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Abstract
Motivated by a recent result of Daskalakis et al. (2018), we analyze the population version of
Expectation-Maximization (EM) algorithm for the case of truncated mixtures of two Gaussians.
Truncated samples from a d-dimensional mixture of two Gaussians 1

2N (µ,Σ) + 1
2N (−µ,Σ)

means that a sample is only revealed if it falls in some subset S ⊂ Rd of positive (Lebesgue)
measure. We show that for d = 1, EM converges almost surely (under random initialization) to
the true mean (variance σ2 is known) for any measurable set S. Moreover, for d > 1 we show
EM almost surely converges to the true mean for any measurable set S when the map of EM
has only three fixed points, namely −µ,0,µ (covariance matrix Σ is known), and prove local
convergence if there are more than three fixed points. We also provide convergence rates of our
findings. Our techniques deviate from those of Daskalakis et al. (2017), which heavily depend on
symmetry that the untruncated problem exhibits. For example, for an arbitrary measurable set S, it
is impossible to compute a closed form of the update rule of EM. Moreover, arbitrarily truncating
the mixture, induces further correlations among the variables. We circumvent these challenges
by using techniques from dynamical systems, probability and statistics; implicit function theorem,
stability analysis around the fixed points of the update rule of EM and correlation inequalities
(FKG).
Keywords: EM algorithm, Gaussian Mixture, Data Truncation, Dynamical Systems, Correlation
Inequalities

1. Introduction

Expectation-Maximization (EM) is an iterative algorithm, widely used to compute the maximum
likelihood estimation of parameters in statistical models that depend on hidden (latent) variables
z (Dempster et al. (1977)). Given a probability distribution pλ defined on (x; z), where x are
the observables and λ is a parameter vector, and samples x1, ...,xn, one wants to find λ in order
to maximize the log-likelihood

∑n
i=1 log pλ(x) (finite sample case) or Ex[log pλ(x)] (population

version). Such a task is not always easy, because computing the log-likelihood involves summations
over all the possible values of the latent variables and moreover the log-likelihood might be non-
concave. EM algorithm is one way to tackle the described problem and works as follows:

• Guess an initialization of the parameters λ0.
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• For each iteration:
(Expectation-step) Compute the posterior Qi(z), which is pλt(z|xi) for each sample i.
(Maximization-step) Compute λt+1 as the argmax of

∑
i

∑
z Qi(z) log pλ(z,xi)

Qi(z)
.

It is well known that there are guarantees for convergence of EM to stationary points Wu (1983).
The idea behind this fact is that the log-likelihood is decreasing along the trajectories of the EM dy-
namics. One of its main applications is on learning a mixture of Gaussians. Recovering the param-
eters of a mixture of Gaussians with strong guarantees was initiated by Dasgupta Dasgupta (1999)
and has been extensively studied in theoretical computer science and machine learning communi-
ties, e.g., Arora and Kannan (2001), Kannan et al. (2005), Chaudhuri and Rao (2008), Chaudhuri
et al. (2009), where most of the works assume that the means are well-separated. In addition, the
authors in Moitra and Valiant (2010), Kalai et al. (2010) offer stronger guarantees, polynomial time
(in dimension d) learnability of Gaussian mixtures.

For more stylized settings, i.e, for a two component balanced Gaussian mixture with known
and equal covariances and unknown means and in some cases symmetric, the following works pro-
vide local and global convergence guarantees of both the population version and the finite sample
version of EM and remove the well-separated assumption. For instance, authors in Balakrishnan
et al. (2017) study local convergence of the mean parameter in the population and the finite sample
version with a symmetric mean, balanced and a two component mixture. However, independent
works such as Daskalakis et al. (2017) and Xu et al. (2016), were able to provide global conver-
gence guarantees to the the true mean in the same settings both in the population and the finite
sample versions. In the aforementioned cases, the population version is analyzed first as it pro-
vides a benchmark for the finite sample regime and that the behavior in finite (but sufficiently large)
sample regime cannot deviate too much from the population version. The above results have es-
tablished there are no spurious local maxima of the log-likelihood in the population version for the
above setting. Moreover, the main reason most of the above works are concerned with two compo-
nent and balanced mixture case as Jin et al. (2016) established that the population log-likelihood
could have spurious local maxima when there are 3 or more components and that EM converges to
it with positive probability. Our work will analyze the same settings as mentioned here.

Parameter estimation problems involving data that has been censored/truncated is crucial in
many statistical problems occurring in practice. Statisticians, dating back to Pearson, Lee and Pear-
son (1908) and Fisher, Fisher (1931), tried to address this problem in the early 1900’s. Techniques
such as method of moments and maximum-likelihood were used for estimating a Gaussian distri-
bution from truncated samples. The seminal work of Rubin (1976), on missing/censored data, tried
to approach this by a framework of ignorable and non-ignorable missingness, where the reason for
missingness is incorporated into the statistical model through. However, in many cases such flexi-
bilities or the knowledge about the underlying processes may not be available. However, in recent
years the focus has shifted towards providing theoretical and computational guarantees for param-
eter estimation with truncated data. To this end, Daskalakis et al. (2018) showed that Stochastic
Gradient Descent (SGD) converges to the true parameters for a single component Gaussian (in high
dimensions) under arbitrary truncation with the assumption that they have oracle access to the trun-
cation set. In our work, we extend the analysis of the EM rule for truncation sets as well as functions
(the truncation set can be viewed as a special case of an indicator function).

Finally, mixture models are ubiquitous in machine learning and statistics with a variety of ap-
plications ranging from biology Boedigheimer and Ferbas (2008); Aristophanous et al. (2007) to
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finance Brigo and Mercurio (2002). Many of these practical applications are not devoid of some
form of truncation or censoring. To this end, there has been previous work that uses EM algorithm
for Gaussian mixtures in this setting Lee and Scott (2012), McLachlan and Jones (1988). How-
ever, they assume that truncation sets are boxes and in addition do not provide any convergence
guarantees.

1.1. Our results and techniques

Our results can be summarized in the following two theorems (one for single-dimensional and one
for multi-dimensional case):

Theorem 1 (Single-dimensional case) Let S ⊂ R be an arbitrary measurable set of positive
Lebesgue measure, i.e,

∫
S N (x;µ, σ2) + N (x;−µ, σ2)dx = α > 0. It holds that under random

initialization (under a measure on R that is absolutely continuous w.r.t Lebesgue), EM algorithm
converges with probability one to either µ or −µ. Moreover, if initialization λ0 > 0 then EM
converges to µ with an exponential rate

|λt+1 − µ| ≤ ρt|λt − µ|,

with ρt = 1 − Ω(α4) min(α2 min(λt, µ), 1) which is decreasing in t. Analogously if λ0 < 0, it
converges to −µ with same rate (substitute max(λt,−µ) in the expression).

Theorem 2 (Multi-dimensional case) Let S ⊂ Rd with d > 1 be an arbitrary measurable set of
positive Lebesgue measure so that

∫
S N (x;µ,Σ) +N (x;−µ,Σ)dx = α > 0. It holds that under

random initialization (according to a measure on Rd that is absolutely continuous with Lebesgue
measure), EM algorithm converges with probability one to either µ or −µ as long as EM update
rule has only −µ,0,µ as fixed points. Moreover, if λ0 is in a neighborhood ofµ or−µ, it converges
with a rate 1− Ω(α6)1.

Remark 3 We would like first to note that we prove the two theorems above in a more general set-
ting where we have truncation functions instead of truncation sets (see Section 2.1 for definitions).
Furthermore, in the proof of Theorem 2, we show that 0 is a repelling fixed point and moreover
−µ,µ are attracting so if the initialization is close enough to −µ or µ, then EM actually con-
verges to the true mean. Finally, in Section 5, Lemma 16 we provide sufficient conditions of the
truncated set S (or truncation function) so that the EM update rule has exactly three fixed points.
The sufficient condition is that S is rotation invariant under some appropriate transformation.

To put our results in the context of recent works discussed above, we see this as the first step in
rigorously analyzing the aforementioned settings with truncation which introduces new complex-
ities in the form of induced correlations and as a result our techniques deviate from Daskalakis
et al. (2017) and moreover from Daskalakis et al. (2018) (the latter paper provides mean and co-
variance estimation of a single high dimensional Gaussian where the likelihood is convex unlike the
case of mixtures). Our results indicate that even for the two component mixtures the population
version could have spurious fixed points (unlike the untruncated case) even in the simplest case of

1. If αµ � 1 then the global convergence rate we provide in the single-dimensional case coincides with the local
convergence rate of multidimensional.
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truncation (rectangles in 2 dimensions) which makes giving global rates challenging. Moreover, we
feel that this could also complement experimental results such as Lee and Scott (2012) where they
provide a heuristic for box truncated multi-component mixtures but do not provide any theoretical
guarantees of convergence.

Technical Overview To prove the qualitative part of our two main theorems, we perform stability
analysis on the fixed points −µ,0,µ of the dynamical system that is induced by EM algorithm
and moreover show that the update rule is a diffeomorphism. This is a general approach that has
appeared in other papers that talk about first-order methods avoiding saddle points (Mehta et al.
(2015), Lee et al. (2016), Panageas and Piliouras (2017), Lee et al. (2017), Daskalakis and Panageas
(2018) to name a few).

Nevertheless, computing the update rule of EM for a truncated mixture of two Gaussians is
not always possible, because the set/function S is not necessarily symmetric around 0 (even for
functions). As a result, the techniques of Daskalakis et al. (2017) (for the population version) do
not carry over to our case. In particular we can find an implicit description of the update rule of the
EM.

Finally, by leveraging the Implicit Function Theorem, we are able to compute explicitly the
Jacobian of the update rule of EM and perform spectral analysis on it (Jacobian is computed at
the three fixed points −µ,0,µ). We show that the spectral radius of the Jacobian computed at
−µ,µ is less than one (the fixed points are attracting locally) and moreover the spectral radius of
the Jacobian computed at 0 is greater than one (repelling). Along with the fact that the Jacobian
is invertible (hence the update rule of EM is a diffeomorphism2), we can use the center-stable
manifold theorem to show that the region of attraction of fixed point 0 is of measure zero. Due
to the fact that EM converges always to stationary points (folklore), our result follows. We note
that in the case d = 1, the fixed points are exactly three (−µ, 0, µ) and we prove this fact using
FKG (see Theorem 11) inequality. As far as the case d > 1 is concerned, if S is rotation invariant
(under proper transformation so that covariance matrix becomes identity), we can show that there
are exactly three fixed points by reducing it to the single dimensional case. Last but not least, for
the rates of convergence (quantitative part of our theorems), we prove a quantitative version of the
FKG inequality (see Lemma 20) which also might be of independent interest. We refer the reader
to the appendix for the missing proofs.

2. Background

2.1. Truncated Mixture Model

Before describing the model, we establish the notations used in this paper. We use bold font to
represent vectors, any generic element in Rd is represented by x.

The density of a balanced mixture of two different Gaussians with parameters (µ1,Σ1) and

(µ2,Σ2) respectively, is given by f(x) :=
1

2
N (x;µ1,Σ1)+

1
2N (x;µ2,Σ2),whereN (x;µ,Σ) :=

exp(−1
2(x− µ)TΣ−1(x− µ))

(2π)
d
2 det(Σ)1/2

. For this work we consider the case when true covariances are

known and they are equal to Σ. The means are assumed to be symmetric around the origin and we
represent the true parameters of the distribution to be (−µ,Σ) and (µ,Σ).

2. A function is called a diffeomorphism if it is differentiable and a bijection and its inverse is differentiable.
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Thus, we can write the density as follows:

fµ(x) :=
1

2
N (x;−µ,Σ) +

1

2
N (x;µ,Σ), (1)

Under this setting we consider a truncation set S ⊂ Rd, which means that we have access only
to the samples that fall in the set S which is of positive measure under the true distribution, i.e.,∫

Rd
(0.5N (x;−µ,Σ) + 0.5N (x;−µ,Σ))1Sdx = α > 0,

where 1S is the indicator function for S, i.e., if x ∈ S then 1S(x) = 1 and is zero otherwise.
Hence we can write the truncated mixture density as follows:

fµ,S(x) =


0.5N (x;−µ,Σ) + 0.5N (x;µ,Σ)∫

S 0.5N (x;−µ,Σ) + 0.5N (x;µ,Σ)dx
,x ∈ S

0 ,x /∈ S
(2)

The above definition can be generalized for “truncation” functions too. Let S : Rd → R be
a non-negative, bounded by one, measurable function so that 0 < α =

∫
Rd S(x)fµ(x)dx (we

say nonnegative function S is of “positive measure” if S(x) is not almost everywhere zero). The
truncated mixture then is defined as follows:

fµ,S(x) =
(0.5N (x;−µ,Σ) + 0.5N (x;µ,Σ))S(x)∫

Rd(0.5N (x;−µ,Σ) + 0.5N (x;µ,Σ))S(x)dx

One can think of S(x) as the probability to actually see sample x.

Remark 4 (Results proven for truncation functions) Our main Theorems 1 and 2 provided in the
introduction, hold in the general setting where we have non-negative truncation functions S(x) of
“positive measure”. Our proofs are written in the general setting (not only the case of indicator
functions).

We will use the following short hand for the truncated EM density with means µ and truncation

set or function S such that fµ,S(x) =
fµ(x)1S∫

Rd fµ(x)1Sdx
or fµ,S(x) =

fµ(x)S(x)∫
Rd fµ(x)S(x)dx

. Also, we

will denote the expected value with respect to the truncated mixture distribution with parameters
−λ and λ by Eλ,S [.]. We conclude the subsection with an important definition that will be needed
for the multi-dimensional case.

Definition 5 (Rotation invariant/Symmetric) We call a “truncation” function S(x) rotation in-
variant if S(Qx) = S(x) for all orthogonal matrices Q. It is clear that every rotation invariant
“truncation” function is also even (choose Q = −I , where I denotes the identity matrix). A set S
is called rotation invariant if 1S is rotation invariant function and moreover it is called symmetric
if 1S is an even function.

Next, we derive the EM-update rule to estimate the mean under the “truncated” setting.
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2.2. EM Algorithm

The EM algorithm tries to maximize a lower bound of the likelihood at every time step. The pop-
ulation version of the update rule to estimate the mean of a truncated balanced Gaussian mixture
with symmetric means (−µ,µ) and covariance Σ with truncation set S boils down to:

h(λt,λ) := Eµ,S
[
tanh(xTΣ−1λt)x

TΣ−1
]
− Eλ,S

[
xTΣ−1 tanh(xTΣ−1λ)

]
(3)

such that

λt+1 = {λ : h(λt,λ) = 0} . (4)

For the derivation of the update rule please see supplementary material A. We note that the above
system, in contrast to the un-truncated setting accommodates an implicit function in the update rule
and hence we cannot obtain a closed form solution for λt+1.

Remark 6 (Fixed Points) We first characterize the fixed points of the dynamical system given in
equation (4). We can identify that there are 3 fixed points, namely, µ,−µ and 0, since

h(µ,µ) = 0, h(−µ,−µ) = 0 and h(0,0) = 0 (5)

In general there may be more fixed points in the dynamics for any arbitrary truncation function
S(x) or set S (see Section D.4). However, in the single dimension case we prove that there are only
three fixed points (see Lemma 13). In multi-dimensional (d > 1) case we can also show that if S is
rotation invariant, then there are only three fixed points as well (see Lemma 16).

3. Properties of the EM Update Rule

In the section we analyze the dynamical system arising from the EM update rule. To this end, we
first describe the derivative ∇λtλt+1 of the dynamical system, by invoking the Implicit Function
Theorem. Then we present some derivatives that are essential to characterize the dynamics and
argue about the stability of fixed points. The proofs of all the lemmas in this section are deferred to
the appendix.

3.1. Properties of the Dynamics

We use the Implicit Function Theorem to represent the derivative of λt+1 with respect to λt to
analyze the dynamical system around some point say γ.

∇λtλt+1

∣∣∣
γ

= ∇λt+1Eλt+1,S

[
xT tanh(xTΣ−1λt+1)

]−1 ∣∣∣
γ
· ∇λtEµ,S

[
tanh(xTΣ−1λt)x

T
] ∣∣∣
γ

(6)

The analogue of the above ratio in the single dimension setting is given by:

dλt+1

dλt

∣∣∣
γ

=

d
dλt

Eµ,S
[
x tanh

(
xλt
σ2

)] ∣∣∣
λt=γ

d
dλt+1

Eλt+1,S

[
x tanh

(
xλt+1

σ2

)] ∣∣∣
λt=γ

(7)
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To this end, we state the following lemma which describes certain derivatives of the terms
involved in the above ratio to argue about local stability of the fixed points.

Lemma 7 (Some Useful Derivatives) The following equations hold:

1. ∇λEλ,S
[
xT tanh(xTΣ−1λ)

]
= Σ−1Eλ,S

[
xxT

]
−

Σ−1Eλ,S
[
x tanh(xTΣ−1λ)

]
Eλ,S

[
x tanh(xTΣ−1λ)

]T
2. ∇µEµ,S

[
xT tanh(xTΣ−1λ)

]
= Σ−1Eµ,S

[
xxT tanh(xTΣ−1λ) tanh(xTΣ−1µ)

]
−Σ−1Eµ,S

[
x tanh(xTΣ−1λ)

]
Eµ,S

[
x tanh(xTΣ−1µ)

]T
3. ∇λEµ,S

[
xT tanh(xTΣ−1λ)

]
= Σ−1Eµ,S

[
xxT

1

cosh2(xTΣ−1λ)

]
= Σ−1Eµ,S

[
xxT

(
1− tanh2(xTΣ−1λ)

)]
3.2. Two Important Lemmas

We end the section about the update rule of EM by proving that is well-defined (in the sense that for
every λt there exists a unique λt+1) and moreover, we show that the update rule has Jacobian that
is invertible for all x ∈ Rd. The first Lemma that is needed to argue about global convergence (in
case there are three fixed points), with the use of center-stable manifold (as the proof appears in Lee
et al. (2017)) is the following:

Lemma 8 (Local Diffeomorphism) Let J be the Jacobian of the update rule of the EM dynamics
(of size d× d). It holds that J is invertible.

The second lemma is about the fact that the update rule of EM is well defined.

Lemma 9 (Well defined) Let λt ∈ Rd. There exists a unique λ′ such that

Eµ,S
[
tanh(xTΣ−1λt)x

TΣ−1
]

= Eλ′,S

[
xTΣ−1 tanh(xTΣ−1λ′)

]
.

Remark 10 In this remark, we would like to argue why there is always a λt+1 such that

Eµ,S
[
tanh(xTΣ−1λt)x

TΣ−1
]

= Eλt+1,S

[
tanh(xTΣ−1λt+1)x

TΣ−1
]
.

The reason is that λt+1 is chosen to maximize a particular quantity. If the gradient of that quantity
has no roots, it means that ‖λt+1‖2 should be infinity. But the quantity is a concave function (in the
proof of Lemma 8 we showed that −∇λEλ,S

[
xT tanh(xTΣ−1λ)

]
Σ−1 is negative definite which

is the Hessian of the quantity to be maximized), so the maximum should be attained in the interior
(i.e., λt+1 cannot have `2 norm infinity).

4. Single Dimensional Convergence

In this section we provide a proof for the qualitative part of Theorem 1. We mention first an impor-
tant theorem that will be used for the proofs of both qualitative parts of Theorems 1 and 2
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Theorem 11 (FKG inequality) Fortuin et al. (1971) Let f, g : R → R be two monotonically
increasing functions and ν any probability measure on R. It holds that∫

R
f(x)g(x)dν ≥

∫
R
f(x)dν

∫
R
g(x)dν. (8)

Moreover, in case there is positive mass (of the product measure ν ⊗ ν) on the case (f(x1) −
f(x2))(g(x1) − g(x2)) > 0 (where x1, x2 are two independent samples from ν) then the above
inequality is strict.

We first perform stability analysis for the fixed points−µ, 0, µwhich is captured in the next Lemma.

Lemma 12 (Stability in single-dimensional) It holds that∣∣∣∣dλt+1

dλt

∣∣∣
λt=0

∣∣∣∣ > 1 and
∣∣∣∣dλt+1

dλt

∣∣∣
λt=µ,−µ

∣∣∣∣ < 1.

Proof Using Lemma 7 and Equation (7) it holds that

dλt+1

dλt

∣∣∣
λt=0

=
Eµ,S [x2]

E0,S [x2]
. (9)

We consider the function Etµ,S [x2] w.r.t variable t. We use the Mean Value theorem and we get that
there exists ξ ∈ (0, 1) such that

Eµ,S [x2]− E0,S [x2] =
dEtµ,S [x2]

dt

∣∣
t=ξ

(10)

=
1

σ2
[
Eξµ,S

[
x3 tanh(ξµx)

]
− Eξµ,S

[
x2
]
Eξµ,S [x tanh(ξµx)]

]
(11)

We shall show that

Eξµ,S
[
x3 tanh(ξµx)

]
> Eξµ,S

[
x2
]
Eξµ,S [x tanh(ξµx)] .

The proof below is inspired by the proof of FKG inequality (because x2, x tanh(xξµ) are in-
creasing for x ≥ 0 and decreasing for x < 0). Let x1, x2 be two independent and identically dis-
tributed random variables that follow the distribution of fξµ,S(x). Assume w.l.o.g that |x1| > |x2|
then it holds that x21 > x22 and x1 tanh(x1ξµ) > x2 tanh(x2ξµ) (since µ > 0). Therefore we get
that (x21−x22)(x1 tanh(x1ξµ)−x2 tanh(x2ξµ)) > 0 (except for a measure zero set where it might
be equality).

We conclude that

Eξµ,S [(x21 − x22)(x1 tanh(x1ξµ)− x2 tanh(x2ξµ))] > 0.

From independence and the fact that x1, x2 are identically distributed, we get that

Eξµ,S [x21x2 tanh(x2ξµ)] = Eξµ,S [x22x1 tanh(x1ξµ)] = Eξµ,S [x21]Eξµ,S [x1 tanh(x1ξµ)]

and also
Eξµ,S [x31 tanh(x1ξµ)] = Eξµ,S [x32 tanh(x2ξµ)].

8
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It occurs that Eξµ,S
[
x31 tanh(ξµx1)

]
> Eξµ,S

[
x21
]
Eξµ,S [x1 tanh(ξµx1)]

thus, Eµ,S [x2] > E0,S [x2] (i.e., the ratio (9) is greater than 1), namely 0 is a repelling fixed
point.

Moreover, using Lemma 7 and Equation (7) it holds that

dλt+1

dλt

∣∣∣
λt=µ

=
Eµ,S

[
x2

σ2 (1− tanh2(xµ
σ2 ))

]
Eµ,S

[
x2

σ2

]
− E2

µ,S

[
x
σ tanh(xµσ )

] . (12)

Since S (function or set) has positive measure we get that the variance of the random variable
x
σ tanh(xµσ ) is positive (otherwise the random variable would be constant with probability one and
hence S would be of zero measure), thus

Eµ,S
[
x2

σ2
tanh2

(xµ
σ

)]
> E2

µ,S

[x
σ

tanh
(xµ
σ

)]
(13)

or equivalently

Eµ,S
[
x2

σ2

]
− Eµ,S

[
x2

σ2
tanh2

(xµ
σ

)]
< Eµ,S

[
x2

σ2

]
− E2

µ,S

[x
σ

tanh
(xµ
σ

)]
. (14)

By inequality (14) we conclude that the ratio (12) is less than one, hence fixed point µ is attracting.
The same proof as in the case for µ works for the fixed point −µ.

Next, we provide a proof that for the case d = 1 (single-dimensional), the update rule of EM has
exactly three fixed points (0, µ,−µ).

Lemma 13 (Only 3 fixed points for single-dimensional) We consider the update rule of the EM
method for the single dimensional case (3). The update rule has only −µ, 0, µ as fixed points.

Proof Let µ > λ > 0 and assume λ is a fixed point of the update rule of EM (3). Set G(µ, λ, S) =
Eµ,S [ x

σ2 tanh(xλ
σ2 )]. It holds that G(µ, λ, S) = G(λ, λ, S) (by definition of λ).

It follows from Mean Value theorem that there exists a ξ ∈ (λ, µ) so that (using also Lemma 7)

G(µ, λ, S)−G(λ, λ, S)

µ− λ
=Eξ,S

[
x2

σ2
tanh

(
xξ

σ2

)
tanh

(
xλ

σ2

)]
−

Eξ,S
[
x

σ
tanh

(
xξ

σ2

)]
· Eξ,S

[
x

σ
tanh

(
xλ

σ2

)]
.

We get that x
σ tanh(xλ

σ2 ), xσ tanh( xξ
σ2 ) are increasing functions for x ≥ 0 and decreasing for

x < 0, so inspired by the proof of FKG inequality 11 we shall show thatG(µ, λ, S)−G(λ, λ, S) > 0
(and reach contradiction).

Let x1, x2 be two independent and identically distributed random variables that follow the distri-
bution of fξ,S(x). Assume w.l.o.g that |x1| > |x2| then it holds that x1σ tanh(x1λ

σ2 ) > x2
σ tanh(x2λ

σ2 )

and x1
σ tanh(x1ξ

σ2 ) > x2
σ tanh(x2ξ

σ2 ). Therefore we get that(
x1
σ

tanh

(
x1λ

σ2

)
− x2

σ
tanh

(
x2λ

σ2

))
·
(
x1
σ

tanh

(
x1ξ

σ2

)
− x2

σ
tanh

(
x2ξ

σ2

))
> 0

9
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(except for a measure zero set where it might be equality).
We conclude that

Eξ,S
[(

x1
σ

tanh

(
x1λ

σ2

)
− x2

σ
tanh

(
x2λ

σ2

))
·
(
x1
σ

tanh

(
x1ξ

σ2

)
− x2

σ
tanh

(
x2ξ

σ2

))]
> 0.

From independence and the fact that x1, x2 are identically distributed, we get that

Eξ,S
[
x1x2
σ2

tanh

(
x1λ

σ2

)
tanh

(
x2ξ

σ2

)]
= Eξ,S

[
x1x2
σ2

tanh

(
x1ξ

σ2

)
tanh

(
x2λ

σ2

)]
and also

Eξ,S
[
x21
σ2

tanh

(
x1ξ

σ2

)
tanh

(
x1λ

σ2

)]
= Eξ,S

[
x22
σ2

tanh

(
x2ξ

σ2

)
tanh

(
x2λ

σ2

)]
.

We conclude that G(µ, λ, S)−G(λ, λ, S) > 0. However by assumption that λ is a fixed point,
it must hold that G(µ, λ, S)−G(λ, λ, S) = 0 (contradiction).

The same proof works when λ > µ > 0. In case λ < 0, the proof is exactly the same with
before, using −µ instead of µ (with opposite direction on the inequality).

Using the generic proof of Theorem 2, page 6 from Lee et al. (2017) paper, the fact that EM
converges to stationary points (which are fixed points of the update rule of EM) and combining it
with Lemmas 12, 13 and the Lemma 8 about local diffeomorphism of the update rule, the proof of
the qualitative part of Theorem 1 follows.

5. Multi-Dimensional Convergence

In this section we prove the qualitative part of Theorem 2. The techniques follow similar lines as
in the single-dimensional case. We will state the Lemmas that deviate technically from those in
Section 4. The two lemmas below provide stability analysis for the fixed points −µ,0,µ.

Lemma 14 (Stability of µ in multi-dimensional) It holds that the spectral radius of

∇λEλ,S
[
xT tanh(xTΣ−1λ)

]−1 ∣∣∣
λ=µ
· ∇λEµ,S

[
tanh(xTΣ−1λ)xT

] ∣∣∣
λ=µ

(i.e., the Jacobian of the update rule of EM method computed at true mean µ) is less than one.

The same proof works for the case of −µ. Below we provide the stability analysis for 0.

Lemma 15 (Stability of 0 in multi-dimensional) It holds that the spectral radius of

∇λEλ,S
[
xT tanh(xTΣ−1λ)

]−1 ∣∣∣
λ=0
· ∇λEµ,S

[
tanh(xTΣ−1λ)xT

] ∣∣∣
λ=0

(i.e., the Jacobian of the update rule of EM method computed at true mean µ) is greater than one.

The following lemma shows that there are three fixed points in the multi-dimensional case when
the function S′(x) = S(Σ1/2x) is rotation invariant.

10
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Lemma 16 (Rotation invariance implies three fixed points) Let S′ : Rd → R be a rotation in-
variant function, where S′(x) = S(Σ1/2x). It holds that the update rule of EM has exactly three
fixed points, i.e., −µ,0,µ, for any d > 1.

Remark 17 Let Bl,r = {x : l ≤ ‖x‖Σ−1 ≤ r}, where ‖x‖Σ−1 captures the Mahalanobis distance
of x from 0, i.e.,

√
xTΣx (Σ is positive definite). We would like to note that EM update rule has

exactly three fixed points for any truncation set that is a union of Bli,ri for a sequence of intervals
(li, ri)

3.

Lemma 18 Let A,B be two positive definite matrices. Then AB has positive eigenvalues

Proof AB has the same eigenvalues as A1/2BA1/2 (A1/2 is well defined since A is positive defi-
nite). But A1/2BA1/2 is also positive definite, hence the claim follows.

6. On the Rates of convergence

In this section we provide quantitative versions of our results of Sections 4 and 5.

6.1. Single-dimensional

Assume that at iteration t the estimate about the true mean λt > 0. It is easy to see that λt+1 > 0
(the opposite is true if λt is negative). W.l.o.g suppose that λt > 0. Moreover, it holds that
Eλ,S

[
x tanh

(
λx
σ2

)]
, Eµ,S

[
x tanh

(
λx
σ2

)]
are strictly increasing functions in λ (argument in the

proof of Lemma 8).
In case λt < µ then

Eλt+1,S

[
x tanh

(
λt+1x

σ2

)]
= Eµ,S

[
x tanh

(
λtx

σ2

)]
> Eλt,S

[
x tanh

(
λtx

σ2

)]
,

hence λt+1 > λt and moreover since

Eµ,S
[
x tanh

(µx
σ2

)]
> Eµ,S

[
x tanh

(
λtx

σ2

)]
= Eλt+1,S

[
x tanh

(
λt+1x

σ2

)]
,

it is also true that λt+1 < µ. Using the same argument we also conclude that if λt > µ then
λt > λt+1 > µ.

We set G(λ, µ) = Eµ,S
[
x tanh

(
λx
σ2

)]
and we also assume that λt < µ. By the mean value

theorem, we conclude that

G(λt, µ)−G(λt, λt) ≥ min
ξ∈[λt,µ]

∂G(λt, y)

∂y

∣∣∣
y=ξ

(µ− λt). (15)

Moreover, using mean value theorem again it holds that

G(λt+1, λt+1)−G(λt, λt) ≤ max
ξ∈[λt,λt+1]

∂G(y, y)

∂y

∣∣∣
y=ξ

(λt+1 − λt). (16)

3. Observe that rotation invariant sets S include unions of Bli,ri where the Σ is the identity matrix.

11
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Using the fact that G(λt+1, λt+1) = G(λt, µ) and Equations (15), (16), it follows that

max
ξ∈[λt,λt+1]

∂G(y, y)

∂y

∣∣∣
y=ξ

(λt+1 − λt) ≥ min
ξ∈[λt,µ]

∂G(λt, y)

∂y

∣∣∣
y=ξ

(µ− λt). (17)

By rearranging (17) we conclude that |λt+1 − µ| ≤

1−
minξ∈[λt,µ]

∂G(λt,y)
∂y

∣∣∣
y=ξ

maxξ∈[λt,λt+1]
∂G(y,y)
∂y

∣∣∣
y=ξ

 |λt − µ|.
In the rest of this section, we will give a lower bound for numerator term minξ∈[λt,µ]

∂G(λt,y)
∂y

∣∣∣
y=ξ

and an upper bound for denominator term maxξ∈[λt,λt+1]
∂G(y,y)
∂y

∣∣∣
y=ξ

. As far as denominator is con-

cerned, the following is true.

Lemma 19 (Bounding the denominator) It holds that

∂G(y, y)

∂y

∣∣∣
y=ξ
≤
(

1 +O

(
1

α2

))
.

To bound the numerator, we first provide with the following quantified version of the FKG
correlation inequality.

Lemma 20 (Quantitative FKG) Let f, g : R → R be two twice continuously differentiable, even
functions with f, g are increasing in (0,+∞) and decreasing in (−∞, 0). Given a random variable
x, assume with probability at least q it holds that |x| ≥ c > 0 and moreover |f ′(z)| ≥ f ′(c) for all
|z| ≥ c. It holds that

E[f(x)g(x)]− E[f(x)]E[g(x)] ≥ 2f ′(c)g′(c) · q2 · V
[
x
∣∣∣ |x| ≥ c] . (18)

Proof Let y be an independent and identically distributed to x random variable. Since both f, g are
increasing, we conclude that (f(x)− f(y))(g(x)− g(y)) ≥ 0 for all possible realizations. It holds
that

E[(f(x)− f(y))(g(x)− g(y))] ≥ E
[
(f(x)− f(y))(g(x)− g(y))

∣∣∣ |x|, |y| ≥ c] · Pr[|x| ≥ c] · Pr[|y| ≥ c]

≥ q2E
[
(f(x)− f(y))(g(x)− g(y))

∣∣∣ |x|, |y| ≥ c]
= q2E

[
|f(x)− f(y)||g(x)− g(y)|

∣∣∣ |x|, |y| ≥ c]
≥ q2f ′(c) · g′(c)E

[
(x− y)2

∣∣∣ |x|, |y| ≥ c] .
The last term, since x, y are independent and identically distributed, is equal to

E
[
(x− y)2

∣∣∣ |x|, |y| ≥ c] = 2E
[
x2
∣∣∣ |x| ≥ c]− 2E2

[
x
∣∣∣ |x| ≥ c]

= 2V
[
x
∣∣∣ |x| ≥ c] .

The proof is complete.

We are ready to prove a lower bound on the term ∂G(λ,y)
∂y

∣∣∣
y=ξ

.

12
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Lemma 21 (Bounding the numerator) It holds that

∂G(λt, y)

∂y

∣∣∣
y=ξ
≥ α2

48

(
tanh

(√
2πλtα

))2
.

Combining Lemmas 21, 19 along with above discussion, the proof of Theorem 1 is complete.

6.2. Multi-dimensional

In this section we prove rates of convergence for the multi-dimensional case when the λt is suffi-
ciently close to µ or −µ. To do this we will prove an upper bound on the spectral radius of the
Jacobian

∇λEλ,S
[
xT tanh(xTΣ−1λ)

]−1 ∣∣∣
λ=µ
· ∇λEµ,S

[
tanh(xTΣ−1λ)xT

] ∣∣∣
λ=µ

,

i.e., a quantitative version of Lemma 14.
The following lemma holds and the second part of Theorem 2 is a corollary.

Lemma 22 (Rates for local convergence) It holds that the spectral radius of

∇λEλ,S
[
xT tanh(xTΣ−1λ)

]−1 ∣∣∣
λ=µ,−µ

· ∇λEµ,S
[
tanh(xTΣ−1λ)xT

] ∣∣∣
λ=µ,−µ

(i.e., the Jacobian of the update rule of EM method computed at true mean µ) is at most 1−Ω(α6).

7. Conclusion

In this paper, we studied the convergence properties of EM applied to the problem of truncated
mixture of two Gaussians. We managed to show that EM converges almost surely to the true mean
in the case d = 1 (with an exponential rate depending on α) and moreover that the same result
carries over for d > 1 under the assumption that the update rule of EM has only three fixed points
(if it has more, then our results imply local convergence of EM if the initializations are close enough
to the true mean). Some interesting questions that arise from this line of work are the following:

• Finite population case: Our setting assumes infinite samples. Can we prove a similar conver-
gence result using only finitely many samples? The multi-dimensional case will be challeng-
ing because of the existence of more than three fixed points in general.

• Beyond two components: Characterize the truncated sets S for which EM converges almost
surely to the true mean for truncated mixture of k-Gaussians, where k ≥ 3.
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Appendix A. Derivation of EM Update Rule for Truncated Gaussian Mixture

For this derivation, we use φ(x;λ,Σ) to denote the normal pdf with mean vector λ and covariance
matrix Σ. Let us denote c1 for the component of the Gaussian corresponding to +λ and c2 denote
the component corresponding to−λ. First we have to find the posterior densities in the Expectation
step. Let λt be our estimate of the parameter at time t.

Qλt(c1) = Pλt,S(Z = c1|X = x)

=
Pλt,S(X = x|Z = c1)P(Z = c1)

Pλt,S(X = x)

=
φ(x;λt,Σ)

φ(x;λt,Σ) + φ(x;−λt,Σ)

Qλt(c2) =
φ(x;−λt,Σ)

φ(x;λt,Σ) + φ(x;−λt,Σ)

(19)

Now the maximization step involves the following:

λt+1 = arg max
λ

[
Qλt(c1) log

Pλ,S(x, c1)

Qλt(c1)
+Qλt(c2) log

Pλ,S(x, c2)

Qλt(c2)

]
(20)

Now substituting forQλt(c1),Qλt(c2) and writing Pλ,S(x, c1) = φ(x;λ,Σ)S(x)∫
Rd (φ(x;λ,Σ)+φ(x;−λ,Σ))S(x)dx

,

similarly Pλ,S(x, c2) = φ(x;−λ,Σ)S(x)∫
Rd (φ(x;λ,Σ)+φ(x;−λ,Σ))S(x)dx

, we get the following:

λt+1 = arg max
λ

[
Qλt(c1) log

φ(x;λ,Σ)S(x)∫
Rd(φ(x;λ,Σ) + φ(x;−λ,Σ))S(x)dx

+Qλt(c2) log
φ(x;−λ,Σ)S(x)∫

Rd(φ(x;λ,Σ) + φ(x;−λ,Σ))S(x)dx

]
= arg max

λ

[
Qλt(c1)

(
log φ(x;λ,Σ)− log

∫
Rd
φ(x;λ,Σ) + φ(x;−λ,Σ)dx

)
+Qλt(c2)

(
log φ(x;−λ,Σ)− log

∫
Rd

(φ(x;λ,Σ) + φ(x;−λ,Σ))S(x)dx
)]

= arg max
λ

[
Qλt(c1)

(
log φ(x;λ,Σ)− log φ(x;−λ,Σ)

)
+ log φ(x;−λ,Σ)− log

∫
Rd

(φ(x;λ,Σ) + φ(x;−λ,Σ))S(x)dx

]

(21)

Finding the gradient of the above maximization we get the following:
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∇λg(λ;x,Σ) =
d

dλ

[
Qλt(c1)

(
2xTΣ−1λ

)
− 0.5 ∗ xTΣ−1x− 0.5 ∗ λTΣ−1λ− xTΣ−1λ

− log

∫
Rd

2 ∗ fλ(x)S(x)dx

]
= (2Qλt(c1)− 1)xTΣ−1 − λTΣ−1 −

∫
d

dλ
fλ,S(x)dx

= (2Qλt(c1)− 1)xTΣ−1 − λTΣ−1 −
∫

d

dλ
log fλ(x)fλ,S(x)dx

= (2Qλt(c1)− 1)xTΣ−1 − λTΣ−1 − Eλ,S
[
−λTΣ−1 + xTΣ−1 tanh(xTΣ−1λ)

]
= (2Qλt(c1)− 1)xTΣ−1 − Eλ,S

[
xTΣ−1 tanh(xTΣ−1λ)

]
= tanh(xTΣ−1λt)x

TΣ−1 − Eλ,S
[
xTΣ−1 tanh(xTΣ−1λ)

]
(22)

Thus under the infinite sample case we have the following EM update rule:

λt+1 = {λ : h(λt,λ) = 0} (23)

such that h(λt,λt+1) = 0, where

h(λt,λ) := Eµ,S
[
tanh(xTΣ−1λt)x

TΣ−1
]
− Eλ,S

[
xTΣ−1 tanh(xTΣ−1λ)

]
. (24)

17



ON THE ANALYSIS OF EM FOR TRUNCATED MIXTURES OF TWO GAUSSIANS

Appendix B. Computation of Derivatives in Lemma 7

Proof We first compute the derivative (3) as follows:

∇λEµ,S
[
xT tanh(xTΣ−1λ)

]
= Eµ,S

[
xT∇λ tanh(xTΣ−1λ)

]
= Σ−1Eµ,S

[
xxT

1

cosh2(xTΣ−1λ)

]
= Σ−1Eµ,S

[
xxT

(
1− tanh2(xTΣ−1λ)

)] (25)

Next, derivative (2) is given by
(
D2 := ∇µEµ,S

[
xT tanh(xTΣ−1λ)

] )

D2 = ∇µ
∫
Rd x

T tanh(xTΣ−1λ)fµ(x)S(x)dx∫
Rd fµ(x)S(x)dx

=

∫
Rd x

T tanh(xTΣ−1λ)∇µfµ(x)S(x)dx∫
Rd fµ(x)S(x)dx

−
∫
Rd ∇µfµ(x)S(x)dx∫
Rd fµ(x)S(x)dx

Eµ,S
[
xT tanh(xTΣ−1λ)

]
=

∫
Rd x

T tanh(xTΣ−1λ)Σ−1
(
−µfµ(x) + xT tanh(xTΣ−1µ)fµ(x)

)
S(x)dx∫

Rd fµ(x)S(x)dx

−Σ−1
∫
Rd −µfµ(x)S(x) + xT tanh(xTΣ−1µ)fµ(x)S(x)dx∫

Rd fµ(x)S(x)dx

× Eµ,S
[
xT tanh(xTΣ−1λ)

]
= Σ−1Eµ,S

[
− xµT tanh(xTΣ−1λ)

+ xxT tanh(xTΣ−1λ) tanh(xTΣ−1µ)
]

−Σ−1
[
Eµ,S

[
−xµT tanh(xTΣ−1λ)

]
+ Eµ,S

[
xT tanh(xTΣ−1λ)

]
Eµ,S

[
xT tanh(xTΣ−1µ)

] ]
= Σ−1Eµ,S

[
xxT tanh(xTΣ−1λ) tanh(xTΣ−1µ)

]
−Σ−1Eµ,S

[
x tanh(xTΣ−1λ)

]
Eµ,S

[
x tanh(xTΣ−1µ)

]T

(26)

Finally, derivative of (1) is computed by using the above two derivatives as follows:
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∇λEλ,S
[
xT tanh(xTΣ−1λ)

]
= Eλ,S

[
xT∇λ tanh(xTΣ−1λ)

]
+

∫
Rd x

T tanh(xTΣ−1λ)∇λfλ(x)S(x)dx∫
Rd fλ(x)S(x)dx

−
∫
Rd ∇λfλ(x)S(x)dx∫
Rd fλ(x)S(x)dx

Eλ,S
[
xT tanh(xTΣ−1λ)

]
= Σ−1Eλ,S

[
xxT

(
1− tanh2(xTΣ−1λ)

)]
+ Σ−1Eλ,S

[
xxT tanh(xTΣ−1λ) tanh(xTΣ−1λ)

]
−Σ−1Eλ,S

[
x tanh(xTΣ−1λ)

]
Eλ,S

[
x tanh(xTΣ−1λ)

]T
= Σ−1Eλ,S

[
xxT

]
−Σ−1Eλ,S

[
x tanh(xTΣ−1λ)

]
Eλ,S

[
x tanh(xTΣ−1λ)

]T
(27)

Appendix C. Missing proofs in Section 3.2

In this section, we detail the proofs of the two important lemmas that are required in the final results.

C.1. Proof of Lemma 8

Proof
It suffices to prove that∇λEλ,S

[
xT tanh(xTΣ−1λ)

]
,∇λEµ,S

[
xT tanh(xTΣ−1λ)

]
have non

zero eigenvalues (thus invertible) for all λ ∈ Rd and hence the result follows by Equation (6). Ob-
serve that

M := Eλ,S [xxT (1− tanh2(xTΣ−1λ))] = Cov

(
x

√
1− tanh2(xTΣ−1λ),x

√
1− tanh2(xTΣ−1λ)

)
+ Eλ,S [x

√
1− tanh2(xTΣ−1λ)]Eλ,S [x

√
1− tanh2(xTΣ−1λ)]T

(where x follows a truncated mixture with parameters λ,Σ and truncated function S of “positive
measure”) which is positive definite (not positive semidefinite) since the function S is of “positive
measure” and −1 < tanh(y) < 1 for all y ∈ R (otherwise the variables x1, ...,xd would live in a
lower dimensional subspace). Moreover, from Lemma 7 it is clear that

Σ∇λEλ,S
[
xT tanh(xTΣ−1λ)

]
−M = Cov

(
x tanh(xTΣ−1λ),x tanh(xTΣ−1λ)

)
,

which is positive definite as well. Hence we conclude that

Σ · ∇λEλ,S
[
xT tanh(xTΣ−1λ)

]
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is positive definite, thus∇λEλ,S
[
xT tanh(xTΣ−1λ)

]
is invertible. The proof for

∇λEµ,S
[
xT tanh(xTΣ−1λ)

]
is simpler since

Σ∇λEµ,S
[
xT tanh(xTΣ−1λ)

]
= Cov

(
x

√
1− tanh2(xTΣ−1λ),x

√
1− tanh2(xTΣ−1λ)

)
+ Eµ,S [x

√
1− tanh2(xTΣ−1λ)]Eµ,S [x

√
1− tanh2(xTΣ−1λ)]T ,

(where x follows a truncated mixture with parameters µ,Σ and truncated function S of “positive
measure”).

C.2. Proof of Lemma 9

Proof
Let H(w) = ΣEw,S

[
xTΣ−1 tanh(xTΣ−1w)

]
. In the Lemma 8 we showed that∇wH(w) is

positive definite since S is of positive measure. Assume there exist λ, λ̃ so that H(λ) = H(λ̃). Let
yt = tλ + (1 − t)λ̃ for t ∈ [0, 1]. Using standard techniques from calculus and that ∇wH(w) is
symmetric we get that

(λ− λ̃)T (H(λ)−H(λ̃)) ≥ min
t∈[0,1]

λmin(∇wH(w)
∣∣
w=yt

)
∥∥∥λ− λ̃∥∥∥2 , (28)

where λmin(A) denotes the minimum eigenvalue of matrix A. It is clear that the left hand side is
zero, and also the matrix ∇wH(w)

∣∣
w=yt

has all its eigenvalues positive for every t ∈ [0, 1] (using
the fact that∇wH(w) is positive definite for all w from the proof of Lemma 8 above). We conclude
that λ = λ̃.

Appendix D. Missing proofs in Section 5

D.1. Proof of Lemma 14

Proof We set A := Eµ,S [xxT ] − Eµ,S [x tanh(xTΣ−1µ)]Eµ,S [x tanh(xTΣ−1µ)]T and B :=
Eµ,S [xxT ] − Eµ,S [xxT tanh2(xTΣ−1µ)]. From the proof of Lemma 8 it follows that both A,B
are positive definite. Observe that A−B is also positive definite since

A−B = Cov(x tanh(xTΣ−1µ),x tanh(xTΣ−1µ)),

and the measure S is positive so the vector x tanh(xTΣ−1µ) does not live in a lower dimensional
subspace. Moreover, we get that Σ−1/2(A−B)Σ−1/2 = Σ−1/2AΣ−1/2 −Σ−1/2BΣ−1/2 is also
positive definite. We set Ã := Σ−1/2AΣ−1/2 and B̃ := Σ−1/2BΣ−1/2 (Ã, B̃ are also positive
definite). Using Claim 18 (stated in the end of the section) we conclude that Ã−1(Ã − B̃) =
I − Ã−1B̃ has positive eigenvalues. Thus C := I − Σ1/2A−1BΣ−1/2 has positive eigenval-
ues. We conclude that Σ1/2A−1BΣ−1/2 has eigenvalues less than one. Since Σ1/2A−1BΣ−1/2

has same eigenvalues as A−1B, it follows that A−1B has eigenvalues less than one. Finally,
from Lemma 18 it holds that A−1B has positive eigenvalues. The proof follows since A−1B =

∇λEλ,S
[
xT tanh(xTΣ−1λ)

]−1 ∣∣∣
λ=µ
· ∇λEµ,S

[
tanh(xTΣ−1λ)xT

] ∣∣∣
λ=µ

.
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D.2. Proof of Lemma 15

Proof We set x← Σ−1/2x,µ← Σ−1/2µ and define S′ accordingly (transforming S). It suffices
to prove that the matrix E−10,S′ [xx

T ]Eµ,S′ [xxT ] has an eigenvalue greater than one (using Lemma
7). We set G(t) = Etµ,S′ [xxT ] and we get that

dG

dt
= Etµ,S′ [xxT (xTµ) tanh(xT tµ)].

Using the fundamental theorem of calculus we get that

G(1)−G(0) =

∫ 1

0
Etµ,S′ [xxT (xTµ) tanh(xT tµ)]dt. (29)

It holds that

µTG(1)µ = µTG(0)µ+

∫ 1

0
µTEtµ,S′ [xxT (xTµ) tanh(xT tµ)]µdt

The proof below is inspired by the proof of FKG inequality (because (xTµ)2,xTµ tanh(xT tµ)
are increasing for xTµ ≥ 0 and decreasing for xTµ < 0 with respect to xTµ and since t ≥ 0). Let
x1,x2 be two independent and identically distributed random variables that follow the distribution
of ftµ,S′(x). Assume w.l.o.g that |xT1 µ| > |xT2 µ| then it holds that (xT1 µ)2 > (xT2 µ)2 and
xT1 µ tanh(txT1 µ) > xT2 µ tanh(txT2 µ) (since t ≥ 0).

Therefore we get that
[
(xT1 µ)2 − (xT2 µ)2

] [
xT1 µ tanh(txT1 µ)− xT2 µ tanh(txT2 µ)

]
> 0 (ex-

cept for a measure zero set where it might be equality). Thus

Etµ,S′
{[

(xT1 µ)2 − (xT2 µ)2
] [
xT1 µ tanh(txT1 µ)− xT2 µ tanh(txT2 µ)

]}
> 0.

By using the fact that x1,x2 are independent and identically distributed, it holds that

Etµ,S′
[
(xT1 µ)3 tanh(txT1 µ)

]
> Etµ,S′

[
(xT1 µ)2

]
Etµ,S′

[
(xT1 µ) tanh(txT1 µ)

]
.

Hence, we conclude that µT (Eµ,S′ [xxT ] − E0,S′ [xx
T ])µ > 0, i.e., the matrix (Eµ,S′ [xxT ] −

E0,S′ [xx
T ]) has a positive eigenvalue. Since E−10,S′ [xx

T ] is positive definite, it holds that

E−10,S′ [xx
T ](Eµ,S′ [xxT ]− E0,S′ [xx

T ])

has a positive eigenvalue, i.e., E−10,S′ [xx
T ]Eµ,S′ [xxT ]− I has a positive eigenvalue.

Hence, E−10,S′ [xx
T ]Eµ,S′ [xxT ] has an eigenvalue greater than one, and the proof is complete.

D.3. Proof of Lemma 16

Proof Consider the transformation x ← Σ−1/2x,µ ← Σ−1/2µ and S′ ← S. Assume for the
sake of contradiction that there exists another fixed point λ 6= 0 (after the transformation so that we
can consider the covariance matrix to be identity). We may assume without loss of generality that
µTλ ≥ 0 since if λ is a fixed point of the EM rule, so it is −λ.
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LetQ be an orthogonal matrix so thatQλ = ‖λ‖2 e1 andQµ = µ1e1+µ2e2 where e1, e2, ..., ed
is the classic orthogonal basis of Rd (Q rotates the space), with µ1 ≥ 0 (by assumption) and µ2 ≥ 0
(by the choice of Q). We will show that the equation

Eλ,S′
[
tanh(xTλ)x

]
= Eµ,S′

[
tanh(xTλ)x

]
holds only for λ = µ (assuming λ 6= µ we shall reach a contradiction).

Under the transformation y = Qx (and because S′ is rotation invariant, |det(Q)| = 1, QTQ =
QQT = I) we get that the fixed point λ of EM satisfies

EQλ,S′
[
tanh(yTQλ)QTy

]
= EQµ,S′

[
tanh(yTQλ)QTy

]
. (30)

We multiply by Q both sides in Equation (30) and we conclude that

E‖λ‖2e1,S′ [tanh(‖λ‖2 y1)y] = EQµ,S′ [tanh(‖λ‖2 y1)y] , (31)

We consider the following two cases:

• µ2 = 0. For the rest of this case, we denote by y−1 the vector y by removing coordinate y1.

We use the notation fν =
1

2
N (y;−ν, I) + 1

2N (y;ν, I). By rotation invariance of S′, it

is true that S′(y1,y−1) = S′(−y1,y−1) = S′(y1,−y−1), S′(−y) = S′(y) and because
tanh(‖λ‖2 y1)y1 is an even function we get

EQµ,S′ [tanh(‖λ‖2 y1)y1] =

∫
Rd tanh(‖λ‖2 y1)y1S′(y)fQµdy∫

Rd S
′(y)fQµdy

=

∫
Rd tanh(‖λ‖2 y1)y1S′(y)N (y;Qµ, I)dy∫

Rd S
′(y)N (y;Qµ, I)dy

=

∫
R e
− (y1−(Qµ)1)

2

2 tanh(‖λ‖2 y1)y1
∫
Rd−1 S

′(y)N (y−1; (Qµ)−1, I)dy−1dy1∫
R e
− (y1−(Qµ)1)

2

2

∫
Rd−1 S′(y)N (y−1; (Qµ)−1, I)dy−1dy1

=

∫
R e
− (y1−(Qµ)1)

2

2 tanh(‖λ‖2 y1)y1r(y1)dy1∫
R e
− (y1−(Qµ)1)

2

2 r(y1)dy1

where r(y1) =
∫
Rd−1 S

′(y)N (y−1; (Qµ)−1, I)dy−1 is an even, non-negative function (of
positive measure). Since tanh(‖λ‖2 y1)y1r(y1) is an even function we conclude that

EQµ,S′ [tanh(‖λ‖2 y1)y1] =

∫
R e
− (y1−(Qµ)1)

2

2 tanh(‖λ‖2 y1)y1r(y1)dy1∫
R e
− (y1−(Qµ)1)

2

2 r(y1)dy1

=

∫
R f(Qµ)1 tanh(‖λ‖2 y1)y1r(y1)dy1∫

R f(Qµ)1r(y1)dy1

= E(Qµ)1,r [tanh(‖λ‖2 y1)y1]

Therefore we conclude that (since (Qµ)1 = µ1)

E‖λ‖2,r [tanh(‖λ‖2 y1)y1] = Eµ1,r [tanh(‖λ‖2 y1)y1] ,

namely we have reduced the problem to the single dimensional case. Hence from Lemma 13,
it must hold that µ1 = ‖λ‖2, i.e., λ = µ (contradiction).
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• µ2 > 0. We use the same machinery as before; by Equation (31), the fact that S′(y1, y2,y−1,2) =
S′(y1, y2,−y−1,2) = S′(−y1, y2,y−1,2) = S′(y1,−y2,y−1,2) and moreover the fact that
function tanh(‖λ‖2 y1)y2 is odd with respect to y2, we conclude

E(µ1,µ2),r′ [tanh(‖λ‖2 y1)y2] = 0,

where r′(y1, y2) is a non-negative function (of positive measure) and bounded by 1, with the
property that r′(y1, y2) = r′(−y1, y2) = r′(y1,−y2) = r′(−y1,−y2) (reducing it to the
two-dimensional case).

We will show that
E(µ1,µ2),r′ [tanh(‖λ‖2 y1)y2] > 0

and reach a contradiction. Assume (z1, z2) ∈ R2 so that z1 · z2 > 0 and r′(z1, z2) > 0. from
the measure f(µ1,µ2),r′ . It suffices to show that f(µ1,µ2),r′(−z1,−z2) = f(µ1,µ2),r′(z1, z2) >
f(µ1,µ2),r′(−z1, z2) = f(µ1,µ2),r′(z1,−z2) (by the assumption of positive measure). This
reduces to (by the property of r′)

e−
(z1−µ1)

2+(z2−µ2)
2

2 + e−
(z1+µ1)

2+(z2+µ2)
2

2 > e−
(−z1−µ1)

2+(z2−µ2)
2

2 + e−
(−z1+µ1)

2+(z2+µ2)
2

2 ,

which after cancelling from both sides the common term e−
z21+z

2
2+µ

2
1+µ

2
2

2 is equivalent to

cosh(z1µ1 + z2µ2) > cosh(z1µ1 − z2µ2).

In case both z1, z2 are positive then |z1µ1 + z2µ2| > |z1µ1 − z2µ2| (since µ1, µ2 > 0)
and the inequality follows. In case both z1, z2 are negative then again | − z1µ1 − z2µ2| >
| − z1µ1 + z2µ2| (since µ1, µ2 > 0) and the inequality follows. The proof is complete.

D.4. Existence of more Fixed Points

The previous section proved the existence of three fixed points in the case of rotation invariant trun-
cation set/function for the multi-dimensional setting. In this section, we describe an example in
two dimensions where the EM update rule has more than three fixed points. Consider the following
setting where the true parameters are give by µ ≈ [2.534, 6.395], and the truncation set S is a “rect-
angle”, i.e, a product of intervals such that x1 ∈ [1, 2] and x2 ∈ [−3, 1.5]. We show that λ = [1, 0]
is a stationary point that satisfies equations, (*) := Eλ,S

[
tanh(xTλ)x

]
−Eµ,S

[
tanh(xTλ)x

]
= 0.

Appendix E. Missing Proofs in Section 6

E.1. Proof of Lemma 19

Proof
∂G(y, y)

∂y

∣∣∣
y=ξ

=
1

σ2

(
Eξ,S [x2]− E2

ξ,S

[
x tanh

(
xξ

σ2

)])
. (32)
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(a) Surfaces of the equations (*) in the neighborhood
of fixed pointA. The point of view is such that the
first equation in (*) is a line passing through point
A.

(b) Vector field of the EM update.

Figure 1: The figures represent the evidence for more fixed points. The figure on the left are the
surfaces of the fixed point equation and the figure on the right is the vector field of the
EM update.

Observe now that for each even function f(x) it holds that

Eξ,S [f(x)] =

∫
R f(x)

(
e−

(x−ξ)2

2σ2 + e−
(x+ξ)2

2σ2

)
S(x)dx

∫
R

(
e−

(x−ξ)2
2σ2 + e−

(x+ξ)2

2σ2

)
S(x)dx

=

∫
R f(x)e−

(x−ξ)2

2σ2
S(x)+S(−x)

2 dx∫
R e
− (x−ξ)2

2σ2
S(x)+S(−x)

2 dx

,

where the last term is just EN (ξ,σ2),S+S
′

2

[f(x)] where S′(x) = S(−x).
We conclude that (32) becomes

∂G(y, y)

∂y

∣∣∣
y=ξ

=
1

σ2

(
EN (ξ,σ2),S+S

′
2

[x2]− E2

N (ξ,σ2),S+S
′

2

[
x tanh

(
xξ

σ2

)])
=

1

σ2

(
EN (ξ,σ2),S+S

′
2

[x2]− E2

N (ξ,σ2),S+S
′

2

[x]

)
=

1

σ2
VN (ξ,σ2),S+S

′
2

[x].

We use Proposition 1, page 14 from paper Daskalakis et al. (2018) for truncated Gaussians and it
follows that

VN (ξ,σ2),S+S
′

2

[x] ≤ VN (ξ,σ2)

(
1 +O

(
1

α2

))
= σ2

(
1 +O

(
1

α2

))
. (33)

The claim follows.
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E.2. Proof of Lemma 21

Proof We will use Lemma 20 for the functions f(x) = x tanh
(
λx
σ2

)
and g(x) = x tanh

(
ξx
σ2

)
with

ξ ∈ [λ, µ], x follows N (ξ, σ2, S+S
′

2 ). Moreover we set q = 1/2 and then the term c from Lemma

20 should satisfy
∫ c
−c e

− (x−ξ)2

2σ2 dx ≤
√
2πσ2α
2 for all ξ ∈ [λt, µ]. Let ρ be such that ρ tanh(ρ) = 1, it

is easy to see that the derivative of h(x) = x tanhx, |h′(x)| ≥ h′(∞) = 1 whenever |x| ≥ ρ, thus
if c ≥ σ2ρ

λt
then both |f ′(x)|, |g′(x)| ≥ 1. We assume that c < σ2ρ

λt
.

First observe that V
[
x
∣∣∣|x| ≥ c] is the variance of a truncated Gaussian where the truncated

measure is at most α
2 + α and at least α, hence from Lemma 6 in Daskalakis et al. (2018) we

conclude that V
[
x
∣∣∣|x| ≥ c] ≥ α2

12σ
2. Finally, since

∫ c
−c e

− (x−ξ)2

2σ2 dx ≤
∫ c
−c e

− x2

2σ2 dx, we choose c
so that ∫ c

−c
e−

x2

2σ2 dx <
2c

σ
=
α
√

2πσ2

2
.

Therefore using 20 Lemma and the fact that tanh(x) ≥ x
cosh2 x

for x positive and ξ ≥ λt we
conclude that

∂G(λt, y)

∂y

∣∣∣
y=ξ
≥ 1

4σ2

(
tanh

(
λtc

σ2

)
+

λtc

σ2 cosh2
(
λtc
σ2

))
tanh

(
ξc

σ2

)
+

ξc

σ2 cosh2
(
ξc
σ2

)
V

[
x
∣∣∣|x| ≥ c]

≥ α2

48

(
tanh

(√
2πλtα

))2
.

E.3. Proof of Lemma 22

Proof First we may assume under appropriate transformation (x ← Σ−1/2x,µ ← Σ−1/2µ) that
Σ = I . We want to bound the spectral radius of(
Eµ,S

[
xxT

]
− Eµ,S

[
x tanh(xTµ)

]
Eµ,S

[
x tanh(xTµ)

]T)−1 Eµ,S [xxT (1− tanh2(xTµ))
]
.

We may assume thatx followsN (µ, I, S+S
′

2 ) (S′(x) = S(−x)), hence we conclude that E[x tanh(xTµ)] =
E[x]. Thus the Jacobian becomes

Cov(x,x)−1
(
Cov(x,x)− Cov(x tanh(xTµ),x tanh(xTµ))

)
. (34)

Using Proposition 1, page 14 from Daskalakis et al. (2018) we conclude that ‖Cov(x,x)‖2 is at
most O

(
1
α2

)
. We choose a c > 0 such that Pr[|xTµ| ≥ c] ≥ 1

2 . By law of Total Variance we get
that

Cov(x tanh(xTµ),x tanh(xTµ)) � Pr[|xTµ| ≥ c]Cov((x tanh(xTµ),x tanh(xTµ))
∣∣ |xTµ| ≥ c)

� tanh2(c)

2
Cov((x,x)

∣∣ |xTµ| ≥ c)
� Ω(a4)I,
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where the last relation holds because of Proposition 1, page 14 from Daskalakis et al. (2018)
and the fact that tanh(c) is Ω(α). Hence the minimum eigenvalue of the matrix above is at
least Ω(α4). Finally the spectral norm of matrix (34) is at most one minus the minimum eigen-
value of Cov(x tanh(xTµ),x tanh(xTµ)) multiplied with the inverse of maximum eigenvalue of
Cov−1(x,x) hence it is at most 1− Ω(α6).
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