
Proceedings of Machine Learning Research vol 117:1–27, 2020 31st International Conference on Algorithmic Learning Theory

A Non-Trivial Algorithm Enumerating Relevant Features
over Finite Fields

Mikito Nanashima NANASHIMA.M.AA@IS.C.TITECH.AC.JP

Department of Mathematical and Computing Science
Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, Tokyo, 152-8552, Japan

Editors: Aryeh Kontorovich and Gergely Neu

Abstract
We consider the problem of enumerating relevant features hidden in other irrelevant information
for multi-labeled data, which is formalized as learning juntas.

A k-junta function is a function which depends on only k coordinates of the input. For relatively
small k w.r.t. the input size n, learning k-junta functions is one of fundamental problems both
theoretically and practically in machine learning. For the last two decades, much effort has been
made to design efficient learning algorithms for Boolean junta functions, and some novel techniques
have been developed. In real-world, however, multi-labeled data seem to be obtained in much more
often than binary-labeled one. Thus, it is a natural question whether these techniques can be applied
to more general cases about the alphabet size.

In this paper, we expand the Fourier detection techniques for the binary alphabet to any finite
field Fq , and give, roughly speaking, an O(n0.8k)-time learning algorithm for k-juntas over Fq .
Note that our algorithm is the first non-trivial (i.e., non-brute force) algorithm for such a class even
in the case where q = 3 and we give an affirmative answer to the question posed by Mossel et al.
(2004).
Keywords: learning juntas, exact learning, computational learning theory, finite fields

1. Introduction

In both practical and theoretical senses, it is a fundamental challenge to separate relevant informa-
tion from irrelevant information in data analysis. In many machine learning settings, collected data
may contain many irrelevant features together with relevant features (e.g., DNA sequences and big
data), and the efficient techniques for selecting relevant features are widely required. This problem
is captured by learning juntas, which is one of the most challenging and important issues in compu-
tational learning theory. Informally, we say an n-input function f : X n → Y is a k-junta (k ≤ n)
iff f depends on only at most k coordinates of the input. Our task is to find the relevant coordinates
(i.e., features) of a k-junta function f , called a target function, from passively collected examples of
the form (x, f(x)) ∈ X n × Y .

In the particular case where the alphabet is binary, that is, X = Y = F2, the learning jun-
tas problem has theoretical importance. For k = O(log n), learning k-junta functions is a special
case of learning polynomial-size DNF (disjunctive normal form) formulas and log-depth decision
trees, which are also known as notorious open problems in computational learning theory, even in
the uniform-distribution model (i.e., examples are distributed uniformly over Fn2). Therefore, for
an affirmative answer to such problems, finding an efficient learning algorithm for log-juntas is in-
evitable. Despite much effort by researchers, efficient (i.e., polynomial-time) learning algorithms

c© 2020 M. Nanashima.

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

for log-juntas have not been found. From the other point of view (i.e., parameterized complex-
ity introduced by Downey and Fellows, 1995), the learning juntas problem can be regarded as
a parametrized learning problem for general Boolean functions, and in fact, fixed parameter in-
tractability have been found in (proper) learning under the distribution-free model by Arvind et al.
(2009). However, for weaker (still useful enough) requirements containing the uniform-distribution
model, any convincing argument on intractability has not been found until now. For further details
about learning juntas, see the survey by Blum (2003).

On the positive side, some elegant techniques for learning Boolean juntas have been developed
in the uniform-distribution model since the problem was posed by Blum (1994); Blum and Langley
(1997). Obviously, any k-junta function can be learned in time O(nk) by brute-force search for
all
(
n
k

)
≤ nk patterns about relevant coordinates. The first polynomial factor improvement was

found by Mossel et al. (2004), and the running time was reduced toO(n
ω
ω+1

k) ≤ O(n0.706k), where
ω denotes the exponential factor of the running time O(nω) of fast n × n matrix multiplication
with best known bound of ω < 2.3728639 by Le Gall (2014). Further improvement has been
made by Valiant (2015), and the faster learning algorithm in time O(n

ω
4
k) ≤ O(n0.6k) has been

developed, which is the best at present.
In real-world, multi-labeled data such as questionnaires or DNA sequences (i.e., sequences over

the alphabet {A, T, G, C}) seem to be obtained in much more often than binary-labeled one. There-
fore, it is a natural question whether the techniques for learning Boolean juntas can be modified to
more general domains. Although the learning problem for k-juntas over alphabets with the finite
size q ∈ N was mentioned as a direction for future work by Mossel et al. (2004), there are much
fewer learnability results in the general case than in the binary case. Obviously, it can be solved
in time O(nk) as in the case F2. The subsequent work by Gopalan (2010) implicitly gave the non-
trivial O(n

ω
3
k) ≤ O(n0.8k)-time algorithm in the case where q = 2` for some ` ∈ N, by reducing

the learning problem to q−1 learning problems for junta functions of the range Y = F2. To the best
of our knowledge, however, any non-trivial learning algorithm for juntas over more general domains
has not been known, even in the case where q = 3. In this paper, we investigate the learnability of
juntas over arbitrary finite fields and explicitly give the first non-trivial learning algorithm for such
classes.

1.1. Formal Description

To see our main contributions, we state the problem more formally. Let Fq be arbitrary finite field
of order q = p` where p = char(q). In this paper, we focus on k-junta functions over Fq as target
functions. Formally, k-junta functions are defined as follows.

Definition 1 For a function f : Fnq → Fq, we say that a coordinate i ∈ {1, . . . , n} is relevant if
f(x) 6= f(y) for some points of x, y ∈ Fnq which differ only at the coordinate i. For k ≤ n, we say
that f is a k-junta if it has at most k relevant coordinates.

The number of relevant coordinates is given in advance by some fixed function k : N→ N, and
a learning algorithm knows the function k. The learning algorithm is given access to an example
oracle O(f) as the only access to the target function f : Fnq → Fq. For each access to O(f), the
learner obtains an example (x, f(x)) ∈ Fnq × Fq, where x is selected uniformly at random over Fnq .

We state the learning juntas problem formally as follows. In this paper, we will use the term
“with high probability (w.h.p. for short)” to imply with some constant probability.

2

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

LEARNING k-JUNTAS (OVER FINITE FIELD)

Input: n, k ∈ N, and an example oracle O(f) where f : Fnq → Fq is a k-junta

Goal: Find all (at most k) relevant coordinates w.h.p.

As described by Blum (2003); Mossel et al. (2004), if the learner knows all relevant coordinates,
then it can also identify the hidden (at most) k-input function in time poly(n, qk). In fact, the learn-
ability by the above formulation is equivalent to the usual exact learnability of junta functions under
uniform distribution within the multiplicative factor of poly(n, qk). The failure probability can be
reduced to any given δ ∈ (0, 1) (usually called a confidence parameter) by O(ln δ−1) independent
repetitions as described by Haussler et al. (1988).

Remember that the above learning problem is solved naively in time nk · poly(n, qk). In this
paper, we will improve the polynomial factor of nk and show the following non-trivial learnability
as our main result.

Theorem 2 (main) For any ε > 0 and k = O(logq n), k-juntas over any finite field Fq are learn-
able in time n

ω
3
k+ε · poly(n, qk) (≤ n0.8k · poly(n)).

1.2. Our Techniques

Before presenting our central idea, let us explain where the difficulty in learning juntas over finite
fields comes from. In the binary case, two techniques have been known for reducing the learning
costs non-trivially. The first one is using a structural property between Fourier coefficients and F2

polynomials (i.e., Siegenthaler’s theorem), applied by Mossel et al. (2004). However, such a good
property has not been known for larger alphabets.

The second one is the reduction to the light bulb problem (LBP), which is firstly proposed
by Valiant (2015). Informally, LBP introduced by Valiant (1988) is a problem of finding a correlated
pair of binary strings hidden in the other uncorrelated pairs, which is formally stated as follows:

LIGHT BULB PROBLEM: LBP
Input: a set S = {x1, . . . , xN} of N vectors, and µ ∈ (0, 1],

where xi ∈ {±1}d for each i ∈ {1, . . . , N}. The instance S contains a
single correlated pair (xi

∗
, xj

∗
) satisfying 〈xi∗ , xj∗〉 ≥ µd, and the other

pairs of vectors are selected independently and uniformly at random.

Goal: Find indices of the correlated pair (i∗, j∗) w.h.p.

If d = Ω(µ−2 logN), the correlated pair has the largest inner product w.h.p., which is an
information theoretic requirement. In that case, the problem is solved in timeO(N2d) by calculating
inner products of all pairs. As a breakthrough result, the first subquadratic algorithm for LBP
has been found by Valiant (2015). Moreover, in the case where µ ≥ N−Θ(1), a faster algorithm
was presented by Karppa et al. (2018). Other subquadratic algorithms also have been proposed
by Karppa et al. (2016); Alman (2018).

Fact 3 (Karppa et al. 2018, Corollary 2.2) For any 0 < ε < ω/3 and N−Θ(1) ≤ µ < 1, if
d ≥ 5µ−

4ω
9ε
− 2

3 lnN , then there is a randomized algorithm for solving LBP with probability 1−o(1)

in time Õ(N
2ω
3

+εµ−
8ω
9ε
− 4

3).

3

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

In the reduction from learning binary juntas to LBP by Valiant (2015), the size of data is
stretched from n to roughly N = nk/2. Therefore, the above subquadratic algorithms yield non-
trivial learning algorithm for binary juntas immediately.

A natural approach for generalizing this technique to our case is to apply Fourier analysis for
general finite fields and reduce learning juntas to detecting correlation such as LBP. However, for
general fields, complex numbers are used for Fourier analysis (instead of {−1, 1}), and all of the
known subquadratic algorithms for LBP use properties which are doubtful whether they hold even
for complex numbers (e.g., the anti-concentration lemma, Cartesian Sampling).

Nevertheless, the second approach is much more hopeful than the first one, and in fact, we will
adopt this approach. Our main idea is to reduce the alphabet {0, . . . , q−1} to not complex numbers
but binary {−1, 1}. In such alphabet reduction, we need to prevent the lack of information about
alphabets from losing other important information for learning juntas (e.g., relevance). This idea
enables us directly to apply the subquadratic algorithm for LBP. In the following, we will give the
rough sketch of our reduction for prime fields.

Overview of Our Reduction (for Prime Fields)

As observed by Mossel et al. (2004), we reduce the task of finding relevant coordinates for f to
finding correlated linear functions χα(x) = α1x1 + · · ·+ αnxn for α ∈ Fnq (i.e., non-zero Fourier
coefficients). This is because if f is a k-junta and non-constant, then f has at least one correlated
linear function χα(x) (1 ≤ |α| ≤ k), and all coordinates i satisfying αi 6= 0 are relevant (formally,
Fact 6). Thus we can find relevant coordinates from α. However, if we calculate all linear functions
of order at most k to find such a correlated one, it costs trivially O(nk). To get our non-trivial
algorithm, we will find it by calculating linear functions of order only up to k/2 as follows.

Fix any α such that χα is correlated with f , and we will find this α non-trivially. First we take a
separator of coordinates [n] = {1, . . . , n} which divides the non-zero part of α into half (the detail
will be given in Section 5). Let L and R be each block (that is, L ∪ R = [n] and L ∩ R = ∅), and
αL (resp. αR) be the vector given by changing values of α contained in R (resp. L) into 0.

For each given example (x, f(x)), we calculate all values of linear functions of order at most
k/2 which have non-zero coefficients in only one of L and R (note that χαL(x) and χαR(x) are
contained in such values). Then, we list the values f(x) − χγL(x) and χγR(x) for each γL ∈ Fnq
(resp. γR ∈ Fnq) whose non-zero part is contained in L (resp. R). Since f(x) and χα(x) (=
χαL(x)+χαR(x)) are correlated, we can show f(x)−χαL(x) and χαR(x) are also correlated, thus
this data contains a correlated pair. Notice that the size of data will be stretched from n to O(nk/2).
We repeat the above processes d times, which corresponds to the degree in LBP (d is determined
w.r.t. the subquadratic algorithm).

Then, we translate each value in Fq into {−1, 1} with keeping the correlation between f(x) −
χαL(x) and χαR(x) (the detail will be given in Section 5). If there exists an algorithm which finds
such a correlated pair, then we can find αL and αR, and retrieve α and relevant coordinates. We will
leave the task of finding the pair to subquadratic algorithms for LBP.

For the reduction to LBP, the above argument is not sufficient in the sense that the resulting data
may contain quite many correlated pairs. Notably, by our alphabet reduction, some of them may
have non-zero components at irrelevant coordinates, which make our learning algorithm fail. Such
pairs come from the following reasons : (1) a k-junta function may have more than one correlated
linear functions, and (2) each block may contain linearly dependent linear functions. Especially,

4

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

the case (2) does not occur in the binary case. The case (2) is handled by a simple restriction to
listed linear functions (Section 5). The case (1) is handled by filtering all but one correlations by
generalizing the technique for binary by Feldman et al. (2006) to finite fields (Section 4).

For Non-prime Fields

In the above reduction, we will use both the properties of Fourier analysis and finite fields repeatedly.
In the case where q is non-prime field, the proofs will not work. This is essentially because the
operator in Fourier analysis (i.e., addition in Zq) does not match the addition in Fq. To resolve this,
first we reduce the alphabet [q] to [p] (remember that q = p` and p is prime) by the trace function,
then we adopt the above algorithm for prime fields. This technique was also used by Gopalan
(2010).

2. Preliminaries

We use log to denote logarithm of the base 2, and ln to denote natural logarithm. For any integer n,
we define a set [n] := {1, 2, . . . , n}. Let Fq be a finite field of order q = p` where p = char(q).
We define a trace function Tr : Fq → Fp by Tr(a) :=

∑`−1
j=0 a

pj . Note that for any a, b ∈ Fq,
Tr(a) + Tr(b) = Tr(a+ b), and Tr(·) takes each value in Fp equally often. For details of the trace
function, see chap. 2.3 by Lidl and Niederreiter (1986).

For α ∈ Fnq , we define the weight of α by |α| = |{i ∈ [n] : αi 6= 0}|. For α 6= 0n, we also
define its initial init(α) by the first non-zero value of α, that is, init(α) = v iff there exists i ∈ [n]
such that αi = v and αj = 0 for each j ∈ [i − 1]. Note that if α, α′ ∈ Fnq \ {0n} satisfy α 6= α′

and init(α) = init(α′), then there is no c ∈ Fq such that α = cα′ (i.e., α and α′ are linearly
independent on Fnq).

For any J ⊆ [n], we define a subspace FJq ≤ Fnq by FJq = {x ∈ Fnq : xi = 0 for each i ∈ J̄},
where J̄ = [n] \ J . For any α ∈ Fnq and J ⊆ [n], we also define αJ ∈ FJq by αJi = αi for i ∈ J .

We use the term “a truth table” to denote a table of values of a function over Fq as in the binary
case. For any function f : Fnq → Fq and value a ∈ Fq, we define a function af : Fnq → Fq by
af(x) = a · f(x). We also define a function Tr(f) : Fnq → Fp by Tr(f)(x) = Tr(f(x)).

For a subset J ⊆ [n], we define a restriction τ on J as a partial assignment to J , and we use
f |τ : F|J̄ |q → Fq to denote the restricted function of which variables are partially assigned by τ . We
use |τ | to denote the size of a restriction τ , that is, |τ | = |J |.

For a finite set S, we write x ←u S for a random sampling of x according to the uniform
distribution over S. In the subsequent discussions, we assume the basic facts about probability
theory, especially, pairwise independence and the union bound. We will make extensive use of the
following tail bound by Hoeffding (1963).

Fact 4 (Hoeffding inequality) For real values a, b ∈ R, let X1, . . . , Xm be independent and iden-
tically distributed random variables with Xi ∈ [a, b] and E[Xi] = µ for each i ∈ [m]. Then for any
ε > 0, the following inequality holds:

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

Xi − µ

∣∣∣∣∣ > ε

]
< 2e

− 2mε2

(b−a)2 .

5

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

2.1. Fourier Analysis

We introduce the basics of Fourier analysis over finite fields. For further details, see texts by O’Donnell
(2014); Gopalan (2010). For each a ∈ Fq, let e(a) := e

2πi
p

Tr(a) ∈ C. For a, b ∈ Fq, it is easy to
see that e(a + b) = e(a)e(b) and e(−a) = e(a). For any two functions f, g : Fnq → C, we define
their inner product by 〈f, g〉 = Ex[f(x)g(x)]. Then a family {e(χα)}α∈Fnq of qn functions forms an
orthonormal basis, that is, 〈e(χα), e(χβ)〉 = 1 if α = β, otherwise, 〈e(χα), e(χβ)〉 = 0. Therefore,
for any complex-valued function f : Fnq → C has a unique Fourier expansion form as f(x) =∑

α f̂(α)e(χα(x)), where f̂(α) is a Fourier coefficient on α ∈ Fnq given by f̂(α) = 〈f, e(χα)〉.
Even for an Fq-valued function f : Fnq → Fq, we also define its Fourier transformation f̂ : Fnq →

C by f̂(α) = 〈e(f), e(χα)〉. Let us remark that, not as complex-valued functions, a function f over
Fq does not always have the unique Fourier expansion form, because the value f(x) ∈ Fq is mapped
onto Tr(f(x)) ∈ Fp in the definition of e(·), and there exist different functions f, g : Fnq → Fq
which satisfies Tr(f) ≡ Tr(g).

Our algorithm will extensively use the above analysis, more specifically, we will map the target
function f to Tr(f) and use the Fourier analysis for range Fp. This enables us to use the properties
of finite fields even for non-prime order. However, in the setting of learning juntas, some relevant
coordinates for f may turn to be irrelevant for Tr(f). This lack of information will be overcome
by considering p`−1 functions c1f, . . . , cp`−1f simultaneously for distinct elements c1, . . . , cp`−1 ∈
Fq \ {0}, which is indicated by the following simple lemma. Note that, for any c ∈ Fq, we can
easily simulate the example oracle O(cf) from O(f) by multiplying each label by the value c.

Lemma 5 For any function f : Fnq → Fq, distinct elements c1, . . . , cp`−1 ∈ Fq \ {0}, and relevant
coordinate i ∈ [n] for f , there exists j ∈ [p`−1] such that i is also relevant for Tr(cjf) : Fnq → Fp.

Proof By the definition of relevant coordinates, there exists x, y ∈ Fnq which differ only at the
coordinate i and v := f(x) − f(y) 6= 0. Since c1, . . . , cp`−1 are distinct and nonzero, the p`−1

values c1v, . . . , cp`−1v are also distinct and nonzero. The trace function Tr(·) takes each value
exactly p`−1 times and Tr(0) = 0, thus there exists j ∈ [p`−1] satisfying Tr(cjv) 6= 0, which
implies Tr(cj(f(x)− f(y))) = Tr(cjf(x))− Tr(cjf(y)) 6= 0. Therefore, i is also relevant for the
function Tr(cjf).

We also introduce the following fact which plays a crucial role in learning juntas.

Fact 6 If a function f : Fnq → Fq satisfies that f̂(α) 6= 0 for some α ∈ Fnq , then all coordinates
i ∈ [n] with αi 6= 0 are relevant.

Proof By contraposition. If there exists an irrelevant coordinate i ∈ [n] such that αi 6= 0,

f̂(α) = E[e(f(x)− χα(x))] = E[e(f(x)− χα′(x))] · E[e(−αixi)] = 0,

where α′ = (α1, . . . , αi−1, 0, αi+1, . . . , αn).

6

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

2.2. Statistical Distance and Character Distance

For our proofs, we introduce the following two distances about random variables taking values in
Fq, which was introduced first by Bogdanov and Viola (2010).

Definition 7 (statistical/character distance) For random variables X,X ′ taking values in Fq, we
define their statistical distance SD(X,X ′) by

SD(X,X ′) =
1

2

∑
x∈Fq

|Pr[X = x]− Pr[X ′ = x]|,

and we also define their character distance CD(X,X ′) by

CD(X,X ′) = max
a∈Fq
|E[e(aX)]− E[e(aX ′)]|.

In the case where q is not prime, we adopt a different definition for e(·) from one in the original
paper by Bogdanov and Viola (2010). However, it is easily checked that the following fact holds
from exactly the same argument.

Fact 8 (Bogdanov and Viola 2010, Claim 33) For any random variables X,X ′ taking values in
Fq,

CD(X,X ′) ≤ 2 · SD(X,X ′) ≤
√
q − 1 · CD(X,X ′).

In particular, SD(X,X ′) = 0 if and only if CD(X,X ′) = 0.

3. Learning Junta Functions

Let us mention some simple observations about our learning problem. In this paper, for simplicity,
we assume the following computational model:

• A learning algorithm can uniformly select an element in Fq with probability 1 in constant
steps. In fact, a usual randomized model with binary coins may fail in selecting such random
elements with exponentially small probability, but we can deal with this probability as a
general error probability (i.e., confidence error). For the same reason, we allow algorithms
to flip a biased coin which lands heads up with a rational probability (of the polynomial-time
computable denominator).

• A learning algorithm with an example oracle O(f), where f : Fnq → Fq is a k-junta, can
simulate an oracle O(f |τ) w.r.t. any restriction τ of the size |τ | ≤ k. In practice, this
simulation is done by taking several examples until getting an example consistent with τ .
Since the probability that an example consistent with τ is sampled is at least q−k, the failure
probability becomes exponentially small by taking poly(qk) examples. We can also deal with
this error probability as a general confidence error, and the additional running time is within
poly(n, qk).

For learning juntas, as observed by Mossel et al. (2004); Blum (2003), the essential task is to find at
least one relevant coordinates instead of all (at most k) relevant coordinates simultaneously. If we
have such a partial learning algorithm, we can also find all relevant coordinates by the following pro-
cesses: (1) find some of relevant coordinates by using the partial learner, (2) assign a proper partial

7

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

assignment to them, and (3) repeat the same processes (1) and (2) for the restricted function (note
that the restricted function is still a k-junta) until finding all relevant coordinates. The algorithm
will halt in at most k repetitions if the partial learner can find at least one relevant coordinate for any
k-junta. Note that we can easily check whether the restricted f is constant (i.e., the termination of
execution) by taking poly(qk) examples and checking whether all labels are the same, because each
value of any k-junta function must appear with probability at least q−k.

Let f : Fnq → Fq be a target k-junta function and non-constant. By Fact 5, if we consider p`−1

functions c1f, . . . , cp`−1f for distinct elements c1, . . . , cp`−1 ∈ Fq \ {0}, then at least one of them
will not boil down to constant by the trace function. Assume Tr(c1f) is non-constant, then c1f
must have non-zero Fourier coefficient on some α ∈ Fnq such that 1 ≤ |α| ≤ k. By Fact 6, all
coordinates i ∈ [n] satisfying αi 6= 0 is relevant for f , because the relevant coordinates for f and
c1f are the same. Therefore, we can reduce learning juntas to finding non-zero Fourier coefficients
for some function cf where c ∈ Fq \ {0}.

In the following section, we will focus on the reduced task (i.e., finding non-zero Fourier coef-
ficients). For the formal description of the learning algorithm, see Appendix A.

4. Step 1: Filtering Correlations

By the observations in Section 3, we can assume that the target k-junta function f satisfies that there
exists α ∈ Fnq \ {0n} such that f̂(α) 6= 0. For our purpose (i.e., finding relevant coordinates), it is
enough to find cα for some c ∈ Fq \ {0}.

4.1. Learning Linear Functions with Discrete Memoryless Errors

As a first step to find the correlated function χα, we filter out the other correlations of f with χβ
where β ∈ Fnq \ {α}. Specifically, we will reduce the learning juntas problem to another learning
problem, learning with discrete memoryless errors (LDME).

Roughly speaking, the goal of LDME is to learn a linear function χα : Fnq → Fq under the con-
dition that the label may be corrupted with random noise. We assume that the noise will depend on
only the label (i.e., χα(x)), not on x. To handle the noise model concisely, we regard a randomized
function as a target function, that is, we regard f(x) as a random variable on Fq for any input x.

LEARNING WITH DISCRETE MEMORYLESS ERRORS: LDME

Input: n, k ∈ N, ρ ∈ (0, 1], and an example oracle O(f),

where f : Fnq → Fq is randomized. There exists α ∈ Fnq with 1 ≤ |α| ≤ k
such that the distribution of f(x) is determined by only the value of χα(x)
(not x itself), and the target function f is close to χα in the following sense:

Cor(f, χα) := |Ex,f [e(f(x))e(χα(x))]| ≥ ρ.

Goal: Find α′ ∈ Fnq satisfying that α′ = cα for some c ∈ Fq \ {0} w.h.p.

We refer to the above function χα as a target linear function. The reason why we permit to
output not only α but also linearly dependent α′ is that χα′ may also have large correlation with f
in our formulation (i.e., Cor(f, χα′) ≥ ρ).

8

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

Let us briefly mention about the background (the reader may skip this paragraph). LDME
introduced first by Gopalan (2010) is the extension of the well-known learning with errors problem
(LWE) which is one of the most challenging problems in learning theory and even used as a hardness
assumption in cryptography (see Regev, 2005, 2010). The difference between them is the noise
setting. In LWE, one (unknown) distribution of noise is fixed in advance, while in LDME, the
distribution is determined for each value of the target linear function. In other words, there exist
in total q unknown distributions of the noise in LDME, and the effect of noise may become more
complicated. Besides, we adopt a weaker condition about the closeness between f and χα compared
to the formulation by Gopalan (2010), which enables the reduction from learning juntas.

In our reduction, the parameters in LDME is set to ρ = q−(k+1) (n and k are not changed).
Specifically, we will show the following theorem:

Theorem 9 If there exists a learning algorithm for solving LDME in time T (n, k, ρ), then there
exists a learning algorithm for k-juntas over Fq in time T (n, k, 1/qk+1) · poly(n, qk).

4.2. A Tool: (a,A)-projection

The main tool for proving Theorem 9 is the following (a,A)-projection, which is an extension of
A-projection in F2 proposed by Feldman et al. (2006).

Definition 10 ((a,A)-projection) For f : Fnq → Fq, A ∈ Fm×nq , and a ∈ Fq, we define faA :
Fnq → C by

faA(x) =
∑

α:Aα=am

âf(α)e(χα(x)) =

{∑
α:Aα=1m âf(aα)e(χaα(x)) (if a 6= 0)

1 (if a = 0)

The followings are useful properties about (a,A)-projection: for any k-junta function f ,

1. for anyA ∈ Fm×nq , there exists randomized function g : Fnq → Fq such that O(g) is simulated
from O(f) and A, and Eg[e(ag(x))] = faA(x) for any a ∈ Fq and x ∈ Fnq ;

2. for any α ∈ Fnq \ {0n}, if we select A ∈ Fm×nq at uniformly random, then faA(x) ≡
âf(aα)e(χaα(x)) with probability greater than (qm−k − 1)/q2m−k;

3. for any α ∈ Fnq with f̂(α) 6= 0, there exists a ∈ Fq \ {0} such that |âf(aα)| ≥ q−(k+1).

Strictly speaking, property 3 does not depend on (a,A)-projection directly. In our reduction, the
parameter m is set to k + 1, thus the probability in property 2 is bounded below by 1/qk+2.

The above properties immediately provide our reduction. Now we show the sketch by assuming
the above properties. For the complete proof of Theorem 9 (including the proofs of the above
properties) and the specific description of our reduction, see Appendix B.

Proof of Theorem 9 (sketch). Let f be a target k-junta, and assume that α ∈ Fnq satisfies 1 ≤ |α| ≤
k and f̂(α) 6= 0. First, we select A ∈ F(k+1)×n

q at uniformly random, then for each a ∈ Fq \ {0},
we simulate O(ag) in property 1 w.r.t. the selected A.

We show that, for good choices of A and a, the simulated oracle O(ag) satisfies the conditions
of LDME with ρ = q−(k+1) and the target linear function χaα. Assume that the algorithm succeeds

9

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

in selectingA and a satisfying the conditions in properties 2 and 3, respectively. Then, the condition
about correlation bound ρ holds as follows:

Cor(ag, χaα) =
∣∣∣Ex,g[e(ag(x))e(χaα(x))]

∣∣∣ =
∣∣∣Ex[Eg[e(ag(x))]e(χaα(x))]

∣∣∣
=
∣∣∣Ex[faA(x)e(χaα(x))]

∣∣∣ (∵ property 1)

= |âf(aα)|
∣∣∣Ex[e(χaα(x))e(χaα(x))]

∣∣∣ (∵ property 2)

= |âf(aα)| ≥ q−(k+1) = ρ. (∵ property 3)

For the condition about the noise model, it is enough to show that for any x, x′ ∈ Fnq ,

χα(x) = χα(x′) =⇒ SD(g(x), g(x′)) = 0,

because this immediately implies that χaα(x) = χaα(x′) =⇒ SD(ag(x), ag(x′)) = 0. This
implication is derived from Fact 8, properties 1 and 2 as follows:

χα(x) = χα(x′)

=⇒ for any c ∈ Fq, Eg[e(cg(x))] = ĉf(cα)e(cχα(x)) = ĉf(cα)e(cχα(x′)) = Eg[e(cg(x′))]

⇐⇒ CD(g(x), g(x′)) = max
c∈Fq

∣∣Eg[e(cg(x))]− Eg[e(cg(x′))]
∣∣ = 0⇐⇒ SD(g(x), g(x′)) = 0.

By property 2, we can select such a good A with probability greater than q−(k+2). Therefore,
if we repeat the above process poly(qk) times, at least one of selected A’s satisfies the condition in
property 2. If the algorithm for LDME will find cα correctly for some c ∈ Fq \ {0}, then by Fact 6,
we can find at least one relevant coordinates for f by looking at the non-zero part of cα. Strictly
speaking, we must analyze the cases where we fail to select good A and a and to solve LDME, but
these cases are handled by a simple checking subroutine which runs in time poly(n, qk). We leave
it to Appendix B.

We selectA and a at most poly(qk) times. For each selection, solving LDME takes T (n, k, 1/qk+1),
and the other processes take poly(n, qk). Therefore, the total running time is at most T (n, k, 1/qk+1)·
poly(n, qk).

5. Step 2: Detecting a Correlation

As a second step, we reduce LDME (of parameters n, k, ρ) to LBP, where the size N = (qn)k/2

and the correlation bound µ = ρ/2q3. Specifically, we will show the following theorem. It is easily
checked that Theorem 2 follows from Theorems 9 and 11, and Fact 3.

Theorem 11 Assume that there exist d(N,µ) ≥ Ω(µ−2 logN) and an algorithm for solving LBP
of degree d(N,µ) with the parameter N and µ in time T (N,µ). Then for any target linear func-
tion χα : Fnq → Fq (1 ≤ |α| ≤ k) and correlation ρ, LDME is solved in time poly(n, ρ−1) ·
(d(N,µ) ·N + T (N,µ)) with N = (qn)k/2 and µ = ρ/2q3.

Let X be a random variable taking values in Fq. If X is uniformly distributed, then obviously
E[e(X)] = 0. For our reduction, the contraposition is quite useful, that is, how often X takes the
frequent value for |E[e(X)]|. For this, we introduce the following simple lemma.

10

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

Lemma 12 Let X be a random variable taking values in Fq. If |E[e(X)]| ≥ ρ (0 ≤ ρ ≤ 1), then
there exists a ∈ Fq such that Pr[X = a] ≥ 1

q + ρ
q2

.

The proof of Lemma 12 will be given in Appendix C. As a corollary, we can observe the fol-
lowing fact about LDME. Let α, γ ∈ Fnq \ {0n}, χα be a target linear function, and f be the target
function, that is, Cor(f, χα) = |E[e(f(x) − χα(x))]| ≥ ρ. If γ = α, then by Lemma 12, there
exists a concentrated value a ∈ Fq such that Pr[f(x)− χγ(x) = a] ≥ 1/q + ρ/q2.

While, if γ and α are linearly independent (remember that we cannot output such γ), then the
following lemma indicates that there is no such concentrated values.

Lemma 13 Let α, γ ∈ Fnq \ {0n} be linearly independent, and f : Fnq → Fq be randomized. If
the distribution of f(x) is determined by only the value of χα(x), then for all a ∈ Fq, Prx,f [f(x)−
χγ(x) = a] = 1

q .

We leave the proof of Lemma 13 to Appendix C. We will essentially use this difference by γ.
Note that we do not say anything in the case where γ and α are linearly dependent.

Now we show the sketch of our reduction, which follows the overview in Section 1.2. For the
complete proof of Theorem 11 and the description of our reduction, see Appendix C.

Proof of Theorem 11 (sketch). We can assume that |α| ≥ 2, otherwise (i.e., |α| = 1), we can easily
find the α by checking all qn possibilities about α as preprocessing.

First we select t ∈ [n] and split the coordinates [n] into L = {1, . . . , t} and R = {t+1, . . . , n}.
It is easily checked that there exists t such that |αL| = d|α|/2e, |αR| = b|α|/2c. Now assume that
we succeed in selecting such a partition (L,R) by brute-force manner.

Then we list the values of linear functions. As described in Section 1.2, if we list linear func-
tions whose coefficients are linearly dependent, then the values depend on each other, and it yields
undesirable correlated pairs in the resulting instance. Therefore, not to contain linearly dependent
linear functions, we fix an initial value of coefficients for each partition. Remember that if two
different vectors have the same initial value, then they must be linearly independent. Specifically,
we select the initial values sL, sR ∈ Fq \ {0}, then for each given example (x, f(x)), we list the
following values:

f(x)− χγL(x) for γL ∈ FLq s.t. 1 ≤ |γL| ≤ dk/2e and init(γL) = sL

χγR(x) for γR ∈ FRq s.t. 1 ≤ |γR| ≤ dk/2e and init(γR) = sR.

Let d := d(N,µ) for N = (qn)k/2 and µ = ρ/2q3. We repeat the above process d times
(i.e., take d examples and list the values of linear functions). For each example, the values of linear
functions are arranged in a row, and each column is labeled by the corresponding γL (or γR). If
sL = init(αL) and sR = init(αR), then there exist columns labeled by αL and αR. Assume that
we succeed in selecting such sL and sR by brute-force manner.

Let M be the matrix given by the above process, and ML (resp. MR) denote the partial matrix
whose columns are indexed by γL ∈ FLq (resp. γR ∈ FRq). We can regard each entry in M
as a random variable taking values in Fq w.r.t. the random choice by example oracle. The key
observation aboutM is the following properties I, II, and III, which show the difference between the
pair of column vectors indexed by αL and αR (we call it a “target pair”) and the other pairs. These
are easily derived from Lemmas 12 and 13, and the complete proofs will be given in Appendix C.

11

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

I. Each entry takes the values over Fq equally often.

II. The target pair is correlated in the following sense: there exist vL, vR ∈ Fq s.t.

Pr[f(x)− χαL = vL, χαR = vR] ≥ 1/q2 + ρ/q3.

III. Other pairs are distributed pairwise independently (and uniformly by property I).

Now we translate each value into 1 or −1 with keeping relationships about the correlation be-
tween column vectors. We guess the concentrated value vL and vR (by brute-force manner) and
change the entries in ML (resp. MR) taking vL (resp. vR) into 1. Then we change the other entries
in M by flipping a biased coin for each entry with the head probability ph := q/(2(q − 1)), and if
it comes up with head, then we change the entry to −1, otherwise to 1.

If the original variable is uniformly distributed over Fq, then the resulting variable is also uni-
formly distributed over {−1, 1} because the probability that it is changed into−1 is (q−1)/q ·ph =
1/2. It is also easily checked that if the pair of entries in the original M are uniformly and indepen-
dently distributed over F2

q , then the resulting pair is also uniformly and independently distributed
over {−1, 1}2. Therefore, by property III, all pair of columns except for the target pair are uniformly
and independently distributed over {−1, 1}d.

Therefore, if the target pair has enough correlation, the resulting instance is one of LBP. In
fact, by properties I and II and simple calculations, we can show that for each row, the entries
in the target pair take the same value with probability larger than 1/2 + ρ/2q3 (we leave it to
Appendix C). Therefore, for each row, their product takes the value 1 or −1, and the expectation is
at least 1 · (1/2 + ρ/2q3) + (−1)(1/2− ρ/2q3) = ρ/q3.

Note that for sufficiently large n, the degree d ≥ Ω(logN/µ2) is much larger than Cq6/ρ2

where C is constant. By the usual probabilistic argument, the value of the inner product is at
least d · ρ/2q3 w.h.p. Therefore, the resulting matrix is an instance of LBP for µ = ρ/2q3, N =
(qn)k/2 (by padding random strings to the size N), and the algorithm for LBP will find αL and αR.
Obviously, we can retrieve α from these values.

Strictly speaking, we must analyze the cases where we fail to select a partition (i.e., the above
t), sL, sR, vL, and vR, but these cases are handled by a simple checking subroutine which runs in
poly(n, ρ−1) (we leave it to Appendix C). For each selection, making M takes O(dNn), solving
LBP takes T (N,µ), and the other processes take poly(n, ρ−1). Therefore, the total running time is
at most poly(n, ρ−1) · (dN + T (N,µ)).

6. Discussions and Future Directions

We introduced the reduction from learning juntas over any finite fields to LBP, and gave the first
non-trivial learning algorithm for such a class. Our results also enhance the motivation of designing
an efficient algorithm for LBP, because it automatically improves the upper bound for learning k-
juntas over not only binary field but also any finite field.

In our reduction, however, we first reduced the learning juntas problem to LDME which was the
extension of the challenging learning problem, LWE. For further improvement, such a hard problem
should be avoided. In addition, our reduction makes extensive use of the properties of finite fields.
Thus, it is still open whether we can design a non-trivial learning algorithm that works for any finite
alphabet, in particular, q = 6.

12

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

Acknowledgments

This work was supported by JST, ACT-X Grant Number JPMJAX190M, Japan. I thank Toshiya
Itoh and the anonymous reviewers for many helpful comments.

References

J. Alman. An Illuminating Algorithm for the Light Bulb Problem. In 2nd Symposium on Simplicity
in Algorithms (SOSA 2019), volume 69 of OASIcs, pages 2:1–2:11, 2018.

V. Arvind, J. Köbler, and W. Lindner. Parameterized learnability of juntas. Theoretical Computer
Science, 410(47):4928–4936, 2009.

A. Blum. Relevant Examples and Relevant Features: Thoughts from Computational Learning The-
ory. In AAAI-94 Fall Symposium on Relevance, pages 14–18, 1994.

A. Blum. Learning a Function of r Relevant Variables. In Bernhard Schölkopf and Manfred K
Warmuth, editors, Learning Theory and Kernel Machines, pages 731–733, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial
Intelligence, 97(1):245 – 271, 1997. Relevance.

A. Bogdanov and E. Viola. Pseudorandom bits for polynomials. SIAM J. Comput., 39(6):2464–
2486, 2010.

R. G. Downey and M. R. Fellows. Fixed-Parameter Tractability and Completeness I: Basic Results.
SIAM J. Comput., 24(4):873–921, 1995.

V. Feldman, P. Gopalan, S. Khot, and A. K. Ponnuswami. New results for learning noisy parities
and halfspaces. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 563–574, 2006.

P. Gopalan. A fourier-analytic approach to reed-muller decoding. In 2010 IEEE 51st Annual Sym-
posium on Foundations of Computer Science, pages 685–694, 2010.

D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence of models for polynomial
learnability. In Proceedings of the First Annual Workshop on Computational Learning Theory,
pages 42–55, 1988.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

M. Karppa, P. Kaski, J. Kohonen, and P. Ó Catháin. Explicit Correlation Amplifiers for Finding Out-
lier Correlations in Deterministic Subquadratic Time. In 24th Annual European Symposium on
Algorithms (ESA 2016), volume 57 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 52:1–52:17, 2016.

M. Karppa, P. Kaski, and J. Kohonen. A Faster Subquadratic Algorithm for Finding Outlier Corre-
lations. ACM Trans. Algorithms, 14(3):31:1–31:26, jun 2018.

13

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

F. Le Gall. Powers of Tensors and Fast Matrix Multiplication. In Proceedings of the 39th Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC ’14, pages 296–303, New
York, NY, USA, 2014. ACM.

R. Lidl and H. Niederreiter. Introduction to Finite Fields and Their Applications. Cambridge
University Press, New York, NY, USA, 1986.

E. Mossel, R. O’Donnell, and R. A. Servedio. Learning Functions of k Relevant Variables. J.
Comput. Syst. Sci., 69(3):421–434, 2004.

R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New York, NY, USA,
2014. ISBN 1107038324, 9781107038325.

O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In Pro-
ceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC ’05,
pages 84–93, New York, NY, USA, 2005. ACM.

O. Regev. The learning with errors problem (invited survey). In 2010 IEEE 25th Annual Conference
on Computational Complexity, pages 191–204, 2010.

G. Valiant. Finding Correlations in Subquadratic Time, with Applications to Learning Parities and
the Closest Pair Problem. J. ACM, 62(2):13:1–13:45, 2015.

L. G. Valiant. Functionality in neural nets. In Proc. American Association for Artificial Intelligence,
pages 629–634, 1988.

Appendix A. Learning Juntas to Finding Non-Zero Fourier Coefficients

For completeness, we give the description of our learning algorithm for junta functions, which is
informally presented in Section 3.

A.1. Pseudocode

First we introduce the simple subroutine const (Algorithm 1) for checking whether the target func-
tion is constant or not. As described in Section 3, it determines the termination of the main learning
algorithm.

Algorithm 1 Check Constant (const)
Input : n ∈ N, k ∈ N, δ ∈ (0, 1), O(f), where f : Fnq → Fq is a k-junta
Output: true if f is constant, otherwise, false

1 m := dqk ln 2
δ e

2 take m examples (x(1), b(1)), . . . , (x(m), b(m))← O(f)

3 if all b(i) are the same then return(true) else return(false)

Lemma 14 For any input (n, k, δ,O(f)), const returns true if f is a constant function, otherwise
false with probability at least 1− δ.

14

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

Proof If f is constant, then the algorithm obviously outputs the value with probability 1. If f is
not constant, then there are two entries which have different values in the truth table of f . The
probability that each value appears is at least q−k because the value of the truth table is affected by
only at most k coordinates. If m examples contain these values as their labels, then the algorithm
will output false. The probability that each value does not appear in m labels is bounded above by
(1− q−k)m ≤ e−m/qk ≤ δ

2 . By the union bound, the failure probability is at most δ.

Algorithm 2 is our main learning algorithm, which outputs all relevant coordinates for any target
k-junta function with probability at least 1− δ for the given δ ∈ (0, 1).

Let findFC(n, k, δ,O(f)) be the subroutine satisfying the following: if the target k-junta f has
a non-zero Fourier coefficient f̂(α) 6= 0 with 1 ≤ |α| ≤ k, then it outputs a vector α′ ∈ Fnq \ {0n}
with probability at least 1− δ, where all i ∈ [n] satisfying α′i 6= 0 are relevant for f . The sketch and
concrete description of findFC are given in Section 4 and Appendix B, respectively.

Algorithm 2 Learning Juntas over Finite Fields
Input : n ∈ N, k ∈ N, δ ∈ (0, 1), O(f), where f : Fnq → Fq is a k-junta
Output: R ⊆ [n] consisting of all relevant coordinates for f

4 R := ∅ select distinct elements c1, . . . , cp`−1 ∈ Fq \ {0}
5 loop
6 if |R| > k then halt and output “error”
7 if true← const(n− |R|, k, δ

2(k+1)qk
,O(f |τ)) for all restrictions τ on R then

8 output R and halt
9 else

10 take a restriction τ on R satisfying false← const(n− |R|, k, δ
2(k+1)qk

,O(f |τ))

11 for j := 1 to p`−1 do
12 if α←findFC(n− |R|, k, δ

2(k+1)p`−1 ,O(cjf |τ)) then
13 add all i satisfying αi 6= 0 to R
14 end
15 end
16 end
17 end

If all subroutine const and findFC succeed, then the completeness has been already shown in
Section 3. Since the main loop (line 5) halts in k+1 times, const (resp. findFC) is executed at most
(k + 1)qk (resp. (k + 1)p`−1) times. By the setting about confidence parameters, the probability
that at least one of the executions fails is bounded above by

(k + 1)qk · δ

2(k + 1)qk
+ (k + 1)p`−1 · δ

2(k + 1)p`−1
= δ/2 + δ/2 = δ.

Appendix B. Finding Non-Zero Fourier Coefficients to LDME

We give the specific description of the reduction in Section 4 and the remaining part of the proof of
Theorem 9.

15

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

B.1. Proofs of properties of (a,A)-projection

Before presenting the pseudocode, we give the proofs of properties of (a,A)-projection (i.e., prop-
erties 1, 2, and 3), which also show how we simulate the example oracle for LMDE (i.e., the ran-
domized function g in property 1).

Proof of property 1. The proof mainly follows the previous work by Feldman et al. (2006). First,
we show the following lemma.

Lemma 15 For any A ∈ Fm×nq and a ∈ Fq,

faA(x) = Ez∼Fmq [e(af(x+AT z))e(χam(z))]. (1)

Proof of Lemma 15 Let g : Fnq → C be the right-hand side of (1). By the uniqueness of Fourier
expansion form (for complex-valued functions), it is enough to show that for any α ∈ Fnq ,

ĝ(α) = f̂aA(α).

From the definition of ĝ(α), it follows that

ĝ(α) = Ex[g(x)e(χα(x))] = Ex[Ez[e(af(x+AT z))e(χam(z))]e(χα(x))]

= Ez[Ex[e(af(x+AT z))e(χα(x+AT z))]e(χα(AT z))e(χam(z))]

= Ez[âf(α)e(χα(AT z))e(χam(z))]

= âf(α)Ez[e(χAα(z))e(χam(z))]

= âf(α)1l{Aα = am} = f̂aA(α),

where the fourth line holds because

e(χα(AT z)) = e
2πi
p

Tr(αTAT z)
= e

2πi
p

Tr((Aα)T z)
= e(χAα(z)).

For any A ∈ Fm×nq , we simulate the example oracle O(g) as follows: (1) take an example
(y, f(y)) from O(f), (2) select z ∈ Fmq at uniformly random, and (3) return (y − AT z, f(y) −∑m

i=1 zi) as an example from O(g).
Obviously, the value of y − AT z is uniformly distributed over Fnq because y is selected at

uniformly random over Fnq . Therefore, it is enough to show that for property 1,

Ey,z

[
e

(
a(f(y)−

m∑
i=1

zi)

)∣∣∣∣∣y −AT z = x

]
= faA(x).

Notice that for any x ∈ Fnq and z ∈ Fmq , exactly one element yz ∈ Fnq satisfying yz − AT z = x is
determined. Therefore,

(LHS) =
∑
z∈Fmq

q−m

(
e(af(yz)−

m∑
i=1

azi)

)
= Ez[e(af(x+AT z)− χam(z))]

= Ez[e(af(x+AT z))e(χam(z))] = faA(x) (∵ Lemma 15).

16

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

Proof of property 2. We will use the following simple fact. The reader may skip the proof of the
Lemma 16, because it is quite basic and not essential.

Lemma 16 For any vectors α, β ∈ Fnq \ {0n}, the following holds:
(i) If β 6= cα for any c ∈ Fq (i.e., α and β are linearly independent), then for any a, b ∈ Fq,

Pr
x

[xTα = a and xTβ = b] =
1

q2
.

(ii) If β = cα (c 6= 0), then for any a, b ∈ Fq,

Pr
x

[xTα = a and xTβ = b] =

{
1/q (if b = ca)

0 (otherwise).

In other words, if α, β(6= 0n) are linearly independent, then χα(x) and χβ(x) are uniformly
and pairwise independently distributed w.r.t. the uniform selection of x ∈ Fnq .

Proof of Lemma 16 (i) If β 6= cα for any c ∈ Fq, there are two coordinates i, j ∈ [n] satisfying
βi = cαi, βj = c′αj , c 6= c′, and αi, αj 6= 0. First we select values in F[n]\{i,j}

q , and for any choice,
the remaining condition takes the following form: for some v1, v2 ∈ Fq,

αixi + αjxj = v1 and cαixi + c′αjxj = v2.

Since αic′αj−αjcαi = αiαj(c
′−c) 6= 0, the above equations have a unique solution w.r.t. (xi, xj).

The probability that they take the values of the unique solution is exactly q−2.

(ii) If β = cα (c 6= 0), the condition takes the following form:

α1x1 + · · ·+ αnxn = a

α1x1 + · · ·+ αnxn = c−1b

Obviously, the probability that xTα = a and xTβ = b is 1/q if a = c−1b, otherwise, 0.

Fix α ∈ Fnq \ {0n}. By the definition of (a,A)-projection, faA(x) ≡ âf(aα)e(aχα(x)) holds
if Aα = 1m and Aβ 6= 1m for all β satisfying âf(aβ) 6= 0. Let D ⊆ [n] be the set of relevant
coordinates for f (i.e., |D| ≤ k). By Fact 6, such β must be contained in FDq . Therefore, it is enough
to show that for property 2,

Pr
A∼Fm×nq

[Aα = 1m and Aβ 6= 1m for each β ∈ FDq \ {α}] ≥
qm−k − 1

q2m−k . (2)

Since α 6= 0n, Prx∼Fnq [xTα = 1] = q−1. Thus, we have

Pr
A

[Aα = 1m] = q−m.

17

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

By Lemma 16, for any β 6= α,

Pr
x

[xTβ = 1 and xTα = 1] ≤ 1

q2
.

Therefore,

Pr
x

[xTβ = 1|xTα = 1] =
Prx[xTβ = 1 and xTα = 1]

Prx[xTα = 1]
≤ q

q2
=

1

q

and
Pr
A

[Aβ = 1m|Aα = 1m] ≤ 1

qm
.

Since |D| ≤ k, the number of vectors β ∈ FDq is at most qk. Hence, by the union bound,

Pr
A

[∃β ∈ FDq \ {α} s.t. Aβ = 1m|Aα = 1m] ≤ qk

qm

Therefore,

(LHS of (2)) = Pr
A

[Aα = 1m] · Pr
A

[Aβ 6= 1m for any β ∈ FDq \ {α}|Aα = 1m]

≥ 1

qm
· (1− qk

qm
) =

qm−k − 1

q2m−k .

Proof of property 3. LetU (1)
q , . . . , U

(n)
q andU ′q be independently and uniformly distributed random

variables over Fq, and let Unq = (U
(1)
q , . . . , U

(n)
q).

max
a∈Fq\{0}

|âf(aα)| = max
a∈Fq\{0}

∣∣E[e(a(f(Unq)− χα(Unq)))]
∣∣

= max
a∈Fq\{0}

∣∣E[e(a(f(Unq)− χα(Unq)))]− E[e(aU ′q)]
∣∣ (∵ E[e(aU ′q)] = 0)

= max
a∈Fq

∣∣E[e(a(f(Unq)− χα(Unq)))]− E[e(aU ′q)]
∣∣

= CD(f(Unq)− χα(Unq), U ′q)

≥ 1√
q − 1

· 2 · SD(f(Unq)− χα(Unq), U ′q) (∵ Fact 8)

By the assumption, E[e(f(Unq) − χα(Unq))] = f̂(α) 6= 0. Since E[e(U ′q)] = 0 , they must not be
statistically identical, that is, SD(f(Unq)−χα(Unq), U ′q) 6= 0. In addition, by Fact 6, f(x)−χα(x) is
a k-junta. Therefore, by the definition of statistical distance, 2 ·SD(f(Unq)−χα(Unq), U ′q) ≥ 1/qk.
Thus the property holds as follows:

max
a∈Fq\{0}

|âf(aα)| ≥ 1√
q − 1

· 2 · SD(f(Unq)− χα(Unq), U ′q) ≥
1√
q − 1

· 1

qk
≥ 1

qk+1
.

18

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

B.2. Pseudocode

As described in the proof in Section 4, if we fail to select A and a, then our algorithm may find an
invalid candidate α ∈ Fnq . Remember that the main learning algorithm uses this α to find relevant
coordinates by looking at non-zero components of α. Therefore, α shouldn’t have non-zero values
at irrelevant coordinates for the target function. First, we introduce the following simple subroutine
for checking such an undesirable α.

Algorithm 3 Check Relevant Coordinates (relevant)
Input : n ∈ N, k ∈ N, α ∈ Fnq , δ ∈ (0, 1), O(f), where f : Fnq → Fq is a k-junta
Output: f̂(α) 6= 0⇒ true;

αi 6= 0 for some irrelevant i ∈ [n]⇒ false

18 m := d2q2k ln p
δ e

19 forall the a ∈ Fp do
20 take m examples (x(1), b(1)), . . . , (x(m), b(m))← O(f)

21 if
∑

i 1l{Tr(b(i) − χα(x(i))) = a} ≥ (1
p + 1

2qk
)m then return(true)

22 end
23 return(false)

Lemma 17 For any input (n, k, α, δ,O(f)), if f̂(α) 6= 0, then relevant outputs true with proba-
bility at least 1− δ. Otherwise if αi 6= 0 for an irrelevant coordinate i ∈ [n], relevant outputs false
with probability at least 1− δ. Its running time is bounded above by poly(n, qk, ln δ−1).

In general, there is a case where f̂(α) = 0 but all i satisfying αi 6= 0 are relevant (that is, valid
for our purpose). The above lemma does not say anything about such a case.

Proof First, we consider the case where f̂(α) 6= 0. Assume that Pr[Tr(f(x) − χα(x)) = a] <
1
p + 1

qk
for all a ∈ Fp. Since α does not have nonzero value at irrelevant coordinates by Fact 6, the

value f−χα is determined by at most k coordinates of x. Therefore, the assumption indeed implies
that Pr[Tr(f(x)− χα(x)) = a] ≤ 1

p for all a ∈ Fp. Hence, Pr[Tr(f(x)− χα(x)) = a] = 1
p for all

a ∈ Fp and f̂(α) = 0, which is contradiction.
Thus, there exists a′ ∈ Fp such that Pr[Tr(f(x) − χα(x)) = a′] ≥ 1

p + 1
qk

. By the Hoeffding
inequality, the probability that the condition in line 21 does not hold w.r.t. a′ is bounded above by
e
− m

2q2k ≤ δ
p < δ.

On the other hand, if there exists i ∈ [n] such that i is irrelevant and αi 6= 0, then for any
aq ∈ Fq,

Pr[f(x)− χα(x) = aq] =
∑
v∈Fq

Pr[f(x)− χα′(x) = v] Pr[αixi = v − aq] =
1

q
,

where α′i = 0 and α′j = αj for j 6= i. For any ap ∈ Fp, this implies

Pr[Tr(f(x)− χα(x)) = ap] =
∑

aq∈Tr−1(ap)

Pr[f(x)− χα′(x) = aq] =
|Tr−1(ap)|

q
=
p`−1

p`
=

1

p
.

19

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

By Hoeffding inequality, the probability that the condition in line 21 holds is bounded above by
e
− m

2q2k ≤ δ
p . Therefore, by the union bound, the probability that the condition holds for some

ap ∈ Fp (i.e., the failure probability) is at most δ.
The bound on the running time obviously follows from the algorithm.

Algorithm 4 (findFC) is our reduction from the task of finding non-zero Fourier coefficients to
LDME. For the reduction, assume that LDME(n, k, ρ) is the learning algorithm for LDME with
the parameter n, k, ρ.

Algorithm 4 Finding Fourier Coefficients (findFC)
Input : n ∈ N, k ∈ N, δ ∈ (0, 1), O(f), where f : Fnq → Fq is a k-junta
Output: α ∈ Fnq \ {0n} satisfying “ αi 6= 0⇒ i is relevant for f ”

24 for m := dqk+2 ln 4
δ e times do

25 A←u F(k+1)×n
q

26 forall the a ∈ Fq \ {0} do
27 execute α←LDME(n, k, 1/qk+1) with confidence δ/4 (by repetition)
28 where the example oracle is simulated as follows:

1: get an example (x, b)← O(f)
2: select z ←u Fk+1

q

3: (x′, b′) := (x−AT p, a · (b−
∑

j zj)) and return (x′, b′)

29 if true← relevant(n, k, cα, δ
2m(q−1)2

,O(f)) for some c ∈ Fq \ {0} then return α
30 end
31 end

Lemma 18 Assume the algorithm LDME solves LDME in time T (n, k, ρ) w.h.p., and the target
function f satisfies that f̂(α) 6= 0 for some α ∈ Fnq with 1 ≤ |α| ≤ k. Then findFC returns
α′ ∈ Fnq \ {0n} satisfying that

α′i 6= 0⇒ i is relevant for f

with probability at least 1−δ. Its running time is bounded above by T (n, k, 1/qk+1)·poly(n, qk, ln δ−1).

Proof First assume that all executions of relevant succeed. As described in the proof in Section 4,
if we can select good A and a, the simulated examples correspond to LDME where the target linear
function is χcα for some c ∈ Fq \ {0}. Remember that we select A randomly m(≥ qk+2 ln 4/δ)
times, and such a good A is selected with probability at least 1/qk+2. Therefore, the failure prob-
ability in selecting A is at most (1 − 1/qk+2)m ≤ exp(− ln 4/δ) ≤ δ/4. Moreover, the failure
probability of LDME is also at most δ/4. Hence, by the union bound, findFC finds cα for some
c ∈ Fq \ {0} with probability at least 1− δ/2.

If findFC output some vector α′ ∈ Fnq \ {0n}, the α′ must have passed the test by relevant
(line 29). By Lemma 17, such an α′ must satisfy the requirement of findFC. Moreover, the above
cα certainly passes the test because f̂(c−1cα) = f̂(α) 6= 0. Therefore, with probability at least
1− δ/2, findFC returns some α′ satisfying the requirement.

In fact, the subroutine relevant may fail. However, the number of executions of relevant is
at most m(q − 1)2. Since we set the confidence to δ/(2m(q − 1)2), the probability that one of

20

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

the executions fails is at most δ/2. By the union bound, the total failure probability is at most
δ/2 + δ/2 = δ.

The upper bound on the running time follows from the algorithm, the assumption about LDME,
and Lemma 17.

Appendix C. LDME to LBP

We give the specific description of the reduction in Section 5 and the remaining part of the proof of
Theorem 11. First, we give the complete proofs of Lemmas 12 and 13.

C.1. Proof of Lemma 12

For simplicity, let pa := Pr[X = a] for a ∈ Fq. First we show that

|E[e(X)]| ≥ ρ =⇒ ∃a ∈ Fq s.t.
∣∣∣∣pa − 1

q

∣∣∣∣ ≥ ρ

q
.

By contraposition, we assume that |pa − 1
q | <

ρ
q for any a ∈ Fq. Then,

|E[e(X)]| =

∣∣∣∣∣∣
∑
a∈Fq

pae(a)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
a∈Fq

(pa −
1

q
)e(a)

∣∣∣∣∣∣
≤
∑
a∈Fq

∣∣∣∣pa − 1

q

∣∣∣∣ |e(a)|

<
ρ

q
·
∑
a∈Fq

|e(a)| = ρ,

where the second equality follows from the fact that
∑

a∈Fq e(a) = 0.
Now we have that |pa − 1

q | ≥
ρ
q for some a ∈ Fq. If pa − 1

q ≥
ρ
q , then pa ≥ 1

q + ρ
q ≥

1
q + ρ

q2
.

Therefore, the remaining case is that pa ≤ 1
q −

ρ
q . In this case,

(q − 1) max
b∈Fq\{a}

pb ≥
∑
b6=a

pb = 1− pa ≥
q − 1

q
+
ρ

q
.

Thus, there exists b ∈ Fq such that pb ≥ 1
q + ρ

q(q−1) ≥
1
q + ρ

q2
.

C.2. Proof of Lemma 13

The lemma immediately follows from Lemma 16. For any a ∈ Fq,

Pr[f(x)− χγ(x) = a] =
∑
v∈Fq

∑
v′∈Fq

Pr[χα(x) = v, χγ(x) = v′] Pr[f(x) = a+ v′|χα(x) = v]

=
1

q2

∑
v∈Fq

∑
v′∈Fq

Pr[f(x) = a+ v′|χα(x) = v] (∵ Lemma 16)

=
1

q2

∑
v∈Fq

1 =
1

q
.

21

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

C.3. Pseudocode

As mentioned in Section 5, if we fail to select some values (i.e., (L,R), sL, sR, vL, vR), then our
algorithm may find an undesirable candidate γ ∈ Fnq for LDME. First, we introduce the simple
subroutine for checking whether the candidate γ is indeed linearly dependent on the coefficients of
a target linear function (if not, such a γ should be denied).

Algorithm 5 Check Correlation (correlate)
Input : n ∈ N, ρ ∈ (0, 1), γ ∈ Fnq , δ ∈ (0, 1), O(f), where f : Fnq → Fq is randomized
Output: Cor(f, χγ) ≥ ρ⇒ true;

γ and the coefficients of a target linear function are linearly independent⇒ false

32 m := d2q4

ρ2
ln q

δ e
33 forall the a ∈ Fq do
34 take m examples (x(1), b(1)), . . . , (x(m), b(m))← O(f)

35 if
∑

i 1l{b(i) − χγ(x(i)) = a} ≥ (1
q + ρ

2q2
)m then return(true)

36 end
37 return(false)

In fact, correlate can be also implemented by the standard empirical estimation of the correla-
tion. The merit of our implementation is simply to avoid calculations of complex numbers.

Lemma 19 Let χα be a target linear function. The subroutine correlate outputs true if the given γ
satisfies |E[e(f(x)−χγ(x))]| ≥ ρ with probability at least 1− δ. On the other hand, if γ and α are
linearly independent, correlate outputs false with probability at least 1− δ. In addition, correlate
halts in time poly(n, ρ−1, ln δ−1).

Proof If Cor(f, χγ) = |E[e(f(x)−χγ(x))]| ≥ ρ, then by Lemma 12, there exists a ∈ Fq such that
Pr[f(x)−χγ(x) = a] ≥ 1/q+ ρ/q2. Since correlate tries all a ∈ Fq, by Hoeffding inequality, the
condition in line 35 is not satisfied with probability at most

exp

(
−2ρ2

4q4
m

)
≤ exp

(
− ρ2

2q4
· 2q4

ρ2
ln
q

δ

)
=
δ

q
≤ δ.

On the other hand, if χα is a target linear function, and γ and α are linearly independent, then by
Lemma 13, Pr[f(x)− χγ(x) = a] = 1/q for each a ∈ Fq. By Hoeffding inequality and the union
bound, the error probability that the condition in line 35 is satisfied is at most

q · exp

(
−2ρ2

4q4
m

)
≤ q · δ

q
= δ.

The upper bound on the running time obviously follows from the algorithm.

Algorithm 6 (LDME) is the specific description of the reduction from LDME to LBP, which is
given in Section 5. Let LBP(S, µ) be the algorithm for solving LBP with input (S, µ). For n ∈ N
and ρ ∈ (0, 1), let d := d(n, ρ) be the degree of LBP which is enough for LBP to solve any instance
with parameter N = (qn)k/2 and µ = ρ/2q3. W.l.o.g., we can assume the failure probability of
LBP is at most 1/4 by constant number of repetitions.

22

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

Algorithm 6 Learning with Discrete Memoryless Errors (LDME)
Input : n, k ∈ N, ρ ∈ (0, 1), δ ∈ (0, 1), O(f), where f : Fnq → Fq is a randomized function
Output: cα ∈ Fnq for some c ∈ Fq \ {0}, where χα is a target linear function

38 forall the γ ∈ Fnq of the size |γ| = 1 do
39 if true← correlate(n, k, γ, δ

4n(q−1) ,O(f)) then return(γ)
40 end
41 forall the partitions L = {1, . . . , t}, R = {t+ 1, . . . , n}, sL, sR ∈ Fq \ {0}, vL, vR ∈ Fq do
42 repeat m := dlog 2/δe times do
43 take d examples (x(1), b(1)), . . . , (x(d), b(d))← O(f)
44 generate matrices ML and MR as follows:

45 foreach j-th row in ML and MR (1 ≤ j ≤ d) do
46 forall the γL ∈ FLq where 1 ≤ |γL| ≤ dk/2e, init(γL) = sL do
47 write the value b(j) − χγL(x(j)) in the column indexed by γL in ML

48 end
49 forall the γR ∈ FRq where 1 ≤ |γR| ≤ dk/2e, init(γR) = sR do
50 write the value χγR(x(j)) in the column indexed by γR in MR

51 end
52 end
53 change entries taking vL (resp. vR) in ML (resp. MR) into 1
54 change the other entries into −1 with probability q/2(q − 1), otherwise, 1

55 execute (γ1, γ2)← LBP((ML,MR), ρ
2q3

) (with a proper padding to the size N)
56 if true← correlate(n, k, γ1 + γ2,

δ
4mnq2(q−1)2

,O(f)) then return(γ1 + γ2)

57 end
58 end

23

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

Lemma 20 Assume that the subroutine LBP solves LBP with the parameter N , µ, and the degree
d(N,µ) ≥ Ω(µ−2 logN) in time T (N,µ). Then the algorithm LDME(n, k, ρ, δ) solves LDME for
any target linear function χα (1 ≤ |α| ≤ k) in time

poly(n, ρ−1, ln δ−1) · (d(N,µ)(qn)N + T (N,µ)) where N = (qn)k/2 and µ = ρ/2q3

with probability at least 1− δ.

Proof Let f be the target function in LDME. Most of the proof has been already given in Section 5,
and we will give the remaining part. First, assume that we succeed in all executions of correlate
and choices of (L,R), sL, sR, vL, vR.

If the target linear function χα satisfies |α| = 1, then the algorithm finds α in line 39. Therefore,
we analyze the case where |α| ≥ 2. First, for matrices ML and MR constructed in lines 44–54, we
show the properties I, II, and III in the sketch of the proof in Section 5.
Proof of property I. For MR, it is obvious because we list the value χγR(x) for x ←u Fnq and
γR 6= 0n.

For ML, remember the assumption that the target α is divided into half by (L,R), that is,
αL 6= 0n and αR 6= 0n. This implies that any γL ∈ FL \ {0n} is linearly independent of α.
Therefore, by Lemma 13, property I holds.

Proof of property II. By Lemma 12, Cor(f, χα) = |E[e(f(x) − χα(x))]| ≥ ρ implies that there
exists a1 ∈ Fq such that

Pr
x,f

[f(x)− χα(x) = a1] ≥ 1

q
+

ρ

q2
.

Therefore,

1

q
+

ρ

q2
≤ Pr

x,f
[f(x)− χα(x) = a1]

= Pr
x,f

[f(x)− χαL(x)− a1 = χαR(x)]

≤ q · max
a2∈Fq

Pr
x,f

[f(x)− χαL(x)− a1 = χαR(x) = a2]

Select a2 maximizing the above. Then, by setting the values as vL = a1 +a2 and vR = a2, we have

Pr
x,f

[f(x)− χαL(x) = vL, χαR(x) = vR] ≥ 1

q2
+

ρ

q3
.

Proof of property III. Fix any pair except for the target pair. We assume that the columns are
indexed by γ and γ′. Then, it is enough to show that, for any v1, v2, v3 ∈ Fq,

Pr
x

[χγ(x) = v1, χγ′(x) = v2, χα(x) = v3] =
1

q3
. (3)

24

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

This is because the above implies that Prx[χγ(x) = v1, χγ′(x) = v2|χα(x) = v3] = q−2, and for
any b ∈ Fq,

Pr
f,x

[χγ(x) = v1, χγ′(x) = v2|f(x) = b]

=

∑
v3

Prf,x[f(x) = b, χγ(x) = v1, χγ′(x) = v2|χα(x) = v3]

Prf,x[f(x) = b]

=

∑
v3

Prf [f(x) = b|χα(x) = v3] Prx[χγ(x) = v1, χγ′(x) = v2|χα(x) = v3]

Prf,x[f(x) = b]

=
q−2

∑
v3

Prf [f(x) = b|χα(x) = v3]

Prf,x[f(x) = b]
= q−2 ·

Prf,x[f(x) = b]

Prf,x[f(x) = b]
= q−2,

which implies property III immediately.
Therefore, in the following part, we show the equation (3) holds (in fact, it is quite basic and not

essential, and the reader may skip it).
W.l.o.g., we can assume that γ ∈ FLq and γ 6= αL (in this case, either γ′ = αL or γ′ = αR may

hold). First consider the case where γ′ ∈ FRq . We select three coordinates (i1, i2, i3) as follows:
by linearly independence of γ and αL, we can select (i1, i2) such that (αi1 , αi2) and (γi1 , γi2) are
also linearly independent. Then, we select i3 ∈ R to satisfy that γ′i3 6= 0. Now we have the three
vectors {(αi1 , αi2 , αi3), (γi1 , γi2 , 0), (0, 0, γ′i3)}. It is not so difficult to see that they are linearly
independent.

Otherwise if γ′ ∈ FLq , we select i3 ∈ R satisfying αi3 6= 0, and we can select (i1, i2) such that
(γi1 , γi2) and (γ′i1 , γ

′
i2

) are also linearly independent. Then we have three vectors {(αi1 , αi2 , αi3),
(γi1 , γi2 , 0), (γ′i1 , γ

′
i2
, 0)} which are also linearly independent.

In any case, for any assignment to [n] \ {i1, i2, i3}, the solution of the remaining linear system
in xi1 , xi2 , xi3 is uniquely determined, and the claim holds as in the proof of Lemma 16.

Next, we show that the target pair has enough correlation even after it is translated into binary.
For an element v ∈ Fq and a random variable X taking values in Fq, we use Xv

bin to denote a
{±1}-valued random variable given by operation in lines 53–54 of LDME, i.e.,

(1) if X takes v, set as Xv
bin = 1,

(2) otherwise, flip a biased coin with the head probability ph = q/(2(q − 1)), and if it comes up
with head (resp. tail), set as Xv

bin = −1, (resp. Xv
bin = 1).

Then, as described in Section 5, we show the following: for the concentrated values vL and vR

in property II,

Pr[(f(x)− χαL(x))v
L

bin · (χαR(x))v
R

bin = 1] ≥ 1

2
+ 2p2

h ·
ρ

q3
(≥ 1

2
+

ρ

2q3
),

where we regard f(x) − χαL(x) and χαR(x) as random variables w.r.t. the random choices of x
and f(x).

The above follows from properties I and II and the following lemma with X = f(x)−χαL(x),
Y = χαR(x), and µ = ρ/q3.

25

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

Lemma 21 Let v, v′ ∈ Fq and µ ∈ [0, 1]. If random variables X and Y in Fq satisfies

Pr[X = v, Y = v′] ≥ 1

q2
+ µ and Pr[X = v] = Pr[Y = v′] =

1

q
,

then,

Pr[Xv
bin · Y v′

bin = 1] ≥ 1

2
+ 2p2

hµ,

where ph = q
2(q−1) as in the definition of Xv

bin.

Proof Let p1, p2, p3, p4 denote probabilities as

p1 = Pr[X = v, Y = v′], p2 = Pr[X = v, Y 6= v′],

p3 = Pr[X 6= v, Y = v′], p4 = Pr[X 6= v, Y 6= v′].

Then, it follows that p1 + p2 + p3 + p4 = 1, p1 ≥ 1
q2

+ µ, and

p4 = 1− Pr[X = v]− Pr[Y = v′] + Pr[X = v, Y = v′] ≥ 1− 2

q
+

1

q2
+ µ =

(
1− 1

q

)2

+ µ.

Therefore, the probability is bounded below by

Pr[Xv
bin · Y v′

bin = 1] = Pr[Xv
bin = Y v′

bin]

= p1 · 1 + (p2 + p3) · (1− ph) + p4 · (p2
h + (1− ph)2)

= (1− ph) + p1 · ph + p4 · (2p2
h − ph)

≥ (1− ph) +
1

q2
ph +

(
1− 1

q

)2

(2p2
h − ph) + µ · (ph + 2p2

h − ph)

=
1

2
+ 2p2

hµ.

As mentioned in Section 5, any pair of columns except for the target pair in the reduced instance
is uniformly and independently distributed over {±1}d.

On the other hand, we have that for the target pair,

E[(f(x)− χαL(x))v
L

bin · (χαR(x))v
R

bin] ≥ (
1

2
+

ρ

2q3
) + (−1)(

1

2
+

ρ

2q3
) =

ρ

q3
.

Let N = (qn)k/2 and µ = ρ/2q3. By the information theoretic requirement for LBP, d :=

d(N,µ) ≥ Ω(µ−2 logN) = Ω(ρ−2k log n). Thus, for sufficiently large n, d ≥ 8q6

ρ2
ln 4. By

Hoeffding inequality, the probability that the inner product of the target pair does not exceed d·ρ/2q3

is bounded above by

exp

(
− 2ρ2d

4 · 4q6

)
≤ exp

(
− ρ2

8q6

8q6

ρ2
ln 4

)
=

1

4
.

26

A NON-TRIVIAL ALGORITHM ENUMERATING RELEVANT FEATURES OVER FINITE FIELDS

In other words, with probability at least 3/4, the algorithm reduces LDME to LBP of the cor-
relation µ = ρ/2q3. W.l.o.g., we can assume that the failure probability of LBP is at most 1/4
(otherwise, it is achieved by the constant number of repetitions). Then, for each trial in lines 43–55,
the probability that LBP does not find the target pair is at most 1/2. Therefore, by repeating these
trials at least log 2/δ times (line 42), the failure probability decreases to δ/2.

By Lemma 19, if the subroutine LBP finds the αL and αR, then α (= αL + αR) passes the test
by correlate in line 56, and the algorithm LDME outputs α. Even in the cases where we fail to
select (L,R), sL, sR, vL, and vR, if the algorithm output some vector γ, the γ must have passed the
test in line 56. By Lemma 19, such a γ satisfies the requirement for LDME.

In fact, correlate may fail. The number of executions of correlate in lines 39 and 56 is at most
n(q − 1) and mnq2(q − 1)2, respectively. By the union bound, the probability that at least one
execution fails is bounded above by

n(q − 1) · δ

4n(q − 1)
+mnq2(q − 1)2 · δ

4mnq2(q − 1)2
≤ δ

2
.

Therefore even if we consider the possibility that correlate may fail, the total failure probability is
bounded above by δ/2 + δ/2 = δ. Finally, The total running time is bounded above by

nq · poly(n, ρ−1, ln δ−1) +O(nq4 · ln δ−1) · (ndN + T (N,µ) + poly(n, ρ−1, ln δ−1))

≤ poly(n, ρ−1, ln δ−1) · (dN + T (N,µ)).

27

	Introduction
	Formal Description
	Our Techniques

	Preliminaries
	Fourier Analysis
	Statistical Distance and Character Distance

	Learning Junta Functions
	Step 1: Filtering Correlations
	Learning Linear Functions with Discrete Memoryless Errors
	A Tool: (a,A)-projection

	Step 2: Detecting a Correlation
	Discussions and Future Directions
	Learning Juntas to Finding Non-Zero Fourier Coefficients
	Pseudocode

	Finding Non-Zero Fourier Coefficients to LDME
	Proofs of properties of (a,A)-projection
	Pseudocode

	LDME to LBP
	Proof of Lemma 12
	Proof of Lemma 13
	Pseudocode

