm a, θt(a) > µ(a) + ∆(a)

2 , can only happen due to two reasons:

(i) µ̃t(a) > µ(a) + ∆(a)
4 ,

(ii) θt(a) > µ̃t(a) + ∆(a)
4

Both are unlikely if the arm a has been observed at least La times; the first by a Chernoff bound and
the second by properties of the Beta distribution. More formally,

T∑
t=1

∑
a∈V

P
[
at = a,N t

a ≥ La, θt(a) > µ(a) +
∆(a)

2

]
∆(a)

≤
T∑
t=1

∑
a∈V

P
[
N t
a ≥ La, µ̃t(a) > µ(a) +

∆(a)

4

]
∆(a)

+

T∑
t=1

∑
a∈V

P
[
N t
a ≥ La, θt(a) > µ̃t(a) +

∆(a)

4

]
∆(a)
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Now, by Hoeffding’s inequality, for any arm a and time t

P
[
N t
a ≥ La, µ̃t(a) > µ(a) +

∆(a)

4

]
≤ e

−2Nta∆(a)2

16 ≤ e
−2La∆(a)2

16

Now using the fact that ∆(a) ≤ 1 and the definition of La = 16 ln(kT )
∆(a)2 , the first term inside the

summation can be bounded as
T∑
t=1

∑
a∈V

P
[
N t
a ≥ La, µ̃t(a) > µ(a) +

∆(a)

4

]
∆(a) ≤ T

∑
a∈V

e
−2La∆(a)2

16 ≤ Tk · 1

k2T 2
=

1

kT
.

To bound the second term inside the summation for each arm a and time t, we look at the sample
from the underlying beta distribution at any time step t. Let Sta and F ta be the successes and failures
of Beta distribution at time step t.

P
[
N t
a ≥ La, θt(a) > µ̃t(a) +

∆(a)

4

]
=

T∑
`=La

P
[
N t
a = `, θt(a) > µ̃t(a) +

∆(a)

4

]

=
T∑

`=La

P
[
Sta + F ta = `

]
· P
[
θt(a) > µ̃t(a) +

∆(a)

4
|Sta + F ta = `

]

=
T∑

`=La

ESta+F ta=`

[
1− FBetaSta,F

t
a

(
µ̃t(a) +

∆(a)

4

)]

where FBetaS,F (y) is the cumulative density function of the Beta distribution with probability density
function fS,F as defined in Section 5. Now, we use a useful fact about the Beta distributions (Fact 1
from Agrawal and Goyal (2012)):

FBetaS+1,F+1(y) = 1− FBinomS+F+1,y(S)

Here FBinomn,p (·) is the cumulative density function of the Binomial distribution with n trials and trial
success probability p. Thus, combining the above with the fact that the number of successes is equal
to the number of observations times the empirical mean, Sta = N t

a · µ̃t(a), we obtain:

P
[
N t
a ≥ La, µ̃t(a) > µ(a) +

∆(a)

4

]
=

T∑
`=La

ESta+F ta=`

[
FBinom
`+1,µ̃(a)+

∆(a)
4

(
`µ̃(a)

)]

≤
T∑

`=La

ESa+Fa=`

[
FBinom
`,µ̃(a)+

∆(a)
4

(
`µ̃(a)

)]

≤
T∑

`=La

ESa+Fa=`

[
e
−2∆(a)2`

16

]
≤ 1

k2T
.

The last inequality comes from Hoeffding inequality and the second-to-last inequality holds by an
observation about Binomial distribution c.d.f. by Agrawal and Goyal (proof of Lemma 5 in (Agrawal
and Goyal, 2012)):

FBinomn+1,p (r) = (1−p)FBinomn,p (r)+pFBinomn,p (r−1) ≤ (1−p)FBinomn,p (r)+pFBinomn,p (r) ≤ FBinomn,p (r).
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Summing over all time steps and all arms, combining the bounds for both summands, and using that
k ≥ 1, completes the proof.

B.2. Proof of Lemma 11

Lemma 11 restated. Let Vφ denote subset of arms Vφ = {a ∈ V : 2−φ ≤ ∆(a) < 2−φ+1} for
φ > 0. The loss of these arms a ∈ Vφ after being saturated but having sample θt(a) not too far from
their actual means is bounded by

T∑
t=1

∑
a∈Vφ

P
[
at = a,N t

a ≥ La, θt(a) ≤ µ(a) +
∆(a)

2

]
∆(a) ≤ O

(
lnT

2−φ

)
.

Before proving the lemma, we provide two useful lemmas that will help in the proof.

Lemma 14 Let Vφ denote subset of arms Vφ = {a ∈ V : 2−φ ≤ ∆(a) < 2−φ+1} for φ > 0 and
Ht−1 be the history of the algorithm until time step t − 1. The probability of these arms a ∈ Vφ
being selected after being saturated while having sample θt(a) not too far from their actual means is
bounded by

P
[
at ∈ Vφ, N t

at ≥ Lat , θ
t(at) ≤ µ(at) +

∆(at)

2
|Ht−1

]
≤

(
1

pφ,t
− 1

)
P
[
at = a?|Ht−1

]

where pφ,t = P
[
θt(a?) > yφ|Ht−1

]
and yφ = maxa∈Vφ

(
µ(a) + ∆(a)

2

)

Proof We bound the two sides of the inequality separately.

P
[
at ∈ Vφ, N t

at ≥ Lat , θ
t(at) ≤ µ(at) +

∆(at)

2
|Ht−1

]
≤ P

[
at ∈ Vφ, θt(at) ≤ µ(at) +

∆(at)

2
|Ht−1

]
.

Since at is the selected arm and thus has the highest valued sample θt(at), the samples of all other
arms must be less than its sample and thus also less than µ(at) + ∆(at)

2 and the above is less than

P
[
at ∈ Vφ, θt(a) ≤ µ(at) +

∆(at)

2
: ∀a ∈ V|Ht−1

]
≤ P

[
θt(a) ≤ yφ : ∀a ∈ V|Ht−1

]
.

Now since we are conditioning on the historyHt−1, the samples across arms are independent and
therefore this is equal to:

P
[
θt(a?) ≤ yφ|Ht−1

]
· P
[
θt(a) ≤ yφ : ∀a 6= a?|Ht−1

]
= (1− pφ,t) · P

[
θt(a) ≤ yφ : ∀a 6= a?|Ht−1

]
.

We are now left to show that

P
[
θt(a) ≤ yφ : ∀a 6= a?|Ht−1

]
≤ 1

pφ,t
· P
[
at = a?|Ht−1

]
,
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which holds because

P
[
at = a?|Ht−1

]
≥ P

[
θt(a?) > yφ ≥ θt(a) : ∀a 6= a?|Ht−1

]
= P

[
θt(a?) > yφ|Ht−1

]
· P
[
θt(a) ≤ yφ : ∀a 6= a?|Ht−1

]
= pφ,t · P

[
θt(a) ≤ yφ : ∀a 6= a?|Ht−1

]
.

The first equality holds because the probabilities are conditioned on the historyHt−1 and hence the
samples of all arms are independent of one another.

Lemma 15 (Lemma 2.9 in Agrawal and Goyal (2017)) LetHt−1 denote the history of the algo-
rithm till time step t− 1, y be a parameter ∈ [0, 1], pφ,t = P

[
θt(a?) > y|Ht−1

]
and τk denote the

time step of the kth observation of the optimal arm, then we can bound the expectation of inverse of
pφ,τk+1 as:

E
[

1

pφ,τk+1
− 1

]
≤ 3

∆
for k <

8

∆

≤ Θ

(
e
−∆2k

2 +
1

(k + 1)∆2
e−Dk +

1

e
∆2k

4 − 1

)
for k ≥ 8

∆

where ∆ = µ(a?)− y and D = y ln y
µ(a?) + (1− y) ln (1−y)

(1−µ(a?)) .

Proof [Proof of Lemma 11] To bound the left hand side, we use the fact that the samples of the
optimal arm between two consecutive observations of the arm come from the same Beta distribution,
since the distribution is not updated in between. We use the technique of Agrawal and Goyal (2013)
to bound the probability that the optimal arm has its sample far below its actual mean. This allows us
to bound the number of times an arm a ∈ Vφ can be selected while its sample is close to its mean
because the sample of the optimal arm a? is far enough below its mean µ(a?).

More formally, letHt−1 denote the history of the algorithm until the start of time step t. Using
the fact that ∆(a) ≤ 2−φ+1 for all a ∈ Vφ.

T∑
t=1

∑
a∈Vφ

P
[
at = a,N t

a ≥ La, θt(a) ≤ µ(a) +
∆(a)

2

]
∆(a)

≤
T∑
t=1

∑
a∈Vφ

P
[
at = a,N t

a ≥ La, θt(a) ≤ µ(a) +
∆(a)

2

]
2−φ+1

=

T∑
t=1

P
[
at ∈ Vφ, N t

at ≥ Lat , θ
t(at) ≤ µ(at) +

∆(at)

2

]
2−φ+1

=

T∑
t=1

E
[
P
[
at ∈ Vφ, N t

at ≥ Lat , θ
t(at) ≤ µ(at) +

∆(at)

2
|Ht−1

]]
2−φ+1,

where the expectation is taken over the historyHt−1.
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Recall that we want to bound the probability of selecting a saturated arm in phase φ whose
sample is bounded by θt(a) ≤ µ(a) + ∆(a)

2 . Let yφ = maxa∈Vφ

(
µ(a) + ∆(a)

2

)
correspond to the

upper bound on the sample of any such arm a ∈ Vφ. Using Lemma 14, we bound the above quantity
by:

≤
T∑
t=1

E
[(

1

pφ,t
− 1

)
P
[
at = a?|Ht−1

]]
· 2−φ+1

where pφ,t = P
[
θt(a?) > yφ|Ht−1

]
. Upper bounding the probability of selecting the optimal arm by

the probability of observing it, we obtain:

≤
T∑
t=1

E
[(

1

pφ,t
− 1

)
P
[
a? ∈ N (at) ∪ {at}|Ht−1

]]
· 2−φ+1

By replacing probability of observing the optimal arm by expectation of the indicator function, the
above is equal to:

T∑
t=1

E

[(
1

pφ,t
− 1

)
E
[
1{a? ∈ N (at) ∪ {at}}|Ht−1

]]
· 2−φ+1

Next expressing the expectation as a sum7 over all possible historiesH, we obtain the following:

=
∑
H

P[H]

[
T∑
t=1

(
1

pφ,t
− 1

)
1{a? ∈ N (at) ∪ {at}|H}

]
· 2−φ+1

where the value pφ,t inside the summation depends on the first t− 1 steps of historyH.
Let τk be the time step for the kth observation of the optimal arm, a random variable depending

on the history H. Note that between two observations of the optimal arm, the distribution of the
optimal arm does not change. Since pφ,t does not depend on the random draws of any other arm,
it therefore does not change between two observations of the optimal arm. Using this, the above
quantity is equal to

∑
H

P[H]

 T∑
k=0

(
1

pφ,τk+1
− 1

) τk+1∑
t=τk+1

1{a? ∈ N (at) ∪ {at}|H}

 · 2−φ+1

where the values pφ,t and τk inside the summation depend on the historyH as before.
Further, for any history between τk + 1 and τk+1 we have exactly one observation of optimal

arm a?, i.e. |t ∈ [τk + 1, τk+1) : a?N (at) ∪ {at}| = 1, by definition of τk+1. As a result, the above
sum can be expressed as:

=
∑
H

P[H]

[
T∑
k=0

(
1

pφ,τk+1
− 1

)]
· 2−φ+1 =

T∑
k=0

E
[

1

pφ,τk+1
− 1

]
· 2−φ+1

7. The part of the history relevant to the algorithm is the outcome of the Bernoulli trials in each step, so there are only a
finite set of possible histories.
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Recall again that yφ = maxa∈Vφ

(
µ(a) + ∆(a)

2

)
corresponds to the upper bound on the sample

θt(a) of arms a ∈ Vφ. We use ∆φ = µ(a?)− yφ to denote a lower bound on the gaps of the arms
a ∈ Vφ. We also denote by Dφ = yφ ln

yφ
µ(a?) + (1 − yφ) ln

(1−yφ)
(1−µ(a?)) the KL-divergence between

Bernoulli distributions with success probability yφ and µ(a?).
Using Lemma 15, we can bound the above quantity by:

T∑
k=0

E
[

1

pφ,τk+1
− 1

]
· 2−φ+1 ≤

 24

∆2
φ

+

T−1∑
k≥ 8

∆φ

Θ

e−∆2
φk

2 +
1

(k + 1)∆2
φ

e−Dφk +
1

e
∆2
φ
k

4 − 1


 · 2−φ.

Since Dφ corresponds to a KL-divergence, we can use the property that Dφ ≥ 0, making
e−Dφk ≤ 1. Combining this fact with the observation that ex − 1 ≥ x for x ≥ 0 and

∑T
i=1

1
(i+1) ≤

log T , we obtain:

≤

 24

∆2
φ

+

T−1∑
k≥ 8

∆φ

Θ

(
e
−∆2

φk

2 +
1

(k + 1)∆2
φ

+
4

k∆2
φ

) · 2−φ
= Θ

(
1

∆2
φ

+
log T

∆2
φ

)
· 2−φ = O

(
log T

∆2
φ

)
· 2−φ

Finally, using the fact that ∆φ = µ(a?)− yφ ≤ 2−φ+1

2 , the above is upper bounded by = O
(

lnT
2−φ

)
which completes the proof.
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