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Abstract
Top-k Combinatorial Bandits generalize multi-armed bandits, where at each round any subset of
k out of n arms may be chosen and the sum of the rewards is gained. We address the full-bandit
feedback, in which the agent observes only the sum of rewards, in contrast to the semi-bandit
feedback, in which the agent observes also the individual arms’ rewards. We present the Combina-
torial Successive Accepts and Rejects (CSAR) algorithm, which generalizes SAR (Bubeck et al.,
2013) for top-k combinatorial bandits. Our main contribution is an efficient sampling scheme that
uses Hadamard matrices in order to estimate accurately the individual arms’ expected rewards.
We discuss two variants of the algorithm, the first minimizes the sample complexity and the sec-
ond minimizes the regret. We also prove a lower bound on sample complexity, which is tight for
k = O(1). Finally, we run experiments and show that our algorithm outperforms other methods.
Keywords: Multi-Armed Bandits, Combinatorial Bandits, Top-k Bandits, Hadamard Matrix, Sam-
ple Complexity, Regret Minimization, Experimental Design

1. Introduction

Multi-armed bandit (MAB) is an extensively studied problem in statistics and machine learning.
The classical version of this problem is formulated as a system of n arms (or actions), each having
an unknown distribution of rewards. An agent repeatedly plays these arms in order to find the best
arm and maximize its reward (Robbins, 1952).

The MAB research focuses on two different objectives. The first aims to maximize the reward
accumulated by the agent while playing the arms. This objective highlights the trade-off between
exploration and exploitation, i.e., the balance between staying with the arm that gave highest reward
in the past and exploring new arms that might give higher reward in the future. Success in this
goal is measured by regret, which is the difference between the best arm’s expected reward over the
time horizon and the reward accumulated by the agent over the same time. The second objective,
sometimes referred to as best arm identification or pure exploration, aims to minimize the sample
complexity which is the number of steps until identifying the best arm with high probability. These
two objectives might contradict each other, meaning that a policy which is good for finding the best
arm quickly is not necessarily good for accumulating high reward (Bubeck et al., 2009).

An extension of the standard MAB model is the Combinatorial Bandits model (Cesa-Bianchi
and Lugosi, 2012; Chen et al., 2013). In this model, instead of choosing one arm at each round, a
decision set of actions is given, where each action is a subset of arms. Top-k is a special case of
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combinatorial bandits, in which the decision set includes all subsets of size k out of n arms, and each
action’s reward is the sum of the k arms. Combinatorial Bandits have two variants, depending on
the feedback observed by the agent. In the simpler one the agent observes in each round the rewards
of each of the k individual arms, in addition to the aggregated reward. Such model is referred to as
the semi-bandit feedback. This is in contrast to the full-bandit feedback, where the only feedback
observed by the agent is the aggregated reward. Although much of the research studies the semi-
bandit feedback (Chen et al., 2013, 2016; Combes et al., 2015; Kveton et al., 2015), in many real-life
problems it is costly or even impossible to gain information on each individual arm by itself. This
is the case in, for example, crowd sourcing (Lin et al., 2014) and adaptive routing (Awerbuch and
Kleinberg, 2004), and also in scenarios where data privacy considerations come into play, such as
online advertisement and medical trials.

Full-bandit feedback is harder than semi-bandit feedback, due to the lack of information about
each individual arm. Each time a subset is sampled and an aggregated reward is observed, it is
hard to assign the credit between the individual arms. One naive attempt to deal with it is to treat
every possible subset as a distinct arm, and consider it as a classical MAB problem with

(
n
k

)
arms.

However, the number of arms is exponential, hence this approach is clearly inefficient. Additionally,
it ignores the combinatorial structure that could extract some shared information between different
subsets. Another attempt is to treat it as a special case of Linear Bandits. In this model, each arm a
is a vector in a decision setD ⊆ Rn, and its expected reward is the inner product between a ∈ D and
the reward vector θ ∈ Rn. Combinatorial bandits are actually a special case of linear bandits, where
the decision set is limited to binary vectors with exactly k ones. One could hope to use LinUCB, the
highly established algorithm for linear bandits (Abbasi-Yadkori et al., 2011; Dani et al., 2008; Chu
et al., 2011), to solve combinatorial bandits. This algorithm involves an optimization problem to
find which subset to sample at each round, however for combinatorial decision sets the optimization
is NP-hard (Dani et al., 2008; Kuroki et al., 2019). Thus, we wish to find an algorithm that is (a)
informative - gives enough information on each individual arm; (b) efficient - uses a small number
of samples; and (c) polynomial time computable. Our main contribution is an algorithm that fulfills
all three requirements, as we show theoretically and empirically.

In this work, we describe an algorithm for full-bandit feedback that finds the optimal subset of
arms efficiently. The algorithm is based on the Successive Accepts and Rejects (SAR) algorithm
(Bubeck et al., 2013), that iteratively estimates the arms within increasing level of accuracy, and
accepts or rejects arms until it finds the optimal subset. While the original algorithm is designed
for classical MABs, it is not clear how to estimate the expected rewards of the individual arms
given full-bandit feedback. Our main novelty is thus describing an efficient method for estimating
the individual arms’ rewards and by this generalizing SAR to full-bandit feedback. We present
a sampling scheme that uses Hadamard matrices to estimate the arms using a small number of
samples. We show that this scheme is efficient, by proving that the number of samples needed to
find the optimal subset with probability at least 1 − δ is at most O

(∑n
i=1

1
∆2

i
log n

δ

)
, where ∆i’s

are the gaps between the optimal and sub-optimal arms (see Section 2 for formal definition). We
also prove a lower bound of Ω

(
n
ε2

)
samples for finding a subset whose expected reward is within

ε of the optimal. Note that in the combinatorial model the feedback depends on k actions, rather
than a single one, thus it might be more informative. Second, we discuss regret minimization. We
show that the algorithm that minimizes sample complexity does not minimize the regret. Instead,
we suggest a modification to the algorithm that achieves O

(
nk
∆ log T

)
distribution-dependent and

O(k
√
nT ) distribution-independent regret where ∆ = min ∆i and T is the time horizon. To the
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best of our knowledge, this is the first algorithm to achieve O(log T ) distribution-dependent regret
in the full-bandit setting. Finally, we conduct experiments that show that the proposed algorithm
achieves small sample complexity and regret comparing to other methods.

1.1. Related Work

Best Arm Identification. The problem of Best Arm Identification, a.k.a. Pure Exploration, was
introduced by Even-Dar et al. (2006), and later by Bubeck et al. (2009), where the goal is to find
the best arm using a minimal number of samples. Even-Dar et al. (2006) describe two algorithms
for this end, one of them is Successive Elimination that in each round estimates all the arms with
an increasing level of accuracy, and eliminates the arms which are far from the optimal arm with
high confidence. This algorithm uses O

(∑n
i=1

1
∆2

i
log n

δ

)
to find the optimal arm with probability

at least 1 − δ. It is the conceptual basis for a number of algorithms, including the one we describe
in this work.

Multiple Arms Identification. As an extension for Best-Arm Identification, the goal of Multiple
Arms Identification is to find the best k arms where the samples are still of one arm in each round.
This problem, a.k.a. Subset Selection or Explore-k, was introduced by Kalyanakrishnan and Stone
(2010), and a variety of algorithms were designed for this end (Kalyanakrishnan and Stone, 2010;
Kalyanakrishnan et al., 2012; Chen et al., 2014; Zhou et al., 2014). One notable algorithm is Suc-
cessive Accepts and Rejects (SAR) (Bubeck et al., 2013), which generalizes Successive Elimination
algorithm to multiple arms identification by adding a set of accepted arms that have been identified
as part of the optimal arms.

Combinatorial Bandits. Most of the works in the framework of stochastic combinatorial bandits
address the semi-bandit feedback (Chen et al., 2013, 2016; Combes et al., 2015; Kveton et al., 2015;
Merlis and Mannor, 2019). For full-bandit feedback, only a few algorithms were suggested. One of
them is ConfidenceBall1 in Dani et al. (2008) which is a polynomial time approximation for LinUCB
for linear bandits with NP-hard decision sets. Another approximation for LinUCB is described
by Kuroki et al. (2019), which uses an approximated method for quadratic optimization based on
graphs. A different approach is taken by Agarwal and Aggarwal (2018), which is designed for cases
when the aggregated reward is not necessarily the sum of individual arms. This algorithm is based
on Explore-then-Exploit approach and achieves regret of O(k

1
2n

1
3T

2
3 ). Lin et al. (2014) consider a

problem that somewhat generalizes the full-bandit setting, where the reward is not necessarily the
sum of individual arms, but the feedback for the agent is a linear combination of the arms’ rewards
and show anO(T 2/3 log T ) regret bound. There are also a number of works on full-bandit feedback
in the adversarial setting (Cesa-Bianchi and Lugosi, 2012; Combes et al., 2015). One of them is
EXP2 with John’s exploration (Bubeck et al., 2012, chap. 5) designed for linear bandits with finite
action sets. In the top-k setting, it achieves regret of O(k

√
knT ).

Lower Bounds. For best arm identification, Θ
(
n
ε2

log 1
δ

)
samples are necessary and sufficient for

any (ε, δ)-PAC algorithm to identify the best arm (Mannor and Tsitsiklis, 2004; Even-Dar et al.,
2006). For multiple arms identification, a slightly more samples are needed, where the lower bound
is Ω

(
n
ε2

log k
δ

)
(Kalyanakrishnan et al., 2012; Kaufmann and Kalyanakrishnan, 2013). Our work

extends this bounds to the full-bandit feedback, providing a lower bound of Ω
(
n
ε2

)
samples.

As for the regret, a seminal work by Lai and Robbins (1985) bounds the regret of classical MAB as
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Ω
(∑

i
1

∆i
log T

)
. This result extents to Ω

(
c(θ) log T

)
for combinatorial bandits, where c(θ) is a

solution of an optimization problem that depends on the rewards distribution (Talebi et al., 2017).
Another type of bounds is the distribution-independent regret bounds, that does not depend on the
distribution of the arms rewards. For classical MABs, a well-known lower bound of Ω(

√
nT ) was

proven by Auer et al. (2002). This result extends to Ω(
√
knT ) for combinatorial bandits with semi-

bandit feedback (Kveton et al., 2015; Lattimore et al., 2018). For full-bandit feedback, there are
even stronger results of Ω(k

√
nT ) (Audibert et al., 2013) and Ω(k

√
knT ) (Cohen et al., 2017), if

the decision set is limited, i.e., not all subsets can be selected by the agent, which is not the case in
our setting. Another relevant bound is for linear bandits, where the regret is bounded by Ω(n

√
T )

(Dani et al., 2008).

Our Results. The following table summarizes our results in comparison to selected algorithms
for top-k combinatorial bandits with full-bandit feedback.

Algorithm Sample Complexity Depend. Regret Ind. Regret

CSAR O
(
n

∆2 log n
δ

)
O
(
nk
∆ log T

)
O
(
k
√
nT
)

Bubeck et al. (2012, chap. 5) – – O(k
√
knT )

Agarwal and Aggarwal (2018) – – O(k
1
2n

1
3T

2
3 )

Dani et al. (2008) – O
(
n3

∆ log3 T
)

O
(
n
√
nT
)

Kuroki et al. (2019) O
(
n

5
4 k4

∆2 log n
δ

)
1 – –

2. Preliminaries

Suppose that there are n arms numbered 1, 2, . . . , n, and each arm i ∈ [n] is associated with a
random variable Xi = θi + ηi such that θi is the expected reward and ηi is 1-subgaussian noise. We
assume the arms are ordered such that θ1 ≥ · · · ≥ θn, but this order is not known to the agent. In
each round t, the agent selects a subset St of k arms and observes a reward rt =

∑
i∈St

Xi, where
each arm Xi is sampled independently.

The agent’s objective is to find a subset S that maximizes the expected reward µS = E[rS ].
Since the arms are independent we can write µS =

∑
i∈S θi. Accordingly, the optimal subset is

S∗ = {1, . . . , k} with expected reward µ∗ =
∑k

i=1 θi.
We adopt the (ε, δ)-PAC framework (Valiant, 1984), in which the goal of the agent is to output

a subset S such that for any ε, δ > 0, Pr[µ∗ − µS > ε] < δ.
The regret of the agent over time horizon T is defined as

R = E
[ T∑
t=1

(
µ∗ − rt

)]
= Tµ∗ −

T∑
t=1

µt

1. See Appendix B for elaboration on this bound.
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where µt = E[rt] is the expected reward at round t. The regret is measured in terms of the gaps
between the arms. For every arm i ∈ [n] we define the gap

∆i =

{
θi − θk+1 i ≤ k
θk − θi i > k

Note that the gaps are defined differently than for classical MAB, as the optimal arms also have
gaps comparing to the best sub-optimal arm k+ 1. Intuitively, the gaps are the arms’ distances from
changing their status from optimal to sub-optimal arms and vice versa.
Finally, we define ∆ = mini ∆i = ∆k = ∆k+1.

2.1. Hadamard Matrices

The algorithm we present in this paper uses the Hadamard matrix. We define it here and discuss a
few properties of it, for more information see Horadam (2012).

Definition A square matrix H of size n is called Hadamard if its entries are ±1 and it satisfies
HᵀH = nI, where I is the identity matrix.

Hadamard matrices satisfy the following properties:

• Any H can be normalized such that the first row contains only positive entries.

• For any i > 1, the ith row in H contains an equal number of +1 and −1.

• For any n, there exists a Hadamard matrix of size 2n. It is conjectured that Hadamard matrices
exist for any multiple of 4, and the matrices for most of the multiples of 4 up to 2000 are
known (Doković, 2008).

It is interesting to mention that Hadamard matrices maximize the determinant of ±1 matrices,
which makes them D-optimal design matrices (see Horadam, 2012, chap. 4).

3. Combinatorial Successive Accepts and Rejects Algorithm

In this chapter we present the Combinatorial Successive Accepts and Rejects Algorithm for top-k
combinatorial bandits. We begin by presenting an efficient estimation algorithm that estimates the
expected rewards for all the arms, and then discuss the main algorithm that uses the estimation
algorithm in order to find the best subset of k arms. Finally, we bound the sample complexity and
regret achieved by the algorithm.

3.1. Estimation Algorithm

The first algorithm we discuss suggests an efficient method to estimate the expected rewards of the
arms under full bandit feedback. The algorithm gets as inputs a set N of n arms, a subset size k, a
level of accuracy ε and a level of confidence δ. The algorithm first partitionsN into sets of size 2k.
In each of those sets, it makes use of the Hadamard matrix as an instructor for the subsets to sample.
Let H be the Hadamard matrix of size 2k, then for each row Hi (i 6= 1) the algorithm partitions
the arms according to the positive and negative entries in Hi. Since in every row exactly half of the
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entries are positive, the partition forms two sets of size k. For i = 1, H1 has only positive entries,
so the algorithm partitions arbitrarily to two sets. Each of these sets is sampled enough times to get
a good estimate on its expected reward. Then, the sets’ estimated rewards are summed according to
their sign in H . This way we get a vector Ẑ that is equal in expectation to Hθ. Finally, to estimate
the individual arms’ rewards, the algorithm uses the Hadamard matrix inverse H−1Ẑ = 1

2kH
ᵀẐ,

which is the least squares estimator for θ given Ẑ.

Algorithm 1: EST1(N , k, ε, δ)

n = |N |; m(ε, δ) = 2
ε2

log 2n
δ

Partition N into sets of size 2k: N1 . . .N n
2k

for l = 1 . . . n2k do
Let Nl = {j1 . . . j2k}
S1,−1 = {j1, . . . , jk}, S1,+1 = {jk+1, . . . , j2k} . i = 1
Si,b = {j ∈ Nl |Hij = b} . i = 2 . . . 2k, b ∈ {−1,+1}
for i ∈ [2k], b ∈ {−1,+1} do

Sample Si,b for m = m(ε, δ) times and observe rewards r1, . . . , rm
µ̂i,b = 1

m

∑
t rt

end
Ẑ1 = µ̂1,+1 + µ̂1,−1 . i = 1
Ẑi = µ̂i,+1 − µ̂i,−1 . i = 2 . . . 2k, b ∈ {−1,+1}
θ̂Nl

= 1
2kH

ᵀẐ

end
return θ̂

Remark 1. For simplicity, we assume that 2k divides n. Otherwise, when partitioning the arms in
the first step we may repeat arms in the last subset. This increases the number of estimations by at
most 2k, and thus we replace n with n + 2k in the number of samples m(ε, δ). Since n > 2k, this
modification does not change the order of magnitude of the sample complexity and regret.

Remark 2. We assume that there exists a Hadamard matrix of size 2k. Otherwise, let 2q ∈ N be
a multiple of 2k such that there exists a Hadamard matrix of size 2q. Partition the arms into subsets
of size 2q (instead of 2k), and then in each row the number of positive and negative entries is a
multiple of k. Then, partition them to q

k sets of size k, sample each one separately, and then sum
them to get µ̂+1 and µ̂−1. This modification changes the sample complexity and regret by at most a
constant factor.

Theorem 1 For any ε, δ > 0 and k, and any set of n arms N , EST1 returns an estimated reward
vector θ̂ such that

Pr
[
∀i, |θ̂i − θi| ≤ ε

]
≥ 1− δ

Proof We first prove that θ̂ is an unbiased estimator of the reward vector θ. For simplicity fix N1 =
{1, . . . , 2k} and write θ̂ instead of θ̂N1 . Note that for each subset S, the average µ̂S = 1

m

∑
t rt is
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an unbiased estimator for the set’s reward, namely E[µ̂S ] = µS =
∑

i∈S θi. As a consequence for
each i 6= 1, Ẑi satisfies

E[Ẑi] = µi,+1 − µi,−1 =
∑

j∈Si,+1

θj −
∑

j∈Si,−1

θj =

2k∑
j=1

Hijθj = Hᵀ
i θ

and the same for i = 1. Thus Ẑ satisfies E[Ẑ] = Hθ, and E[θ̂] = 1
2kH

ᵀE[Ẑ] = 1
2kH

ᵀHθ = θ.
Fix some subset S sampled by the algorithm, and we prove that the estimation noise η̂S =

µ̂S − µS is k
m -subgaussian. By definition,

µ̂S =
1

m

m∑
t=1

rt =
1

m

m∑
t=1

∑
i∈S

Xi =
1

m

m∑
t=1

∑
i∈S

(θi + ηit) = µS +
1

m

m∑
t=1

∑
i∈S

ηit

Since the noise terms ηit are 1-subgaussians, and we sum over k such terms in each t, the to-
tal estimation noise is k

m -subgaussian. Accordingly, the estimation noise of each Ẑi, given by
ηZi = Ẑi − E[Ẑi] = ηi,+1 − ηi,−1 is 2k

m -subgaussian. Finally, the estimation noise θ̂i − θi =
1
2k

∑2k
j=1HijηZj is also subgaussian with parameter 2k

2km = 1
m . Thus by Hoeffding inequality for

subgaussian random variables,

Pr
[
|θ̂i − E[θ̂i]| ≥ ε

]
≤ 2 exp

(
−ε

2

2
m

)
=
δ

n

where we substituted the number of samples m(ε, δ). Finally, the probability of error in one param-
eter is at most δ

n , and thus by the union bound the probability of error in one parameter or more is
at most δ.

3.2. Main Algorithm

We now show how to use the estimation method described above to find the best subset. The algo-
rithm, which we call Combinatorial Successive Accepts and Rejects (CSAR), is based on Bubeck
et al. (2013) for multiple arms identification. CSAR works in phases. In each phase t it main-
tains a decaying level of accuracy εt and confidence δt and uses EST1 to estimate the arms to
a given level of accuracy and confidence. Then, it sorts the arms according to their estimations
θ̂t1 ≥ θ̂t2 ≥ · · · ≥ θ̂tn, and accepts arms whose estimated reward is bigger than θ̂tk+1 by at least 2εt,
i.e., θ̂ti − θ̂tk+1 ≥ 2εt, as they are optimal with high confidence. Similarly, it rejects arms whose
estimated reward is smaller than θ̂tk by at least 2εt. The algorithm proceeds until n − k arms are
rejected.

Theorem 2 For any δ > 0, CSAR with EST1 is (0, δ)-PAC, i.e., it finds the optimal subset with
probability at least 1− δ.

Remark 3. One can easily modify CSAR to be (ε, δ)-PAC. For that, we provide the algorithm also
with a level of accuracy ε, and instead of stopping only when k arms are left, we may stop earlier
when εt ≤ ε

2k and return the top k arms according to the last estimation. It is not hard to show that
the surviving arms are 2εt close to the optimal arms and therefore the output is at most kεt = ε far
from the optimal subset.

7



TOP-K COMBINATORIAL BANDITS WITH FULL-BANDIT FEEDBACK

Algorithm 2: Combinatorial Successive Accepts and Rejects (CSAR)

N 1 = N ;A1 = ∅; ε1 = 1
2 ; δ1 = 6

π2 δ
while |N t ∪ At| > k do

θ̂t = EST1(N t, k, εt, δt)
Sort N t ∪ At according to θ̂t such that θ̂t1 ≥ θ̂t2 ≥ · · · ≥ θ̂tn
A = {i ∈ N t | θ̂ti − θ̂tk+1 > 2εt}
R = {i ∈ N t | θ̂tk − θ̂ti > 2εt}
At+1 = At ∪ A
N t+1 = N t \ (A ∪R)
εt+1 = εt

2 ; δt+1 = δ1
t2

; t = t+ 1

end
return At ∪N t

3.3. Sample Complexity

In this section, we bound CSAR’s sample complexity in the following theorem.

Theorem 3 For any δ > 0, the total number of samples performed by CSAR with EST1 is at most

M = O

( n∑
i=1

( 1

∆2
i

log
n

δ
+ log log

1

∆i

))
(1)

Note that CSAR’s sample complexity is comparable with the O
(∑n

i=1
1

∆2
i

log n
δ

)
sample com-

plexity of the original Successive Elimination algorithm for best arm identification (Even-Dar et al.,
2006), and also with algorithms for multiple arms identification (Kalyanakrishnan and Stone, 2010;
Kalyanakrishnan et al., 2012), although in these models the agent samples one arm in each round
and not k like in the combinatorial model.

To understand how this upper bound scales, consider the following rewards distribution Xi ∼
Ber(1

2 + ε
k ) for i ∈ [k] and Xi ∼ Ber(1

2) otherwise. In this case, for all arms ∆i = ε
k and thus the

number of samples is bounded by M = O
(
nk2

ε2
log n

δ

)
(ignoring log log terms).

To bound the sample complexity, we first prove the following lemma that bounds the cumulative
number of times Mi each arm is sampled until it is accepted or rejected. The theorem follows
immediately by summing Mi over all arms and dividing by k since each subset sampled by the
algorithm consists of k arms.

Lemma 4 For each arm i ∈ [n], the number of times it is sampled until it is rejected (if it is
sub-optimal) or accepted (if it is optimal) is bounded by

Mi ≤
Ck

∆2
i

(
log

2n

δ
+ 2 log log

1

∆i

)
Proof Let i be an arm, and let Ti be the phase it is accepted or rejected. In every phase t < Ti, arm
i is sampled as part of 2k subsets and each subset is sampled m(εt, δt) times where εt = 2−t and
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δt = δ1
t2

, thus we have

Mi =

Ti∑
t=1

2km(εt, δt) =

Ti∑
t=1

4k

ε2t
log

2n

δt
= 4k

Ti∑
t=1

(2t)2 log
t22n

δ1
=

= 4k
( Ti∑
t=1

4t log t2 + log
2n

δ1

Ti∑
t=1

4t
)
≤ Ck

(
2 log Ti + log

2n

δ

)
· 4Ti

(2)

We now bound the phase Ti when i is rejected. We discuss the case that i is sub-optimal, but
the analysis for optimal arms is similar. Assuming all arms are estimated accurately (see Appendix
A.1), then for any phase t and any arm i we have |θ̂ti−θi| ≤ εt. That also implies that the difference
between the real kth arm and the arm estimated to be in the kth place satisfies |θ̂tk − θk| ≤ εt,
since mixing the order of the arms can happen only between arms that are within the same εt-
neighborhood. As long as i was not rejected, i.e., ∀t = 1 . . . Ti − 1, it holds that

2εt ≥ θ̂tk − θ̂ti ≥ (θk − εt)− (θi + εt) = (θk − θi)− 2εt = ∆i − 2εt

Substituting εt = 2−t we get ∆i ≤ 4εt = 4 · 2−t. This is true also for t = Ti − 1, and thus we get
Ti ≤ log 4

∆i
. Substituting Ti in (2) yields the desired bound.

3.4. Regret

We now analyze the regret. Notice that while CSAR aims to minimize the sample complexity, it
does not minimize the regret. This is because at each time the algorithm chooses a subset, the regret
it achieves is affected not only by the arms it selected, but also by the arms it did not select. In other
words, the gap that should be considered is between the sub-optimal arm i ∈ {k + 1, . . . , n} that
was actually selected and the optimal arm j ∈ {1, . . . , k} that would have been selected instead. We
denote this gap by ∆j:i = θj − θi. Using this notation, we may bound the regret of the algorithm.

Theorem 5 For any n, k ≤ n
2 and T the regret of CSAR with EST1 is at most

R = O

(
n∑

i=k+1

∆1:i

∆2
k:i

k log T

)

Note that this bound is tight for CSAR with EST1. Consider the problem instance where each
arm i ∈ [n] is associated with a normal random variable Xi ∼ N (θi, 1), where

θi =


∆+ i < k

0 i = k

−∆− i > k

(3)

and assume ∆+ � ∆−. On this problem instance, CSAR will accept the first k−1 arms after a small
number of iterations. Then, for the rest of the run it will sample only arms with expected reward of at
most 0. In each call to EST1 each of the n−k+1 arms is sampled 8k

ε2t
log n

δt
times, and it keeps being

sampled until 2εt < ∆−. Therefore, the total regret of the algorithm is Θ
(

∆+

∆2
−

(n − k)k log n
δ

)
. In

the following section we discuss a modification for the algorithm that helps achieve smaller regret.

9
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3.5. Modified algorithm with improved regret

The reason for the ∆1:i factors in Theorem 5 is due to the fact that when we identify an arm as op-
timal, we stop sampling it, and thus suffer regret for its absence. Instead, we consider the following
modification for the algorithm in order to improve the regret. When we accept an arm, instead of
preventing it from being sampled, we fix it. Namely, we sample it in every subset until the end of
the run. This will assure that we suffer gaps such as ∆1:i only for a small number of rounds.

Accordingly, we modify the estimation algorithm to support fixed arms. Now, the algorithm
gets as input also a set A of accepted arms that must be sampled in each subset. Instead of using
the Hadamard matrix of size 2k, it takes a smaller one of size 2k′ where k′ = k − |A| is the
number of arms that can be sampled in each subset after keeping room for the fixed arms. Most of
the algorithm remains the same, except for the need to have good estimations for the fixed arms’
expected rewards. This is because it needs to eliminate those rewards from the sampled subsets and
stay only with the arms that should be estimated. For that, we provide it with a set T of the top 2k
arms, according to the last phase estimations, and run EST1 separately on them.

Algorithm 3: EST2(N , k, ε, δ,A, T )

n = |N |; k′ = k − |A|; m(ε, δ, k′) = 2k
k′

2
ε2

log 2n
δ

θ̂1 . . . θ̂2k = EST1(T , ε, δ,A, T )
Partition N into sets of size 2k′: N1 . . .N n

2k′

for l = 1 . . . n
2k′ do

Let Nl = {j1 . . . j2k′}
S′1,−1 = {j1, . . . , jk′}, S′1,+1 = {jk′+1, . . . , j2k′} . i = 1
S′i,b = {j ∈ Nl |Hij = b} . i = 2 . . . 2k′, b ∈ {−1,+1}
for i ∈ [2k′], b ∈ {−1,+1} do

Si,b = S′i,b ∪ A
Sample Si,b for m = m(ε, δ, k′) times and observe rewards r1, . . . , rm
µ̂i,b = 1

m

∑
t rt

end
Ẑ1 = µ̂1,+1 + µ̂1,−1 − 2

∑
a∈A θ̂a . i = 1

Ẑi = µ̂i,+1 − µ̂i,−1 . i = 2 . . . 2k′, b ∈ {−1,+1}
θ̂Nl

= 1
2k′H

ᵀẐ

end
return θ̂

Theorem 6 For any n, k and time horizon T , the regret of CSAR with EST2 is at most

R = O

(( k∑
i=1

∆i:(k+i)

∆2
+

n∑
i=k+1

1

∆i

)
k log T

)
(4)

10
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Note that this is an improvement over CSAR with EST1. For example, on problem (3), the first
arms will be fixed after a small number of rounds and the regret will be

R = Θ

((
k

∆+

∆2
−

+
n− k
∆−

)
k log T

)
which is better than Θ

(
∆+

∆2
−

(n− k)k log T
)

as long as ∆+

∆−
' 1 + k

n .
To prove the upper bound on the regret of CSAR with EST2, we first prove the following lemma

that bounds the regret caused by each sub-optimal arm.

Lemma 7 The regret of any sub-optimal arm i is at most Ri = O

(
1

∆i
k log n

δ

)
Proof Since all expressions in this proof depend on a factor of Ck log 2n

δ , we omit it along the
proof and multiply by it at the end. Fix a sub-optimal arm i. By Lemma 4, the number of times i is
chosen until it is rejected is at most Mi ≤ 1

∆2
i
. We split the optimal arms {1, . . . , k} according to

∆i, and bound separately the regret R<i caused by missing an optimal arm j ∈ [k] with ∆j ≤ ∆i,
and the regret R>i for the arms j ∈ [k] with ∆j > ∆i.

• For any j ∈ [k] such that ∆j ≤ ∆i, the maximal gap we pay for taking arm i instead of arm
j is at most ∆j:i ≤ 2∆i, and thus the regret of such case is bounded by

R<i ≤Mi∆j:i ≤
1

∆2
i

· (∆j + ∆i) ≤
1

∆2
i

· 2∆i =
2

∆i

• For any j ∈ [k] such that ∆j > ∆i, arm j is accepted at some point before arm i is re-
jected, thus at some point we can be sure that arm i is not played instead of arm j. Let l =
arg minj:∆j>∆i ∆j . We showed that each optimal arm j is accepted at phase Tj ≤ log 4

∆i
,

thus we can write the regret of arm i up to phase Tj as

R>i ≤M1∆1:i + (M2 −M1)∆2:i + · · ·+ (Ml −Ml−1)∆l:i

=M1(∆1:i −∆2:i) +M2(∆2:i −∆3:i) + · · ·+Mj∆j:i

=
l−1∑
j=1

Mj(∆j:i −∆(j+1):i) +Ml∆l:i

≤
l−1∑
j=1

∆j −∆j+1

∆2
j

+
∆l + ∆i

∆2
l

≤
∫ ∆1

∆l

1

x2
dx+

2∆l

∆2
l

=

(
1

∆l
− 1

∆1

)
+

2

∆l
≤ 3

∆l
≤ 3

∆i

To sum up, arm i’s contribution to the regret is Ri = R<i +R>i multiplied by Ck log 2n
δ .

Theorem 6 is implied by Lemma 7 by summing Ri over all sub-optimal arms, in addition to the
regret accumulated by estimating the top 2k arms in each phase until the end of the run. Each of
them is sampled ck

∆2 log 2n
δ times for some c > 0. As they are the top 2k arms with high probability,

11
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the worst subset that can be sampled is {k + 1, . . . , 2k}, and the gap between it and the optimal
subset is

∑k
i=1 ∆i:(k+i). Thus their regret is at most

(∑k
i=1 ∆i:(k+i)

)
ck
∆2 log 2n

δ , and together with∑n
i=k+1Ri we get Theorem 6.

Corollary 8 The distribution-independent regret is at most O
(
k
√
nT log T

)
CSAR’s distribution-independent regret is bigger by factor

√
k than the Ω

(√
knT

)
lower bound

for semi-bandits in Lattimore et al. (2018) (ignoring log terms). In many cases it is reasonable to
assume k = O(1) which makes the bounds tight. As for the dependence on k, we leave the search
for tighter bounds for further research.

Assuming all gaps are equal to ∆, the regret in (4) can be written as R = O

(
nk
∆ log T

)
. We

prove that it is tight for CSAR.

Lemma 9 For any n, k and time horizon T , there exists a distribution over the assignment of re-
wards such that the regret of CSAR with EST2 is at least

R = Ω

(
nk

∆
log T

)
Proof Consider the following example. Each arm i ∈ [n] is associated with a Gaussian random
variable Xi where Xi ∼ N (∆, 1) if i ≤ k and Xi ∼ N (0, 1) otherwise. Similarly to Lemma
4, the best arms will be identified only when ∆ > 2εt which implies that the number of phases
is T > Ω(log 1

∆), and since no arm is accepted or rejected until this phase the total number of
samples is Ω

(
n

∆2 log n
δ

)
. Additionally, each subset has a gap of up to k∆. Thus, the total regret is

R = Ω
(
k∆ · n

∆2 log n
δ

)
which proves that the regret upper bound is tight.

4. Lower Bound

In this section we bound the minimal number of samples necessary to identify the best subset under
full-bandit feedback.

One might wonder if the Ω
(
n
ε2

log 1
δ

)
lower bound for best arm identification (Mannor and

Tsitsiklis, 2004) or Ω
(
n
ε2

log k
δ

)
for multiple arms identification (Kaufmann and Kalyanakrishnan,

2013; Kalyanakrishnan et al., 2012; Chen et al., 2014) applies also for combinatorial bandits. The
answer is not immediate. Intuitively, sampling k arms together might provide more information, so
that hypothetically less samples can be used to find the best subset. For example, if the goal is to
detect an unknown number of counterfeit coins out of n coins, and the agent is allowed to weigh
any number of coins, then there exists an algorithm that identifies the counterfeit coins using only
Θ
(

n
logn

)
weighings, with or without the presence of noise (Erdos and Rényi, 1963; Söderberg and

Shapiro, 1963; Bshouty, 2012).
Despite the discussion above, the following theorem proves a lower bound of Ω

(
n
ε2

)
samples

for combinatorial bandits, similar to the bounds for best- and multiple-arms identification tasks.

Theorem 10 For any n and k ≤ n
2 , and for any 0 < ε, δ < 1

2 , there exists a distribution over the
assignment of rewards such that the sample complexity of any (ε, δ)-PAC algorithm is at least

M = Ω
( n
ε2

)
12
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Figure 1: (a) Comparing sampling schemes (Hadamard, LOO and random). (b) Comparing regret
as a function of time horizon (CSAR vs Sort & Merge).

The proof is based on Slivkins (2019, chap. 2), but generalized for the combinatorial setting. It
defines two problem instances with small KL-divergence between them and shows that any algo-
rithm that uses less samples than required is wrong with high probability.

5. Experiments

We compared our algorithm to other methods also experimentally, on simulated data. We con-
ducted two experiments, one for the sample complexity and one for the regret. We describe here the
experiments briefly, for more details see Appendix C.

For the sample complexity, we evaluate the accuracy of different sampling methods in compari-
son to EST1. Figure 1(a) shows the mean square error of EST1 with Hadamard matrices along with
two other sampling methods. It can be seen that Hadamard significantly outperforms the others. For
the regret, we compared CSAR with the Sort & Merge algorithm in Agarwal and Aggarwal (2018).
Figure 1(b) shows the cumulative regret as a function of time for both algorithms. It can be seen
that CSAR achieves significantly lower regret than Sort & Merge.

6. Discussion and Conclusions

In this work we proposed a novel algorithm for top-k combinatorial bandits with full-bandit feed-
back. We presented the Combinatorial Successive Accepts and Rejects (CSAR) algorithm, and
showed that it is (0, δ)-PAC with sample complexity O

(
n

∆2 log n
δ

)
and regret O

(
nk
∆ log T

)
for time

horizon T . For the sample complexity, we also proved a lower bound of Ω
(
n
ε2

)
. To the best of

our knowledge, this is the first lower bound for sample complexity of combinatorial bandits with
full-bandit feedback.

In addition, we tested our results empirically. First, we tried three sampling methods and showed
that our novel method using Hadamard matrices achieves bigger accuracy within less samples, com-
paring to the baselines. Second, we compared the cumulative regret to Agarwal and Aggarwal
(2018), and illustrated that CSAR outperforms the latter.
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Appendix A. Proofs

A.1. Proof Theorem 2 (PAC)

Proof For each phase t, define the event Et that at least one arm is estimated poorly, i.e. Et =
{∃i |θ̂it − θit| > εt}, and let E =

⋃
tEt. Note that CSAR is wrong only if at some phase it rejects

an optimal arm or accepts a sub-optimal arm. This might happen only under the event E. Hence,
the probability that CSAR is wrong is bounded by the probability of E. By Theorem 1 for any t,
Pr[Et] ≤ δt and thus by the union bound

Pr[E] ≤
∑
t

Pr[Et] ≤
∑
t

δt =
T∑
t=1

δ1

t2
≤ δ1

∞∑
t=1

1

t2
=

6

π2
δ · π

2

6
= δ

Accordingly, the algorithm returns the optimal subset with probability at least 1− δ.

A.2. Proof EST2 Correctness

Theorem 11 For any ε, δ > 0 and any set of n arms N and set of accepted arms A, EST2 returns
an estimated reward vector θ̂ such that

Pr
[
∀i, |θ̂i − θi| ≤ ε

]
≥ 1− δ

Proof The proof is similar to Theorem 1, so we only stress the differences. First, when proving that
θ̂ is an unbiased estimator of θ, we have S = S′ ∪ A, hence for each i 6= 1,

E[Ẑi] =µi,+1 − µi,−1 =
∑

j∈S′i,+1

θj +
∑
j∈A

θj −
( ∑
j∈S′i,−1

θj +
∑
j∈A

θj

)

=
∑

j∈S′i,+1

θj −
∑

j∈S′i,−1

θj =
2k′∑
j=1

Hijθj = Hᵀ
i θ

and for i = 1

E[Ẑ1] =µ1,−1 + µ1,+1 − 2
∑
j∈A

θj

=
∑

j∈S′1,+1

θj +
∑
j∈A

θj +
∑

j∈S′1,−1

θj +
∑
j∈A

θj − 2
∑
j∈A

θj

=
∑

j∈S′1,+1

θj +
∑

j∈S′1,−1

θj =

2k′∑
j=1

H1jθj = Hᵀ
1 θ

Second, we prove each ηẐi
is subgaussian. For any i 6= 1 the proof remains the same. For i = 1,

Ẑ1 = µ̂1,−1 + µ̂1,+1 − 2
∑
j∈A

θ̂j (5)
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Thus the noise consists of η1,−1, η1,+1 which are k
m -subgaussians, and the noise of each θ̂j . We

proved in Theorem 1 that the latter is 1
m -subgaussian, and therefore when summing at most k such

terms and multiplying by 2 we get that the last term in (5) is 2k
m -subgaussian. Summing all terms,

we get that ηẐi
is 4k

m -subgaussian.

Finally, note that the estimation noise of θ̂, given by θ̂i − θi = 1
2k′
∑2k′

j=1HijηZj , is 4k
2k′m -

subgaussian. Thus for m = 2k
k′

2
ε2

log 2n
δ it holds Pr

[
|θ̂i−E[θ̂i]| ≥ ε

]
≤ δ

n , and by the union bound
the toal probability of error is at most δ.

A.3. Proof Theorem 5 (CSAR with EST1’s Regret)

Proof Since only sub-optimal arms are responsible for regret, we consider only them. For any
sub-optimal arm i, its maximal gap is ∆1:i. Hence, the total regret is given by R ≤

∑n
i=k+1Mi∆1:i

where Mi is the number of times arm i is sampled. In order to translate this bound to terms of
the time horizon T , recall that if the algorithm goes wrong, it might suffer a regret of kT , and this
happens with probability δ. To avoid it, we take δ = 1

kT . Using Lemma 4 to bound Mi we get the
desired regret bound.

A.4. Proof Corollary 8 (Distribution-Independent Regret)

Proof Consider the (ε, δ)-PAC variant of CSAR that stops exploring when εt ≤ ε and then keep
selecting the best k estimated arms for the rest of the time horizon T (see Remark 3). Note that
when the exploration stops, the arms estimations are at most ε far from their real values, according
to Theorem 1. Hence, the gap between the optimal subset and any subset of surviving arms is at
most kε, and thus their regret is at mostR< ≤ kεT . This should be added to the regret caused by the
arms that were eliminated up to this stage. According to Lemma 7, the contribution of a sub-optimal
arm i to the regret is bounded by k

∆i
log n

δ . Since it was eliminated before phase t, it must hold that
∆i > ε. The number of eliminated arms is clearly bounded by n, and thus their contribution to the
regret is

R> ≤ C
∑
i:∆i>ε

k

∆i
log T ≤ C

∑
i:∆i>ε

k

ε
log T ≤ Cnk

ε
log T

for some constant C. Concluding both parts of regret, we get R ≤ C nk
ε log T + εkT . This is true

as long as the number of rounds is at least the number of samples done by CSAR up to phase t, that

is T ≥ C ′ n
ε2

log n
δ for some constant C ′. Thus for ε =

√
C′n
T log n

δ and δ = 1
kT we get the desired

regret bound.
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A.5. Proof Theorem 10 (Lower Bound)

We prove the lower bound in a few steps. We first prove a bound of Ω
(
k
ε2

)
for k ≤ n

2 , then prove a
stronger bound of Ω

(
n
ε2

)
for k ≤ n

24 , and finally sum up both proofs to get the desired bound.

LOWER BOUND FOR k ≤ n
2

To prove the lower bound for k ≤ n
2 , we first define the following profiles with n = 2k arms.

I1 = {Xi ∼ Ber(p1
i )}2ki=1 where p1

i =

{
1
2 + ε

k i = 1 . . . k
1
2 −

ε
k i = k + 1 . . . 2k

I2 = {Xi ∼ Ber(p2
i )}2ki=1 where p2

i =

{
1
2 −

ε
k i = 1 . . . k

1
2 + ε

k i = k + 1 . . . 2k

(6)

In what follows we assume that i ∈ {1, 2} is selected randomly and the agent gets to play against
profile Ii without knowing the value of i.

Lemma A.1 Any algorithm A that runs on problem (6) and selects any subset S ⊂ [2k] of size k
can be simulated by an algorithm A’ that selects only K1 = {1 . . . k} and K2 = {k+ 1 . . . 2k} with
the same amount of samples.

Proof Fix an algorithm A and a subset S. Let (S1, S2) be a partition of S, i.e., S1 ∩ S2 = ∅, S1 ∪
S2 = S, such that S1 ⊆ K1 and S2 ⊆ K2. Assume without loss of generality |S1| = s1, |S2| = s2

and s1 ≥ s2. Then, there are at least s2 arms in S with mean 1
2 + ε

k and s2 arms with mean 1
2 −

ε
k .

As we observe only the sum of the rewards, which is in this case s2

(
1
2 + ε

k

)
+ s2

(
1
2 −

ε
k

)
= 2s2

2 ,
we may simulate these 2s2 arms with the same amount of fair coins with probability 1

2 .
We now show how to simulate the distribution of the rest s = s1 − 2s2 ≤ k arms in S1 ⊆ K1

using one sample of K1. Sample K1 once and let r be the outcome. Create a binary vector of size k
with r 1s. Since the arms in K1 are identical, this vector represents the outcome of any individual
arm in the subset, up to some permutation between the arms. Then, select random s entries from
the vector and return their sum. This procedure simulates exactly the distribution of s arms in K1

given that the sum of K1 is r.

We now bound the sample complexity for k ≤ n
2 .

Lemma A.2 For any n and k ≤ n
2 , and for any ε > 0, there exists a reward distribution such that

the sample complexity of any (ε, δ)-PAC algorithm is at least

M = Ω
( k
ε2

)
Proof We begin with k = n

2 . Consider problem (6), and we show that any algorithm have to use at
least T ≥ ck

ε2
samples (for some constant c > 0 to be set later) in order to identify the correct subset

with high probability. Assume by contradiction that there is an algorithm that uses T ≤ ck
ε2

samples
and returns a subset ST such that

∀i = 1, 2. Pi[ST = Ki] = Pr[ST = Ki|Ii] ≥
3

4
(7)
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By Lemma A.1, it is enough to consider only algorithms that sample only K1 and K2. Let Ω =
{0, 1}n×T be the sample space of possible rewards of the arms and let A = {ω ⊆ Ω |ST = K1} be
the event that the algorithm outputs K1. According to Pinsker’s inequality,

2(P1[A]− P2[A])2 ≤ KL(P1, P2) =
T∑
t=1

2∑
i=1

KL(P i,t1 , P i,t2 )

where KL is the Kullback-Leibler divergence between two distributions, and P i,tj denotes the dis-
tribution of rewards at time t given that subsetKi was selected and the profile is Ij . Note that P i,tj is
a binomial distribution with k samples and probability 1

2 ±
ε
k and thus the KL divergence satisfies

KL(P i,t1 , P i,t2 ) = k ·KL(
1

2
+
ε

k
,
1

2
− ε

k
) ≤ 8k

( ε
k

)2
Therefore we have

2(P1[A]− P2[A])2 ≤
T∑
t=1

2∑
i=1

KL(P i,t1 , P i,t2 ) ≤ T · 8k ε
2

k2
≤ 8c

where we used the assumption T ≤ ck
ε2

. Thus for c ≤ 1
16 we have that |P1[A]− P2[A]| ≤ 1

2 . Due to
assumption (7) we have that P2[A] = Pr[ST = K1]|I2] ≤ 1

4 and therefore

P1[A] ≤ P2[A] +
1

2
≤ 3

4

in contradiction to (7). Finally, for k < n
2 we may add to the profiles I1, I2 arms with mean 0 that

may only increase the number of samples.

LOWER BOUND FOR k ≤ n
24

To prove the lower bound for k ≤ n
24 , we use Lemma 4 from Audibert et al. (2013). For conve-

nience, we cite the lemma.

Lemma A.3 Let l and k be integers with 1
2 ≤

k
2 ≤ l ≤ k. Let p, p′, q, p1, . . . , pk−1 ∈ (0, 1)

with q ∈ {p, p′}, p1 = · · · = pl = q and pl+1 = · · · = pk−1. Let B (resp. B′) be the sum of
k independent Bernoulli distributions with parameters p, p1, . . . , pk−1 (resp. p′, p1, . . . , pk−1). We
have

KL(B,B′) ≤ 2(p′ − p)2

(1− p′)(k + 1)q

We now prove the lower bound for k ≤ n
24 .

Lemma A.4 For any n and k ≤ n
24 , and for any ε > 0, there exists a reward distribution such that

the sample complexity of any (ε, δ)-PAC algorithm is at least

M = Ω
( n
ε2

)
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Proof For any j ∈ [n] define the following profile

Ij =

Xi ∼ Ber
(

1
2

)
i 6= j

Xi ∼ Ber
(

1
2 + ε

)
i = j

and also define I0 = {Xi ∼ Ber
(

1
2

)
| i = 1 . . . n}. We use the abbreviation Pj [·] (Ej [·]) to denote

the probability (expectation) when the arms are distributed according to Ij . Suppose that there
exists an algorithm that runs for T ≤ cn

ε2
steps for some c > 0 under profile I0 and returns a subset

ST . We first show that there are many arms that are sampled only a few times and are not part of
ST with high probability.
For any j ∈ [n] let Tj denote the number of times j is sampled. Then,

n∑
j=1

E0[Tj ] = kT ≤ cnk

ε2

Then for at least 2
3 of the arms it holds E0[Tj ] ≤ 3ck

ε2
(otherwise the sum over all arms is bigger then

kT ). Accordingly, by Markov inequality for each of these arms P0[Tj ≥ T ∗] ≤ 1
8 where T ∗ = 24ck

ε2
.

For similar considerations, for at least 2
3 of the arms it holds that P0[j ∈ ST ] ≤ 3k

n ≤
1
8 (where we

assumed k ≤ n
24 ). Thus, by pigeon hole there exists a subset of arms B ⊂ [n] such that |B| ≥ 1

3n
and for all j ∈ B the following holds

P0[Tj > T ∗] ≤ 1

8
and P0[j ∈ ST ] ≤ 1

8
(8)

Fix an arm j ∈ B and we prove Pj [j ∈ ST ] ≤ 1
2 . Let Ω∗ denote the sample set of possible

arms rewards under the restriction that j was sampled at most T ∗ times, and let P ∗ denote the
corresponding distribution. By Pinsker’s inequality, for any eventA ⊂ Ω∗ the distance between two
probability distributions satisfy

2(P ∗0 [A]− P ∗j [A])2 ≤ KL(P ∗0 , P
∗
j ) =

T∑
t=1

KL(PSt
0 , PSt

j ) (9)

where PSt
j denotes the reward distribution of the subset St under profile Ij . Note that all arms

except j are identically distributed under I0 and Ij , and therefore for any St that does not include j
the KL divergence is zero. Hence, we only need to consider rounds t ∈ [T ] when j was sampled as
part of St. By Lemma A.3 with p = 1

2 + ε and p′ = q = p1 = · · · = pk−1 = 1
2 we have

KL(PSt
0 , PSt

j ) ≤ 2ε2

1
2 ·

1
2(k + 1)

≤ 8ε2

k

Substituting in (9) gives

2(P ∗j [A]− P ∗0 [A])2 ≤
∑
t: j∈St

KL(PSt
j , PSt

0 ) =
∑
t: j∈St

8ε2

2k
≤ 24ck

ε2
8ε2

2k
= 96c ≤ 1

32

where we assumed c < 1
3072 . We conclude that for any event A ⊂ Ω∗, P ∗j [A] ≤ P ∗0 [A] + 1

8 .
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Define the following events

A = {j ∈ ST ∧ Tj ≤ T ∗} and A′ = {Tj > T ∗}

Note that bothA,A′ ⊂ Ω∗ since whether j is sampled more than T ∗ times is completely determined
by the first T ∗ samples. Thus,

P ∗j [A] ≤ P ∗0 [A] +
1

8
≤ 1

8
+

1

8
=

1

4

P ∗j [A′] ≤ P ∗0 [A′] +
1

8
≤ 1

8
+

1

8
=

1

4

where the probabilities are bounded due to (8). Finally we have

Pj [j ∈ ST ] ≤ Pj [j ∈ ST ∧ T ≤ T ∗] + Pj [T > T ∗] ≤ 1

4
+

1

4
=

1

2

Namely, every algorithm that runs less then cn
ε2

rounds will err on more than 1
3 of the instances and

return an ε-far set with probability at least 1
2 .

SUM UP

In Lemma A.4 we showed that for k ≤ n
24 the sample complexity is at least Ω

(
n
ε2

)
, and in Lemma

A.2 we showed that for k ≤ n
2 it is at least Ω

(
k
ε2

)
. Note that for n

24 ≤ k ≤
n
2 we can write k = O(n)

and thus we can sum up both cases to deduce Theorem 10.
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Appendix B. Sample Complexity in Kuroki et al. (2019)

We refer to the sample complexity upper bound ofO
(ρ(p)

∆2 k
5n

1
4 log n

δ

)
in Kuroki et al. (2019), where

ρ(p) depends on the distribution of arms’ selection p. We show that for any p, ρ(p) ≥ n
k , and thus

the sample complexity is given by O
(
n

5
4 k4

∆2 log n
δ

)
.

We start by citing some definitions. For any set S of k arms let χS ∈ {0, 1}n denote its indicator
vector. Fix an algorithm for finding the best subset, and let p(S) be the probability that the algorithm
selects S. Define Λp =

∑
S⊂[n] p(S)χSχ

ᵀ
S and ρ(p) = maxS χ

ᵀ
SΛ−1

p χS . We want to bound ρ(p).
For that, we first prove the following claim which will be useful for bounding ρ(p).

Claim B.1 For any vector x ∈ Rn and any invertible and symmetric matrix A of size n,

(xᵀAx)(xᵀA−1x) ≥ ‖x‖42

Proof Let v1 . . . vn be A’s eigenvectors corresponding to the eigenvalues λ1 . . . λn. We write
x =

∑n
i=1 αivi, then xᵀAx =

∑n
i=1 α

2
iλi and xᵀA−1x =

∑n
i=1 α

2
iλ
−1
i since A is symmetric and

therefore its eigenvectors are orthonormal. According to the weighted version of the inequality of
arithmetic and harmonic means, we have

xᵀAx

‖x‖22
=

∑n
i=1 α

2
iλi∑n

i=1 α
2
i

≥
∑n

i=1 α
2
i∑n

i=1 α
2
iλ
−1
i

=
‖x‖22

xᵀA−1x

Claim B.2 For any distribution p, ρ(p) ≥ n
k

Proof First consider Λp’s trace.

tr(Λp) =
∑
S⊂[n]

p(S)tr(χSχ
ᵀ
S) =

∑
S⊂[n]

p(S)tr(χᵀ
SχS) =

∑
S⊂[n]

p(S)k = k

where we used the fact that χS contains exactly k ones and that
∑

S⊂[n] p(S) = 1.
Next, note that entry i, j in Λp is the marginal probability pij of arms i, j being selected together

according to p. Accordingly, the entries on the diagonal pii are the marginal probabilities of single
arms. We saw that tr(Λp) =

∑n
i=1 pii = k, namely the average 1

n

∑n
i=1 pii = k

n . Assume that
the arms are ordered such that p11 ≤ · · · ≤ pnn. Then the average of the minimal k arms satisfies
1
k

∑k
i=1 pii ≤

k
n . Thus, for the set S = {1 . . . k},

χᵀ
SΛpχS =

k∑
i=1

k∑
j=1

pij ≤ k
k∑
i=1

pij ≤ k
k2

n

where the first inequality is because ∀i, j, pii ≥ pij .
Finally, note that Λp is symmetrical and thus by Claim B.1 we have

χᵀ
SΛ−1

p χS ≥
‖χS‖42
χᵀ
SΛpχS

≥ k2

k3

n

which shows that ρ(p) = maxS′ χ
ᵀ
S′Λ
−1
p χS′ ≥ χᵀ

SΛ−1
p χS ≥ n

k .
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Appendix C. Experiments

We compared our algorithm to other methods also experimentally, on simulated data. We conducted
two experiments, one for the sample complexity and one for the regret.

C.1. Sample Complexity

For the sample complexity, we evaluate the accuracy of different sampling methods in comparison
to EST1. Figure 2(a) shows the mean square error of EST1, which uses Hadamard matrix, along
with two other sampling methods. The first is Leave One Out (LOO), that partitions the arms into
sets of size k+1 and in each one samples all the k+1 subsets of size k. The second method samples
a random 2k × 2k matrix, such that in each row k entries are +1 and k are −1. In this experiment,
each arm is a normal random variable with random mean in [0, 1] and σ2 = 1, and we set n = 144
and k = 8. The plot shows the average and standard deviation of 1000 runs. It can be seen that
Hadamard significantly outperforms the other two methods.

The high variance in the random matrices’ MSE stems from the variance involved in the choice
of the matrices. To see that, we tested the relation between the MSE and the condition number
of different matrices. In linear regression, the condition number is defined by the ratio between the
biggest and the smallest singular values σmax

σmin
and it measures the affect of deviations in the response

variable on the estimation error to the. Figure 2(b) shows the MSE of 1000 random matrices as a
function of their condition number, where each point is the average of 100 independent experiments.
It can be seen that the MSE is indeed monotone with the condition number, with Spearman corre-
lation of 96%. However, we note that while the relation between the two is expected to be linear
according to theory, the relation observed in the experiments is not linear.

Figure 2: (a) Comparing sampling schemes (Hadamard, LOO and random). (b) MSE of random
matrices as a function of their condition number.
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C.2. Regret

For the regret, we compared CSAR’s performance to the Sort & Merge algorithm in Agarwal and
Aggarwal (2018). Figure 3(a) shows the cumulative regret as a function of time for both algorithms.
In this experiment, we initialized the arms to be Bernoulli random variables with random mean in
[0, 1], and we set n = 24 and k = 2. The plot shows the average and standard deviation of 100 runs.
It can be seen that CSAR achieves significantly lower regret than Sort & Merge. In addition, we test
the consistency of this gap for different ks. Figure 3(b) shows the cumulative regret after 5 millions
steps for differnt k values. The plot shows the average and standard deviation of 35 runs. Note that
the large deviations in Sort & Merge’s regret in both plots result from the random initialization of
the arms that might effect the exploration’s duration dramatically.

Figure 3: Comparing regret (CSAR vs Sort & Merge) as a function of: (a) time horizon T (b) subset
size k
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