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Abstract
We focus on a classic reinforcement learning problem, called a multi-armed bandit, and more
specifically in the stochastic setting with reward distributions bounded in [0, 1]. For this model,
an optimal problem-dependent asymptotic regret lower bound has been derived. However, the ex-
isting algorithms achieving this regret lower bound all require to solve an optimization problem
at each step, inducing a large complexity. In this paper, we propose two new algorithms, which
we prove to achieve the problem-dependent asymptotic regret lower bound without requiring to
solve any optimization problem. The first one, which we call Multinomial TS, is an adaptation of
Thompson Sampling for Bernoulli rewards to multinomial reward distributions whose support is
included in {0, 1

M , . . . , 1}. This algorithm achieves the regret lower bound in the case of multi-
nomial distributions with the aforementioned support, and it can be easily generalized to bounded
reward distributions in [0, 1] by randomly rounding the observed rewards. The second algorithm we
introduce, which we call Non-parametric TS, is a randomized algorithm but it is not based on the
posterior sampling in the strict sense. At each step, it computes an average of the observed rewards
with random weight. Not only is it asymptotically optimal, but also it performs very well even for
small horizons. Practically, it beats most state-of-the-art bandit algorithms, including some which
require solving an optimization problem at each round.
Keywords: Thompson Sampling, Multi-armed Bandit Problem, Online Optimization

1. Introduction

The sequential decision-making problem, called a multi-armed bandit, consists of sequentially sam-
pling one of unknown random variables called arms. At each round, an agent pulls an arm and gets
a reward. The aim of the agent is to maximize the expectation of the sum of its rewards over a
horizon T . Therefore, there arises a regret of not pulling the optimal arm (that is, the arm with the
highest expected reward) every time the agent pulls a suboptimal arm. The aim of this problem can
be expressed as the minimization of the total expected regret over the horizon T .

Various algorithms have been derived to the multi-armed bandit problem, which can be gathered
in several categories. The following list is not exhaustive but includes some of the most important
categories. The first category is derived from the algorithm UCB1 (Upper Confidence bound) (Auer
et al., 2002), which relies on computing confidence intervals at each step, and includes many re-
cent advances like the empirical KL-UCB (Cappé et al., 2013), which computes clever confidence
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intervals solving a convex optimization problem at each step, or more recently Bootstrapped UCB
(Hao et al., 2019), to name only a few. Bootstrapping is also a common technique for bandit prob-
lems, like the GIRO (Garbage In, Reward Out) (Kveton et al., 2019). The second category corre-
sponds to a class of algorithms based on solving a convex optimization problem at each step, and
includes, among others, DMED (Deterministic Minimum Empirical Divergence) (Honda and Take-
mura, 2010), IMED (Indexed Minimum Empirical Divergence) (Honda and Takemura, 2015) and
the empirical KL-UCB (Cappé et al., 2013). The third category mentioned here relies on Thompson
Sampling (TS) (see, for instance, Agrawal and Goyal, 2012; Kaufmann et al., 2012), a Bayesian
randomized algorithm which selects an arm with its probability of being the best arm.

For this problem it is known that there exists an asymptotic lower bound on the regret (Lai and
Robbins, 1985; Burnetas and Katehakis, 1996) and a policy with a regret matching this lower bound
is called asymptotically optimal. However, the current asymptotically optimal policies all require
to solve an optimization problem at each round (see, for instance, Cappé et al., 2013; Honda and
Takemura, 2010) and are therefore quite slow and sometimes hard to apply online. In the specific
case when the rewards are binary, some policies can determine the arm to pull in an analytic way
without optimization. However, they are not expected to be optimal in more general cases.

A typical example of application of bandits with nonbinary rewards is the following. Let us
assume, for instance, that you are a telecommunication company and that you are trying to provide
the best communication possible to your clients. Given that you can transmit messages via two
channels A or B and you want to attribute to your clients the channel with the best throughput, which
channel should you assign to your clients? This problem can be modeled by a bandit problem with
two arms, channel A and channel B. If the throughput of the communication can be measured by a
certain number of packets (the higher the number of packets, the better the throughput), then both
arms have reward distributions over integers. It can be normalized in order to become an element
of a certain set {0, 1

M , . . . , 1} for a certain integer M ≥ 1 which is the maximum number of
packets. This is a bandit problem where all arms follow a multinomial distribution whose support
is {0, 1

M , . . . , 1}. If the throughput of the communication can take more general values, but is
bounded, then it can be normalized in [0, 1]. This becomes a general bandit problem with reward
distributions bounded in [0, 1]. In these two models, existing algorithms are either non-optimal, or
require the computation of an optimization problem at each round, which is quite problematic, since
such settings require quick online decision making.

In this paper, we propose two algorithms adapted respectively to the multinomial case and the
case of general distributions over [0, 1], which we prove to be asymptotically optimal. One of the
major interests of both algorithms is that, despite their optimality, they do not require solving any
optimization problem, which significantly enhances the applicability in online settings. However,
they outperform some of the state-of-the-art bandit algorithms which require solving an optimization
problem at each step of the algorithm, including the empirical KL-UCB (see Cappé et al., 2013).

Both of the proposed algorithms are based on Thompson Sampling (TS): the first one, which we
call Multinomial TS, is an adaptation of TS to the multinomial case, and is asymptotically optimal
for multinomial rewards. The second one, which we call Non-parametric TS, is an adaptation of TS
in the sense that it is still a randomized algorithm, but it is not a Bayesian algorithm as we explain
later. Non-parametric TS is asymptotically optimal for distributions over [0, 1].

Although both algorithms are based on TS, their analysis is definitely non-trivial, for the fol-
lowing reasons. Multinomial TS is a natural adaptation of TS, but the analysis for the binary case
(and that for one-parameter exponential families (see Korda et al., 2013)) cannot be used since it
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heavily relies on the beta-binomial transform (see Agrawal and Goyal, 2012), which is based on
the discussion of an order statistics and is not generalized to the multinomial case in a simple form.
Non-parametric TS is not based on the posterior sampling in the strict sense, and is different from
naive applications of non-parametric methods for posterior sampling that are computationally ex-
pensive. This non-parametric nature further makes the analysis difficult. In fact, the proof of the
asymptotic optimality for distributions over [0, 1] of an algorithm called the empirical KL-UCB
(Cappé et al., 2013) is very recent (Garivier et al., 2018) because of such difficulty. On top of this
difficulty comes the one implied by the randomization. Indeed, for this second reason, most TS-
based algorithms do not have a theoretical guarantee. In the case of Non-parametric TS, this second
difficulty adds to the first one.

2. Preliminaries

In this section, we formulate the multi-armed bandit problem and introduce the current state-of-the-
art results and algorithms used to solve it.

For any distribution F , we will denote the support of F by supp(F ) and E[F ] := EX∼F [X]
the expectation of any random variable following distribution F . We consider a bandit with K
arms, and an agent plays it T times (i.e. pulls an arm for T rounds). Each time the agent pulls
arm k ∈ [K] = {1, . . . ,K}, he/she will receive a reward r ∈ [0, 1] drawn from distribution Fk.
We assume that the received rewards are independent of each other. The aim of this problem is to
maximize the expected reward, or in other words, to minimize the expected regret:

E[RT ] := E

[
T∑
t=1

(µ∗ − µI(t))

]
,

where we denoted the expectation of arm k by µk := EX∼Fk [X], I(t) the arm selected by the agent
at round t and µ∗ := max{µ1, . . . , µK}.

We consider a problem-dependent setting where K and µi are fixed, and T is sufficiently large.
It was first proven in Lai and Robbins (1985) for single-parameter models and later in Burnetas and
Katehakis (1996), that no strategy could beat systematically the asymptotic regret lower bound:

E[RT ] ≥
∑
i:∆i>0

∆i log T

Kinf(Fi, µ∗)
+ o(log T ), (1)

where we denoted Kinf(Fi, µ
∗) = infG: E[G]>µ∗ KL(Fi‖G) and KL(F‖G) is the Kullback-Leibler

divergence between the distributions F and G.
In the case of multinomial rewards of support included in {0, 1

M , . . . , 1}, the optimal asymptotic
regret lower bound is given by

E[RT ] ≥
∑
i:∆i>0

∆i log T

K(M)
inf (Fi, µ∗)

+ o(log T ), (2)

where we denoted K(M)
inf (Fi, µ

∗) = inf
{

KL(F‖G) | supp(G) ∈ {0, 1
M , . . . , 1}, E(G) > µ∗

}
.

When Fi is a Bernoulli distribution, Kinf(Fi, µ
∗) = µi log µi

µ∗ + (1 − µi) log 1−µi
1−µ∗ and some

existing algorithms achieve the optimal lower bound like Thompson Sampling (see, for instance,
Agrawal and Goyal, 2012; Kaufmann et al., 2012) or KL-UCB (Cappé et al., 2013).
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Algorithm 1 Multinomial TS
Require: Horizon T ≥ 1, number of arms K ≥ 1, support size of the arm distributions M ≥ 1.
Set αkm := 1 for k ∈ [K] and m ∈ {0, . . . ,M}.
for t = 1 . . . T , do

for k = 1 . . .K, do
Sample Lk ∼ Dir(αk0 , α

k
1 , . . . , α

k
M ).

I(t) := arg maxk∈{1,...,K}

{(
0, 1

M ,
2
M . . . 1

)>
Lk

}
.

Pull arm I(t) and observe reward rt = m
M where m ∈ {0, 1, . . . ,M}.

Update αI(t)m := α
I(t)
m + 1.

In the more general case of reward distributions bounded in [0, 1], some algorithms achieve the
optimal regret bound, including DMED (Deterministic Minimum Empirical Divergence) (Honda
and Takemura, 2010), IMED (Indexed Minimum Empirical Divergence) (Honda and Takemura,
2015) and the empirical KL-UCB (adaptation of KL-UCB, see Cappé et al., 2013). Still, the empir-
ical KL-UCB algorithm for this model requires a nested optimization that maximizes the objective
function represented by Kinf , which itself is expressed by a minimization problem. DMED and
IMED algorithms do not require such a nested optimization, but they still need the computation of
Kinf at each round.

3. Proposed Algorithms

In this section, we propose two algorithms for the multi-armed bandit problem, based on Thompson
sampling, that do not require solving an optimization problem, but instead generates samples from
Dirichlet distributions, which are generalizations of beta distributions. We denote the Dirichlet
distribution of parameters (α1, . . . , αn) by Dir(α1, . . . , αn), whose density function is given by
Γ(

∑n
i=1 α

i)∏n
i=1 Γ(αi)

∏n
i=1 x

αi−1
i for (x1, . . . , xn) ∈ [0, 1]n such that

∑n
i=1 xi = 1.

The first algorithm, Multinomial TS, is a simple adaptation of TS to multinomial distributions,
which is given in Algorithm 1. TS for the binary case, which we will denote Binary TS, is a Bayesian
algorithm which generates samples from a beta distribution, which is the conjugate of the Bernoulli
distribution. In our case, we generate samples from a Dirichlet distribution, which is the conjugate
of a multinomial distribution, and we expect it to be optimal in the case of multinomial arms.

At each round, instead of solving an optimization problem, Multinomial TS generates samples
Lk for k ∈ [K] from Dirichlet distributions of dimension M + 1, each Lk corresponding to the
posterior sample on the parameter of the multinomial distribution of arm k. In fact, in the case
where the reward distribution is not multinomial, we have to choose a parameter M and use the
rounding technique explained below in the Remark 1. However, the performance of Multinomial
TS depends on the choice of M . If M is very large, the asymptotic (in T ) expected regret will be
better, however, the algorithm will be slightly slower. On the other hand, if M is very large, the
asymptotic regret will approach the optimal regret bound. In addition, Multinomial TS is a Bayesian
algorithm, and more parameters are involved in the Dirichlet distribution as M becomes large. As a
result, many rounds are needed for the posterior distributions to concentrate on the actual parameters
of the arms for large M . Therefore, for small horizons T , M should also chosen to be small.

4



BANDIT ALGORITHMS BASED ON THOMPSON SAMPLING FOR BOUNDED REWARD DISTRIBUTIONS

Algorithm 2 Non-parametric TS
Require: Horizon T ≥ 1, number of arms K ≥ 1.
for k = 1 . . .K, do

Set Xk := 1 and Nk := 1.
for t = 1 . . . T , do

for k = 1 . . .K, do
Sample Lk = Dir(1Nk) where 1Nk = (1, . . . , 1)︸ ︷︷ ︸

Nk elements

.

Vk := X>k Lk.
I(t) := arg maxk∈{1,...,K}{Vk}.
Pull arm I(t) and observe reward rt.
Update XI(t) := (X>I(t), r

I(t)
t )>.

Update NI(t) := NI(t) + 1.

Remark 1 The algorithm Multinomial TS can be used even if the arms do not follow multinomial
distributions. A possible adaptation is the randomized rounding of the reward discussed in Agrawal
and Goyal (2012) for the adaptation of Binary TS to more general bounded reward distributions:
if r ∈

[
m
M ,

m+1
M

)
for some m ∈ {0, . . . ,M}, then we generate a random variable r̃ = m+B

M for
Bernoulli random variable B ∈ {0, 1} with success probability Mr − m, and we regard r̃ as the
observed reward instead of r. The generated (virtual) reward r̃ ∈ (r − 1

M , r + 1
M ) has the same

expectation as r and follows a multinomial distribution over {0, 1
M , . . . , 1}.

The second algorithm, Non-parametric TS, is given in Algorithm 2 which is a randomized algo-
rithm like TS, but it is not a Bayesian algorithm in the strict sense. Whereas Multinomial TS samples
a probability distribution over {0, 1

M ,
2
M , . . . , 1}, Non-parametric TS samples, for any k ∈ [K], a

distribution Lk over {1, Xk
1 , X

k
2 , . . . , X

k
Nk
} whereNk is the number of times arm k has been pulled

so far, Xk
i is the i-th reward observed from arm k and Lk ∼ Dir(1, . . . , 1) is the uniform distri-

bution on the probability simplex of dimension Nk. This means that the support of the sampled
distribution of Non-parametric TS depends on the observed reward, which means that the sampled
distribution is not a posterior sample with respect to a fixed prior distribution.

By investigating the property of Dirichlet distributions, we can see that Non-parametric TS
coincides with Multinomial TS with support {0, 1

M ,
2
M , . . . , 1}, when the reward follows a multi-

nomial distribution over {0, 1
M ,

2
M , . . . , 1}. However, in the case of Non-parametric TS, the prior

is Dir(0, 0, ..., 0, 1). This is an improper prior and this impropriety also makes the analysis compli-
cated but contributes to the asymptotic optimality.

It should be noted that if the observed rewards of an arm are r1, . . . , rn we compute the random
weighted average of 1, r1, . . . , rn with weight sampled from Dir(1, . . . , 1). Here, 1 in the support
is important to create the exploration; without 1 in the support, the randomized average of each
arm will be at most the maximum of the rewards observed so far. This is problematic because,
for example, if the first reward X1

1 of the arm 1 is unluckily smaller than any point on the support
supp(F2) of the arm 2 then the first arm will never be pulled again even if µ1 > µ2.

Remark 2 By the same discussion as the relation between Multinomial TS and Non-parametric
TS, we see that (1, Xk

1 , X
k
2 , . . . , X

k
Nk

)>Lk for Lk ∼ Dir(1Nk+1) has the same distribution as
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Algorithm 3 Improved version of Non-parametric TS
Require: Horizon T ≥ 1, number of arms K ≥ 1.
for k = 1 . . .K, do

Set Sk := 1 and Tk := 1.
for t = 1 . . . T , do

for k = 1 . . .K, do
Sample Lk = Dir(Tk).
Vk := S>k Lk.

I(t) := arg maxk∈{1,...,K}{Vk}.
Pull arm I(t) and observe reward rt.
if rt = SI(t)[m] for some m, then

Update TI(t)[m] := TI(t)[m] + 1.
else

Update SI(t) := (S>I(t), rt)
> and TI(t) := (T>I(t), 1)>.

S>k Lk for Lk ∼ Dir(Tk), where Sk = (Sk[1], Sk[2], . . . , Sk[s]) is the set of non-identical elements
of (1, Xk

1 , X
k
2 , . . . , X

k
Nk

) and Tk = (Tk[1], Tk[2], . . . , Tk[s]) is the set consisting of the number
Tk[i] of occurrence of element Sk[i] in (1, Xk

1 , X
k
2 , . . . , X

k
Nk

). Therefore, sampling the latter one
instead of the former one in Non-parametric TS does not affect the expected regret bound. Never-
theless, in some cases, the complexity of the algorithm is considerably reduced. For example, in the
multinomial case, the complexity of the algorithm at round t is reduced from O(t) to O(Ks). The
pseudo-code of the improved version of Non-parametric TS is given in Algorithm 3.

Remark 3 We can also see from the proof of the regret bound for Non-parametric TS that the
theoretical analysis is largely the same (or simpler) even if we replace the posterior sample Vk with
the empirical mean 1

Nk

∑Nk
i=1X

k
i for k maximizing the empirical mean, though we do not give the

formal analysis for this modification. This replacement reduces the complexity to from O(t) to
O(K log t) since each suboptimal arm is pulled at most O(log t) rounds.

4. Main Results

The two main results of this paper are that Multinomial TS achieves the optimal regret bound in
(1) for the multinomial case and Non-parametric TS achieves the optimal regret bound in (2) for
general distributions over [0, 1].

Theorem 4 Assume there are K multinomial arms of common support {0, 1
M ,

2
M , . . . , 1} where

M ≥ 1 is a natural number. Then, Multinomial TS achieves the optimal multinomial regret bound:

E[RT ] ≤
∑

k:∆k>0

∆k log T

K(M)
inf (Fi, µ∗)

+ o(log T ).

Theorem 5 Assume there are K arms whose distributions are supported on [0, 1]. Then, Non-
parametric TS achieves the optimal regret bound:

E[RT ] ≤
∑

k:∆k>0

∆k log T

Kinf(Fi, µ∗)
+ o(log T ).
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As discussed in Remark 1, we can use Multinomial TS by using the randomized rounding even if
the reward is not supported on {0, 1

M ,
2
M , . . . , 1}. The loss of the asymptotic regret by this rounding

can be evaluated by the following lemma, the proof of which is given in Appendix I.

Lemma 6 Let X ∈ [0, 1] be a random variable following distribution F and define F̃ as the
distribution of X̃ := bMXc+B

M for an integer M ≥ 1, where B ∈ {0, 1} is a Bernoulli random
variable with success probability MX − bMXc given X . Then, for M > 1

1−µ we have

Kinf(F, µ)− 1

M(1− µ)− 1
≤ K(M)

inf (F̃ , µ) ≤ Kinf(F, µ). (3)

By Lemma 6, we know that the main term in Multinomial TS gets closer to the optimal bound
when M gets larger with rate O(1/M). However, increasing M has a cost. Indeed, as for many
Bayesian algorithms convergence, the regret of Multinomial TS can be decomposed into two phases:
a pre-convergence phase and a post-convergence phase. The former is the phase during which
the estimated parameters are converging towards the ones of the multinomial distribution. The
latter is the phase after the estimated parameters have converged towards the true parameters of the
distribution. If you increase M , then the exploration term in the post-convergence will be smaller,
but it will take more time for the parameters to converge, so the pre-convergence phase will be
longer. Therefore, as we can see from the proof of Theorem 4, the logarithmic term will be smaller
but the constant term (hidden in the o(log T )) will be larger and the algorithm will be worse for
smaller values of T .

Non-parametric TS does not suffer from such a tradeoff, and its bound is optimal. In addition,
as it is not a Bayesian algorithm in the strict sense, which estimate parameters and generate a
distribution whose parameters are the ones estimated before. Instead, Non-parametric TS generates
a distribution, relying directly on the observed rewards. This prevents typical errors of Bayesian
algorithms due to early-stage estimation, and for this reason, Non-parametric TS performs also well
for small values of T . However, this has a cost: the complexity of remembering all the rewards and
sampling a growing dimension Dirichlet distribution at each round. Nevertheless, this problem can
be avoided in certain cases, see Remark 2.

In the multinomial case, both algorithms coincide, except for the initialization of the weights.
Multinomial TS initializes all the parameters to pm = 1, while Non-parametric TS initializes pm =
0 for m 6= M and pM = 1.

Both proofs have similar outlines, decomposed into a pre-convergence and a post-convergence,
which we will present, before introducing the technical lemmas which lead to the proof.

General Outline of the Proof

We want to provide an upper bound on the expected regret

E[RT ] = Tµ∗ − E

[
T∑
t=1

µI(t)

]
.

Then, letting Ni(T ) be the number of times that arm i is pulled and ∆i := µ∗ − µi be the gap of
arm i, we can rewrite the regret as

E[RT ] =
K∑
i=1

(µ∗ − µi)E[Ni(T )] =
K∑
i=1

∆iE

[
T∑
t=1

1(I(t) = i)

]
.
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To derive the upper bound we want, it is enough to prove that, for any suboptimal arm i, the regret
related to arm i satisfies

• E
[∑T

t=1 1(I(t) = i)
]

= log T

K(M)
inf (Fi,µ∗)

+ o(log T ) for Multinomial TS,

• E
[∑T

t=1 1(I(t) = i)
]

= log T
Kinf(Fi,µ∗)

+ o(log T ) for Non-parametric TS.

To do that, we are going to introduce a distance d on distributions for each case. In the case of
Multinomial TS, this distance is on the set of multinomial distributions whose support is included
in {0, 1

M , . . . , 1}. If D1 and D2 are two distributions of respective parameters p0, p1, . . . , pM and
q0, q1, . . . , qM , then we use the distance defined as

d(D1, D2) := ‖p− q‖∞ = sup
i∈{0,...,M}

|pi − qi|,

that is, the L∞ distance between p and q in RM+1. In the case of Non-parametric TS, we use the
Lévy distance for d. Recall that the Lévy distance between two cumulative distribution functions
on [0, 1] F and G is defined by

DL(F,G) = inf{ε > 0 : ∀x ∈ [0, 1], F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε}.

For more clarity, we use the following notations within the proof. We denote the true parameters
of arm j by pj = (pj0, . . . , p

j
M ), that is, pji = PX∼Fj [X = i

M ]. We denote the parameters of
the posterior distribution of arm j by αj(t) = (αj0(t), . . . , αjM (t)). When there is no ambiguity
on the arm due to the context, for the sake of clarity, we drop the superscript and simply denote
α = (α0, . . . , αM ) the parameters of the arm we are studying.

For k ∈ [K], we denote by Vk(t) the mean of the reward distribution of arm k sampled from the
Dirichlet distribution at step t, that is, Vk(t) = u>Lk for u =

(
0, 1

M , . . . , 1
)

in Multinomial TS and
Vk(t) = X>k Lk in Non-parametric TS. We also denote F̂k(t) the empirical cumulative distribution
function of arm k ∈ [K] at step t.

Let us decompose the regret related with suboptimal arm i into two terms:

E

[
T∑
t=1

1(I(t) = i)

]
= E

[
T∑
t=1

1

(
I(t) = i, Vi(t) ≥ µ∗ − ε1, d(F̂I(t)(t), FI(t)) ≤ ε2

)]
︸ ︷︷ ︸

(Post-CV)

+ E

[
T∑
t=1

1

(
I(t) = i, {Vi(t) < µ∗ − ε1 ∪ d(F̂I(t)(t), FI(t)) > ε2}

)]
︸ ︷︷ ︸

(Pre-CV)

.

Using the notations previously introduced, rewriting both the terms (Post-CV) and (Pre-CV) in
the case of Multinomial TS, we have

(Post-CV) = E
[∑T

t=1 1

(
I(t) = i, u>LI(t)(t) ≥ µ∗ − ε1,

∥∥∥ αI(t)(t)
NI(t)(t)+M+1 − p

I(t)
∥∥∥
∞
≤ ε2

)]
,

(Pre-CV) = E
[∑T

t=1 1

(
I(t) = i,{

u>LI(t)(t) < µ∗ − ε1 ∪
∥∥∥ αI(t)(t)
NI(t)(t)+M+1 − p

I(t)
∥∥∥
∞
> ε2

})]
.
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In the case of Non-parametric TS, we have (Post-CV) = E
[∑T

t=1 1

(
I(t) = i, VI(t)(t) ≥ µ∗ − ε1, DL(F̂I(t)(t), FI(t)) ≤ ε2

)]
,

(Pre-CV) = E
[∑T

t=1 1

(
I(t) = i,

{
VI(t)(t) < µ∗ − ε1 ∪DL(F̂I(t)(t), FI(t)) > ε2

})]
.

The first term in the RHS is the post-convergence term, while the second one is the pre-
convergence term. The post-convergence term is the exploration term, and thus the main term
of the regret. The pre-convergence term is the regret implied before the algorithm seizes the true
parameters of the arms. The proof of Theorem 4 relies on the following two propositions.

Proposition 7 For Multinomial TS, we have, for any ε0 > 0

(Post-CV) ≤ (1 + ε0) log T

K(M)
inf (Fi, µ∗)

+ o(log T ).

Proposition 8 For Multinomial TS, we have

(Pre-CV) = O(1).

The key to those two propositions is to provide an upper and a lower bound on the probability
PL∼Dir(α)(L ∈ S) for a certain set S = {x ∈ P : u>x ≥ µ} or S = {x ∈ P : u>x ≤ µ} included
in the probability simplex P , where µ ∈ [0, 1]. Those results, stated in Lemmas 13 and 14, are the
following.

Lemma 9 Assume that 1>α = N and for any j ∈ {0, 1, . . . ,M}, αj ≥ 1. We will denote Pα =
1
Nα. Let S ⊂ P , a closed convex set included in the probability simplex, and denote P ∗ :=
arg minx∈S KL(Pα‖x). Then, the following upper bound holds.

PL∼Dir(α)(L ∈ S) ≤ C1N
M/2 exp(−NKL(Pα‖P ∗)).

In the particular case S = {x ∈ P : u>x ≥ µ} with µ ≥ u>α, the following lower bound also
holds:

PL∼Dir(α) (L ∈ S) ≥ C2N
−M

2 exp(−NKL(Pα‖P ∗))
PαM
P ∗M

,

where we denoted C1 := e1/12

Γ(M+1)

(
1√
2π

)M
and C2 :=

(
1√
2π

)M
e−(M+1)/12.

Those results provide exponential upper and lower bounds to an end-tail probability.
The proof of Theorem 5 relies on the following two propositions.

Proposition 10 For Non-parametric TS, we have, for any ε0 > 0

(Post-CV) ≤ log T

Kinf(Fi, µ∗)− ε0
+ o(log T ).

Proposition 11 For Non-parametric TS, we have

(Pre-CV) = O(1).

9
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Several lemmas using different proof techniques are used in the proof of those two propositions.
To be more specific, the proofs are based on lower and upper bounds on the probabilities related to
Dirichlet distributions in Lemmas 15 and 17, in addition to the previous lemma. These bounds are
natural from the viewpoint of the large deviation theory but the derivation requires careful investi-
gation of the properties of Dirichlet distributions.

The difficulty of the proof for Multinomial TS relies on the following factors. Unlike the re-
gret analysis for Binary TS in Kaufmann et al. (2012) and Agrawal and Goyal (2012), the optimal
asymptotic regret bound, which corresponds to the post-convergence term, requires the computa-
tion of the infimum of the Kullback-Leibler divergence. On the other hand in the case of Binary TS,
where all arms follow Bernoulli distribution, this infimum can be trivially computed explicitly as
K(1)

inf (Fi, µ
∗) = KL(Ber(E[Fi]),Ber(µ∗)). This difference adds a specific technicality in the proof

of Proposition 7 for the post-convergence term of Multinomial TS. In addition to it, the techniques
used for the binary case cannot be easily generalized, because it heavily relies on the beta-binomial
transform. Instead of this transformation, our analysis uses the explicit form of the density func-
tion of the Dirichlet distribution in some places, and also uses the property that Dirichlet random
variables can be generated by normalization of Gamma random variables in other places.

Regarding Non-parametric TS, the simple decomposition between a post-convergence and a
pre-convergence phase is not trivial. Indeed, in the case of Bayesian algorithms like Binary TS or
Multinomial TS, the pre-convergence phase corresponds to the phase of convergence of the param-
eters of the conjugate distribution. However, in the case of Non-parametric TS, the pre-convergence
phase corresponds to the convergence in the algorithm of the empirical distribution of the reward, in
the sense of the Lévy distance. We evaluate the convergence of the Lévy distance by reducing it to
the evaluation of the L∞ distance between cumulative distributions over the space of nondecreasing
functions.

5. Simulation Results

In this section, we give results of two experiments to show the performance of the proposed two
algorithms. Both experiments have been performed over a hundred trials each, that is, we have run
each experiment a hundred times, and the curve is the average of these results.

We perform the first experiment on a horizon T = 105 with two multinomial arms of identical
distribution support {0, 1

3 ,
2
3 , 1}. The first arm has parameters (0.1, 0.1, 0.4, 0.4) and µ1 = 0.7, and

the second arm has parameters (0.4, 0.4, 0.1, 0.1) and µ2 = 0.3. We will only compare Multinomial
TS with M = 3 and Binary TS. Since Multinomial TS is designed to be optimal for multinomial
distributions, comparing it to Binary TS will show how much it improves from Binary TS (which is
optimal for Bernoulli arms), and how significant the difference in the regret is.

The results in Figure 1 show a clearcut difference between Multinomial TS and Binary TS.
It appears quite clearly on the figure that the logarithmic coefficient is far better in the case of
Multinomial TS. We notice, however, that for a small number of rounds, Binary TS seems to perform
better than Multinomial TS. This is no surprise due to early-stage estimation. Indeed, since more
parameters are estimated in Multinomial TS than in Binary TS, the pre-convergence phase is longer
in Multinomial TS than in Binary TS, making it seemingly less performing on a short horizon.

The second experiment investigates the proposed algorithms in a more general setting where
reward distributions are over [0, 1] but not multinomial. In this experiment, we compare Non-
parametric TS, Multinomial TS with parameter M = 5, the empirical KL-UCB from Cappé et al.

10
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Figure 1: Comparison of Binary TS and Multinomial TS for multinomial rewards.

(2013), Binary TS and UCB1 from Auer et al. (2002). For this purpose, we conduct the experiment
on the horizon T = 104, with two arms with exponential distributions truncated on [0, 1]. The first
arm is an exponential distribution of rate parameter l = 0.01 which was then truncated on [0, 1] with
µ1 ≈ 0.499 and the second arm is an exponential distribution of rate parameter l = 10 which was
then truncated on [0, 1] with µ2 ≈ 0.100. The aim of this experiment is to compare our algorithms to
the classic bandit algorithms UCB1 (see Auer et al., 2002) and Binary TS, and to the state-of-the-art
algorithm called the empirical KL-UCB, which reaches the optimal regret lower bound.

From the result shown in Figure 2, we notice that Non-parametric TS outperforms or performs
comparably with other algorithms, including the empirical KL-UCB. It is also interesting to see that
it also performs very well for a small number of rounds. This is due to the fact that contrary to
Binary TS and Multinomial TS, it does not estimate parameters but directly relies on the observed
rewards. The algorithms Multinomial TS (for both values of M ) and Binary TS seem to perform
comparably. UCB1, however, with no surprise, performs not as well as all the other algorithms.

It should be noted that whereas the empirical KL-UCB performed comparably to Non-parametric
TS, Non-parametric TS is still advantageous since, contrary to the empirical KL-UCB, it does not
solve an optimization problem at each step, making it far quicker and easier to apply in online
settings than the current state-of-the-art algorithm called the empirical KL-UCB.

6. Conclusion

In this paper, we proposed and analyzed two algorithms for the stochastic bandit with reward dis-
tributions over [0, 1]. The first one, Multinomial TS, is an adaptation of Thompson sampling for
binary reward to the case of multinomial rewards of support included in {0, 1

M , . . . , 1} and can also
be used for general rewards bounded in [0, 1] by the randomized rounding. The bound obtained in
this case converges toward the optimal asymptotic regret bound for distributions bounded in [0, 1]

11
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Figure 2: Comparison of UCB1, Binary TS, Multinomial TS and Non-parametric TS for truncated
exponential rewards.

when M tends to infinity. The second one, Non-parametric TS, is a randomized algorithm in the
more general case of reward distributions bounded in [0, 1]. It is not Bayesian in the strict sense, as
it does not estimate parameters of a conjugate distribution before sampling. Thanks to this fact, it
also performs well for a small number of rounds. For those reasons, it experimentally outperforms
the classic bandit algorithms such as UCB1 and Binary TS, but also most state-of-the-art bandit
algorithms, including some which require to solve an optimization problem at each step, like the
empirical KL-UCB.

An important direction for future research is to give a finite-time regret bound to fully clarify the
effect of M , which is currently hidden in the O(1) term. A related direction is to clarify the effect
of the prior for the Dirichlet distribution; although it is often reported that TS is not too sensitive to
the choice of the prior, in our problem there are M + 1 or infinitely many parameters in the model
and the choice may be more essential than models with few parameters.
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Appendix A. Proof of Proposition 7

In this section, we will look at the post-convergence term

E

[
T∑
t=1

1

(
I(t) = i, u>LI(t)(t) ≥ µ∗ − ε1,

∥∥∥∥∥ αI(t)(t)

NI(t)(t) +M + 1
− pI(t)

∥∥∥∥∥
∞

≤ ε2

)]

=
T∑
t=1

T∑
n=1

E

[
1

(
I(t) = i, u>Li(t) ≥ µ∗ − ε1,∥∥∥∥ αi(t)

Ni(t) +M + 1
− pi

∥∥∥∥
∞
≤ ε2, Ni(t) = n

)]
.

Here note that if the event
{
I(t) = i, u>Li(t) ≥ µ∗ − ε1,

∥∥∥ αi(t)
Ni(t)+M+1 − p

i
∥∥∥
∞
≤ ε2, Ni(t) = n

}
occurs at step t for a certain n ∈ [T ], then Ni(t

′) > Ni(t) = n for any t′ > t. Therefore, we deduce
that, for any n ∈ [T ],

T∑
t=1

1

(
I(t) = i, u>Li(t) ≥ µ∗ − ε1,

∥∥∥∥ αi(t)

Ni(t) +M + 1
− pi

∥∥∥∥
∞
≤ ε2, Ni(t) = n

)
≤ 1.

We can then bound, for any n0 ∈ [T ]:

E

[
T∑
t=1

1

(
I(t) = i, u>LI(t)(t) ≥ µ∗ − ε1,

∥∥∥∥∥ αI(t)(t)

NI(t)(t) +M + 1
− pI(t)

∥∥∥∥∥
∞

≤ ε2

)]

≤ n0 +

T∑
t=1

T∑
n=n0

E

[
1

(
I(t) = i, u>Li(t) ≥ µ∗ − ε1,

∥∥∥∥ αi(t)

Ni(t) +M + 1
− pi

∥∥∥∥
∞
≤ ε2, Ni(t) = n

)]

≤ n0 +
T∑
t=1

T∑
n=n0

P

(
u>Li(t) ≥ µ∗ − ε1,

∥∥∥∥ αi(t)

Ni(t) +M + 1
− pi

∥∥∥∥
∞
≤ ε2, Ni(t) = n

)

= n0 +
T∑
t=1

T∑
n=n0

P

(
u>Li(t) ≥ µ∗ − ε1

∣∣∣∣ ∥∥∥∥ αi(t)

Ni(t) +M + 1
− pi

∥∥∥∥
∞
≤ ε2, Ni(t) = n

)
× P

(∥∥∥∥ αi(t)

Ni(t) +M + 1
− pi

∥∥∥∥
∞
≤ ε2, Ni(t) = n

)
. (4)

Here note that by Lemma 13 in Appendix F.1 we have

P

(
u>Li(t) ≥ µ∗ − ε1

∣∣∣∣ αi(t), Ni(t) = n

)
≤ C1(n+M + 1)M/2 exp(−(n+M + 1)KL(Pαi(t)‖P ∗µ∗−ε1)),
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where P ∗µ∗−ε1 = arg minx: uT x≥µ∗−ε1 KL(Pαi(t)‖x). But by definition, KL(Pαi(t)‖P ∗µ∗−ε1) =
Kinf(Pαi(t), µ

∗ − ε1), then we have

P

(
u>Li(t) ≥ µ∗ − ε1

∣∣∣∣ αi(t), Ni(t) = n

)
≤ C1(n+M + 1)M/2 exp(−(n+M + 1)Kinf(Pαi(t), µ

∗ − ε1)),

where C1 = e1/12

Γ(M+1)

(
1√
2π

)M
. On the other hand, Kinf(x, µ

∗ − ε1) is continuous in x ∈ [0, 1]M+1

on the probability simplex with respect to the L∞ distance from Honda and Takemura (2010, The-
orem 7) and Lemma 18 in Appendix H. Therefore, for any ε3 > 0, there exist ε2 > 0 and constant
C ′1 > 0 such that

P

(
u>Li(t) ≥ µ∗ − ε1

∣∣∣∣ ∥∥∥∥ αi(t)

Ni(t) +M + 1
− pi

∥∥∥∥
∞
≤ ε2, Ni(t) = n

)
≤ C ′1 exp(−(n+M + 1)(Kinf(p

i, µ∗ − ε1)− ε3)).

Combining this with (4), we can bound

E

[
T∑
t=1

1

(
I(t) = i, u>LI(t)(t) ≥ µ∗ − ε1,

∥∥∥∥∥ αI(t)(t)

NI(t)(t) +M + 1
− pI(t)

∥∥∥∥∥
∞

≤ ε2

)]

≤ n0 + C ′1

T∑
t=1

exp(−(n0 +M + 1)(Kinf(p
i, µ∗ − ε1)− ε3))

×
T∑

n=n0

P

(∥∥∥∥ αi(t)

Ni(t) +M + 1
− pi

∥∥∥∥
∞
≤ ε2, Ni(t) = n

)

≤ n0 + C ′1

T∑
t=1

exp(−(n0 +M + 1)(Kinf(p
i, µ∗ − ε1)− ε3))

= n0 + C ′1T exp(−(n0 +M + 1)(Kinf(p
i, µ∗ − ε1)− ε3)).

Choosing n0 = log T
Kinf(pi,µ∗−ε1)−ε3 − (M + 1) provides the upper bound

E

[
T∑
t=1

1

(
I(t) = i, u>LI(t)(t) ≥ µ∗ − ε1,

∥∥∥∥∥ αI(t)(t)

NI(t)(t) +M + 1
− pI(t)

∥∥∥∥∥
∞

≤ ε2

)]

≤ log T

Kinf(pi, µ∗ − ε1)− ε3
−M − 1 + C ′1.

In Honda and Takemura (2010, Theorem 7), it is proven that µ 7−→ Kinf(F, µ) is continuous for
µ < 1, and thus, we can deduce that for any ε4 > 0, there exists ε1 > 0 such that∣∣Kinf(p

i, µ∗ − ε1)−Kinf(p
i, µ∗)

∣∣ ≤ ε4.
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This implies that, for any ε0 > 0, there exist ε1 > 0 and ε2 > 0 such that

E

[
T∑
t=1

1

(
I(t) = i, u>LI(t)(t) ≥ µ∗ − ε1,

∥∥∥∥∥ αI(t)(t)

NI(t)(t) +M + 1
− pI(t)

∥∥∥∥∥
∞

≤ ε2

)]

≤ (1 + ε0) log T

Kinf(pi, µ∗)
−M − 1 + C ′1.

Appendix B. Proof of Proposition 8

In this section, we evaluate the pre-convergence term, which is decomposed as

E

[
T∑
t=1

1

(
I(t) = i,

{
u>LI(t)(t) < µ∗ − ε1 ∪

∥∥∥∥∥ αI(t)(t)

NI(t)(t) +M + 1
− pI(t)

∥∥∥∥∥
∞

> ε2

})]

≤ E

[
T∑
t=1

1

(∥∥∥∥∥ αI(t)(t)

NI(t)(t) +M + 1
− pI(t)

∥∥∥∥∥
∞

> ε2

)]
︸ ︷︷ ︸

(A)

+ E

[
T∑
t=1

1

(
u>LI(t)(t) < µ∗ − ε1

)]
︸ ︷︷ ︸

(B)

.

We are going to bound each of the two pre-convergence terms, (A) and (B).

B.1. Bounding (A)

Bounding this term is quite easy actually and similar to the one in Agrawal and Goyal (2012). We
bound the gap between the true parameters and the estimated parameters of the arm pulled at each
step, so the gap will necessary vanish, and this is independent from the choice of the algorithm.

Letting τk(n) be the round of the n-th pull of arm k ∈ [K], we can write

E

[
T∑
t=1

1

(∥∥∥∥∥ αI(t)(t)

NI(t)(t) +M + 1
− pI(t)

∥∥∥∥∥
∞

> ε2

)]

= E

[
K∑
k=1

T∑
t=1

1

(∥∥∥∥ αk(t)

Nk(t) +M + 1
− pk

∥∥∥∥
∞
> ε2, I(t) = k

)]

= E

 K∑
k=1

T∑
n=1

τk(n+1)−1∑
t=τk(n)

1

(∥∥∥∥ αk(t)

n+M + 1
− pk

∥∥∥∥
∞
> ε2, I(t) = k

)
=

K∑
k=1

T∑
n=1

E

1(∥∥∥∥ αk(τk(n))

n+M + 1
− pk

∥∥∥∥
∞
> ε2

) τk(n+1)−1∑
t=τk(n)

1(I(t) = k)


=

K∑
k=1

T∑
n=1

P

(∥∥∥∥ αk(τk(n))

n+M + 1
− pk

∥∥∥∥
∞
> ε2

)
.

16



BANDIT ALGORITHMS BASED ON THOMPSON SAMPLING FOR BOUNDED REWARD DISTRIBUTIONS

Since αki (τ
k(n))− 1 follows the binomial distribution with n trials and success probability pki , this

term can be bounded using Hoeffding’s inequality as

P

(∥∥∥∥ αk(τk(n))

n+M + 1
− pk

∥∥∥∥
∞
> ε2

)
= P

(
max

i∈{0,..,M}

∣∣∣∣ αki (τk(n))

n+M + 1
− pki

∣∣∣∣ > ε2

)
≤

M∑
i=0

P

(∣∣∣∣ αki (τk(n))

n+M + 1
− pki

∣∣∣∣ > ε2

)

≤
M∑
i=0

P

(∣∣∣∣αki (τk(n))− 1

n
− pki

∣∣∣∣ > ε2 −
∣∣∣∣(n+M + 1)(αki (τ

k(n))− 1)− nαki (τk(n))

n(n+M + 1)

∣∣∣∣)

=

M∑
i=0

P

(∣∣∣∣αki (τk(n))− 1

n
− pki

∣∣∣∣ > ε2 −
∣∣∣∣(M + 1)(αki (τ

k(n))− 1)− n
n(n+M + 1)

∣∣∣∣)

≤
M∑
i=0

P

(∣∣∣∣αki (τk(n))− 1

n
− pki

∣∣∣∣ > ε2 −
M

n

)
(5)

≤ (M + 1) min

{
1, exp

(
−2n

(
ε2 −

M

n

)2
)}

,

where (5) follows from 1 ≤ αki (τk(n)) ≤ n+ 1. Therefore,

T∑
n=1

P

(∥∥∥∥ αk(τk(n))

n+M + 1
− pk

∥∥∥∥
∞
> ε2

)
≤ (M + 1)

2M

ε2
+

T∑
n=

⌈
2M
ε2

⌉ exp

(
−nε

2
2

2

)
≤ (M + 1)

(
2M

ε2
+

T∑
n=1

exp

(
−nε

2
2

2

))

≤ (M + 1)

(
2M

ε2
+

2

ε22

)
.

We can therefore obtain the bound of term (A) by

(A) ≤ K(M + 1)

(
2M

ε2
+

2

ε22

)
.

B.2. Bounding (B)

The main difficulty of the regret analysis lies in bounding this term. To do that, we are going to
decompose this term even more. Recall that we have assumed that the optimal arm is arm 1. We
denote Mult(n, p) the multinomial distribution of parameters (n, p) where p = (p0, . . . , pM ) for
some M ≥ 1 satisfies

∑M
i=0 pi = 1 and pi ≥ 0 for any i ∈ {0, . . . ,M}. Then term (B) is expressed
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as

E

[
T∑
t=1

1(u>LI(t)(t) < µ∗ − ε1)

]

= E

[
T∑
t=1

T∑
n=1

1(u>LI(t)(t) < µ∗ − ε1, N1(t) = n)

]

= E

[
T∑
n=1

T∑
m=1

1

(
T∑
t=1

1(u>LI(t)(t) < µ∗ − ε1, N1(t) = n) ≥ m

)]
,

where we used the property that, for any series of events (At),

T∑
t=1

1(At) =
T∑

m=1

1

(
T∑
t=1

1(At) ≥ m

)
.

Then, if the event
{
u>L1(t) > µ∗ − ε1, maxj 6=1 u

>Lj(t) ≤ µ∗ − ε1, N1(t) = n
}

occurs at
time t0, then N1(t) = n will not hold for any t > t0. Thus, denoting τ1, . . . , τm the first m
rounds at which the event

{
maxj 6=1 u

>Lj(t) ≤ µ∗ − ε1, N1(t) = n
}

holds, it is necessary to have
u>L1(t) ≤ µ∗ − ε1 at all τ1, . . . , τm in order to have the event {

∑T
t=1 1(u>LI(t)(t) < µ∗ −

ε1, N1(t) = n) ≥ m}. Thus, we can evaluate

E

[
T∑
t=1

1(u>LI(t)(t) < µ∗ − ε1)

]

≤
T∑
n=1

T∑
m=1

E

[
m∏
k=1

1(u>L1(τk) ≤ µ∗ − ε1)

]

≤
T∑
n=1

T∑
m=1

Eα−1∼Mult(n,p)

[
m∏
k=1

P
(
u>L(τk) ≤ µ∗ − ε1

∣∣∣ α(τk)
)]

=
T∑
n=1

Eα−1∼Mult(n,p)

[
T∑

m=1

(
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

))m]

≤
T∑
n=1

Eα−1∼Mult(n,p)

[
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]
.

Then, we decompose the term within the sum as follows:

Eα−1∼Mult(n,p)

[
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]

= Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
> µ∗ − ε1

2

)
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]
︸ ︷︷ ︸

(B1)
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+ Eα−1∼Mult(n,p)

[
1

(
µ∗ − ε1 <

u>α

n+M + 1
≤ µ∗ − ε1

2

)
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]
︸ ︷︷ ︸

(B2)

+ Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

)
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]
︸ ︷︷ ︸

(B3)

.

Now, we are going to provide an upper bound for each of these terms.

B.2.1. BOUNDING (B1)

In the case where u>α
n+M+1 > µ∗ − ε1

2 , we can use Lemma 13 in Appendix F.1 on tails of Dirichlet
distributions to provide an upper bound to

PL∼Dir(α)(L ∈ S) ≤ C1(n+M + 1)M/2 exp(−(n+M + 1)KL(Pα‖P ∗)),

where we denoted P ∗ := arg minx∈S KL(Pα‖x) and S = {x ∈ [0, 1]M+1 : 1>x = 1, u>x ≤
µ∗ − ε1}. However, denoting δ := inf(a,b) : u>a≥µ∗−ε1/2, µ∗−ε1≥u>b KL(a‖b) > 0, we can also
bound this term.

C1(n+M + 1)M/2 exp(−(n+M + 1)KL(Pα‖P ∗)) ≤ C1(n+M + 1)M/2 exp(−(n+M + 1)δ).

Then, there exists n1 > 0 such that for any n ≥ n1, C1(n+M+1)M/2 exp(−(n+M+1)δ) <
1. Using this upper bound, we can then provide an upper bound to the term (B1) for any n ≥ n1,

E

[
1

(
u>α

n+M + 1
> µ∗ − ε1

2

)
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]

≤ C1(n+M + 1)M/2 exp(−(n+M + 1)δ)

1− C1(n+M + 1)M/2 exp(−(n+M + 1)δ)
.

Finally we have

T∑
n=1

Eα−1∼Mult(n,p)

[
1

(
u>α > (n+M + 1)

(
µ∗ − ε1

2

)) PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]
︸ ︷︷ ︸

(∗)

≤
n1−1∑
n=1

(∗) +

T∑
n=n1

C1(n+M + 1)M/2

exp((n+M + 1)δ)− C1(n+M + 1)M/2

= O(1).
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B.2.2. BOUNDING (B2)

We can then provide an upper bound to the expectation

Eα−1∼Mult(n,p)

[
1

(
µ∗ − ε1 <

u>α

n+M + 1
≤ µ∗ − ε1

2

)
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]

≤ Eα−1∼Mult(n,p)

[
1

(
µ∗ − ε1 <

u>α

n+M + 1
≤ µ∗ − ε1

2

)
1

1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]
= Eα−1∼Mult(n,p)

[
1

(
µ∗ − ε1 <

u>α

n+M + 1
≤ µ∗ − ε1

2

)
1

PL∼Dir(α) (u>L ≥ µ∗ − ε1)

]
.

Since αi 6= 0 for any i ∈ {0, . . . ,M}, we can use Lemma 14 in Appendix F.2 on tails of Dirichlet
distributions and we obtain

PL∼Dir(α)

(
u>L ≥ µ∗ − ε1

)
≥ PL∼Dir(α)

(
u>L ≥ 1

n+M + 1
u>α

)
≥ C2(n+M + 1)−

M
2 exp(−(n+M + 1)KL(Pα‖P ∗))

PαM
P ∗M

,

where we denoted P ∗ := arg minx: u>x≥µ∗−ε1 KL(Pα‖x) and C2 :=
(

1√
2π

)M
e−(M+1)/12. By

definition of P ∗, we deduce that P ∗ = Pα, thus

PL∼Dir(α)

(
u>L ≥ µ∗ − ε1

)
≥ C2(n+M + 1)−

M
2 .

Therefore, we deduce that

Eα−1∼Mult(n,p)

[
1

(
µ∗ − ε1 <

u>α

n+M + 1
≤ µ∗ − ε1

2

)
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]

≤ C−1
2 (n+M + 1)

M
2 Eα−1∼Mult(n,p)

[
1

(
µ∗ − ε1 <

u>α

n+M + 1
≤ µ∗ − ε1

2

)]
.

Then, using Hoeffding’s inequality, we can provide the upper bound given by

Eα−1∼Mult(n,p)

[
1

(
µ∗ − ε1 <

u>α

n+M + 1
≤ µ∗ − ε1

2

)]
≤ Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

2

)]
≤ exp

(
−(n+M + 1)ε21

2

)
.

Thus, we conclude that

Eα−1∼Mult(n,p)

[
1

(
µ∗ − ε1 <

u>α

n+M + 1
≤ µ∗ − ε1

2

)
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]

≤ C−1
2 (n+M + 1)

M
2 exp

(
−(n+M + 1)ε21

2

)
,
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which proves that

T∑
n=1

Eα−1∼Mult(n,p)

[
1

(
µ∗ − ε1 <

u>α

n+M + 1
≤ µ∗ − ε1

2

)

×
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]
= O(1).

B.2.3. BOUNDING (B3)

We can eventually provide an upper bound to the expectation as follows:

Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

)
PL∼Dir(α)

(
u>L ≤ µ∗ − ε1

)
1− PL∼Dir(α) (u>L ≤ µ∗ − ε1)

]

≤ Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

)
1

PL∼Dir(α) (u>L ≥ µ∗ − ε1)

]
.

Let S := {x ∈ [0, 1]M+1 : 1>x = 1, u>x ≥ µ∗ − ε1} and P ∗ := arg minx∈S KL(Pα‖x). Denot-

ing C2 :=
(

1√
2π

)M
e−(M+1)/12, Lemma 14 from Appendix F.2 on tails of Dirichlet distributions

provides the lower bound as follows

PL∼Dir(α)

(
u>L ≥ u>α

n+M + 1
+ ∆

)
≥ C2(n+M + 1)−

M
2 exp(−(n+M + 1)KL(Pα‖P ∗))

PαM
P ∗M

≥ C2(n+M + 1)−
M
2 exp(−(n+M + 1)KL(Pα‖P ∗))PαM .

Therefore we have

Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

)
1

PL∼Dir(α) (u>L ≥ µ∗ − ε1)

]
≤ C−1

2 (n+M + 1)
M
2

× Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

)
exp((n+M + 1)KL(Pα‖P ∗))

1

PαM

]
.

Then, using the bound PαM ≥ 1
n+M+1 , we have

Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

)
1

PL∼Dir(α) (u>L ≥ µ∗ − ε1)

]
≤ C−1

2 (n+M + 1)
M
2

+1

× Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

)
exp((n+M + 1)KL(Pα‖P ∗))

]
,

where recall that S = {x ∈ [0, 1]M+1 : 1>x = 1, u>x ≥ µ∗ − ε1} and we denoted P ∗ :=
arg minx∈S KL(Pα‖x).
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Denoting by H(P ) the entropy of the multinomial distribution of parameterP andA :=
{
α ∈ {1, . . . , n+ 1}M+1 : 1>α = n+M + 1, u>α

n+M+1 ≤ µ
∗ − ε1

}
,

we can directly bound the expectation by

Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

)
exp((n+M + 1)KL(Pα‖P ∗))

]
=
∑
α∈A

PX−1∼Mult(n,p)(X = α) exp((n+M + 1)KL(Pα‖P ∗))

=
∑
α∈A

exp(−(n+M + 1)H(Pα)) exp((n+M + 1)(KL(Pα‖p)−KL(Pα‖P ∗)))

≤
∑
α∈A

exp(−(n+M + 1)H(Pα)) exp(−(n+M + 1)(KL(Pα‖p∗)−KL(Pα‖P ∗))),

where we denoted p∗ := arg minx: u>x≥u>p KL(Pα‖x). Here, we can use a result from Honda and
Takemura (2010, Lemma 13) which states that

KL(Pα‖p∗)−KL(Pα‖P ∗) = Kinf(Pα, µ
∗)−Kinf(Pα, µ

∗ − ε1)

≥ (µ∗ − (µ∗ − ε1))2

2µ∗(1− µ∗ + ε1)

≥ ε21
2µ∗(1− µ∗ + ε1)

> 0.

Denoting C :=
ε21

2µ∗(1−µ∗+ε1) > 0, we then have

Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

)
1

PL∼Dir(α) (u>L ≥ µ∗ − ε1)

]
≤ C−1

2 (n+M + 1)
M
2

+1 exp(−C(n+M + 1))
∑
α∈A

exp(−(n+M + 1)H(Pα)).

Here, it is easy to bound the cardinal ofA by a polynomial in n, consideringA ⊂ {1, .., n+1}M+1:
|A| ≤ (n+ 1)M+1, and to bound exp(−(n+M + 1)H(Pα)) ≤ 1. Therefore,

Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

)
1

PL∼Dir(α) (u>L ≥ µ∗ − ε1)

]
≤ C−1

2 (n+M + 1)
M
2

+1(n+ 1)M+1 exp(−C(n+M + 1)),

which implies that

T∑
n=1

Eα−1∼Mult(n,p)

[
1

(
u>α

n+M + 1
≤ µ∗ − ε1

)
1

PL∼Dir(α) (u>L ≥ µ∗ − ε1)

]
= O(1).
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Appendix C. Proof of Proposition 10

In this section, we evaluate the post-convergence term given by

E

[
T∑
t=1

1

(
I(t) = i, VI(t)(t) ≥ µ∗ − ε1, DL(F̂I(t)(t), FI(t)) ≤ ε2

)]
.

We can use the same discussion as the derivation of (4) in the proof of Proposition 7 for the Multi-
nomial TS, and we can bound the above expectation by

E

[
T∑
t=1

1

(
I(t) = i, VI(t)(t) ≥ µ∗ − ε1, DL(F̂I(t)(t), FI(t)) ≤ ε2

)]

= n0 +
T∑
t=1

T∑
n=n0

P
(
Vi(t) ≥ µ∗ − ε1

∣∣∣ DL(F̂i(t), Fi) ≤ ε2, Ni(t) = n
)

× P
(
DL(F̂i(t), Fi) ≤ ε2, Ni(t) = n

)
. (6)

By Lemma 15 in Appendix G.1 on conditional probabilities, for any η ∈ (0, 1) we have

P
(
Vi(t) ≥ µ∗ − ε1

∣∣∣ Ni(t) = n, DL(F̂i(t), Fi) ≤ ε2
)

≤ 1

η
exp

(
−n
(
Kinf(F̂i(t), µ

∗ − ε1)− η µ∗ − ε1
1− (µ∗ − ε1)

))
.

Since Kinf(F, µ) is continuous in F with respect to the Lévy distance for µ < 1 from Honda and
Takemura (2010, Theorem 7), for any ε3 > 0 there exists ε2 > 0 such that

DL(F̂ , Fi) ≤ ε2 =⇒
∣∣∣Kinf(F̂ , µ

∗ − ε1)−Kinf(Fi, µ
∗ − ε1)

∣∣∣ ≤ ε3.
Therefore, for any η ∈ (0, 1) and for any ε5 > 0, there exist ε1 > 0 and ε2 > 0 such that

P
(
Vi(t) ≥ µ∗ − ε1

∣∣∣ Ni(t) = n, DL(F̂i(t), Fi) ≤ ε2
)

≤ 1

η
exp

(
−n
(
Kinf(Fi, µ

∗ − ε1)− ε3 − η
µ∗ − ε1

1− (µ∗ − ε1)

))
≤ 1

η
exp

(
−n
(
Kinf(Fi, µ

∗)− ε1
1− µ∗

− ε3 − η
µ∗ − ε1

1− (µ∗ − ε1)

))
,

where the last inequality follows from Honda and Takemura (2010, Theorem 6). This implies that,
for any ε0 > 0, there exists η ∈ (0, 1), ε1 > 0 and ε2 > 0 such that

P
(
Vi(t) ≥ µ∗ − ε1

∣∣∣ Ni(t) = n, DL(F̂i(t), Fi) ≤ ε2
)
≤ 1

η
exp (−n (Kinf(Fi, µ

∗)− ε0)) .
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Combining this with (6) we have

E

[
T∑
t=1

1

(
I(t) = i, VI(t)(t) ≥ µ∗ − ε1, DL(F̂I(t)(t), FI(t)) ≤ ε2

)]

≤ n0 +
1

η

T∑
t=1

exp(−n0(Kinf(Fi, µ
∗)− ε0))

T∑
n=n0

P
(
DL(F̂i(t), Fi) ≤ ε2, Ni(t) = n

)

≤ n0 +
1

η

T∑
t=1

exp(−n0(Kinf(Fi, µ
∗)− ε0))

= n0 +
1

η
T exp(−n0(Kinf(Fi, µ

∗)− ε0)).

Choosing n0 = log T
Kinf(Fi,µ∗)−ε0 provides the upper bound

E

[
T∑
t=1

1

(
I(t) = i, VI(t)(t) ≥ µ∗ − ε1, DL(F̂I(t)(t), FI(t)) ≤ ε2

)]
≤ log T

Kinf(Fi, µ∗)− ε0
+

1

η
.

Appendix D. Proof of Proposition 11

In this section, we consider the pre-convergence term.

E

[
T∑
t=1

1

(
I(t) = i,

{
VI(t)(t) < µ∗ − ε1 ∪DL(F̂I(t)(t), FI(t)) > ε2

})]

≤ E

[
T∑
t=1

1(DL(F̂I(t)(t), FI(t)) > ε2)

]
︸ ︷︷ ︸

(A)

+ E

[
T∑
t=1

1

(
VI(t)(t) < µ∗ − ε1, DL(F̂I(t)(t), FI(t)) ≤ ε2

)]
︸ ︷︷ ︸

(B)

.

We are going to bound each of the two pre-convergence terms, (A) and (B).

D.1. Bounding (A)

Using Lemma 18 in Appendix H, we know that

DL(F̂I(t)(t), FI(t)) ≤
∥∥∥F̂I(t)(t)− FI(t)∥∥∥∞ .
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Therefore, denoting τ (k)
n the n-th time at which arm k is pulled, we have

(A) ≤ E

[
T∑
t=1

1

(∥∥∥F̂I(t)(t)− FI(t)∥∥∥∞ > ε2

)]

=
K∑
k=1

E

[
T∑
t=1

1

(
I(t) = k,

∥∥∥F̂k(t)− Fk∥∥∥
∞
> ε2

)]

=

K∑
k=1

E

[
T∑
n=1

1

(∥∥∥F̂k(τ (k)
n )− Fk

∥∥∥
∞
> ε2

)]

≤
K∑
k=1

(
1 + E

[
T∑
n=2

1

(∥∥∥F̂k(τ (k)
n )− Fk

∥∥∥
∞
> ε2

)])
.

In this subsection, we use the notations:

• X1, . . . , Xn the rewards obtained by arm k,

• F̂ (k)
n (x) := 1

n

∑n
i=1 1(Xi ≤ x),

• F̌ (k)
n (x) := 1

n

∑n
i=1 1(Xi < x),

• X(1) ≤ · · · ≤ X(n) the ordered rewards obtained from arm k.

With this in mind, notice that, for any i ∈ {1, .., n− 1}:

• F̂ (k)
n is constant on [X(i), X(i+1)),

• F̌ (k)
n is constant on (X(i), X(i+1)].

Then, the increase of Fk and F̂ (k)
n implies that

∥∥∥F̂k(τ (k)
n )− Fk

∥∥∥
∞
> ε2 ⇐⇒



∃i ∈ {1, . . . , n}
∣∣∣F̂ (k)
n (Xi)− Fk(Xi)

∣∣∣ > ε2

or ∃i ∈ {1, . . . , n}
∣∣∣F̌ (k)
n (Xi)− Fk(Xi)

∣∣∣ > ε2

or
∣∣∣F̂ (k)
n (0)− Fk(0)

∣∣∣ > ε2

or
∣∣∣F̌ (k)
n (1)− Fk(1)

∣∣∣ > ε2,

as it is visualized in Figure 3. Indeed, let us look at the plot where the red line represents F̂ (k)
n and

the black line represents Fk. The distance
∥∥∥F̂ (k)

n − Fk
∥∥∥
∞

is equal to the longest double arrow.
Therefore,

E
[
1

(∥∥∥F̂k(τ (k)
n )− Fk

∥∥∥
∞
> ε2

)]
≤ E

[
n∑
i=1

1

(∣∣∣F̂ (k)
n (Xi)− Fk(Xi)

∣∣∣ > ε2

)
+

n∑
i=1

1

(∣∣∣F̌ (k)
n (Xi)− Fk(Xi)

∣∣∣ > ε2

)
+ 1

(∣∣∣F̂ (k)
n (0)− Fk(0)

∣∣∣ > ε2

)
+ 1

(∣∣∣F̌ (k)
n (1)− Fk(1)

∣∣∣ > ε2

)]
.
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Figure 3: Visualizing the distance between F̂ (k)
n and Fk

But using Hoeffding’s inequality, one can easily bound

P
(∣∣∣F̂ (k)

n (0)− Fk(0)
∣∣∣ > ε2

)
≤ exp(−2nε22),

and
P
(∣∣∣F̌ (k)

n (1)− Fk(1)
∣∣∣ > ε2

)
≤ exp(−2nε22).

In addition to it, let us look carefully at
∣∣∣F̂ (k)
n (Xi)− Fk(Xi)

∣∣∣, for n ≥ 2. If we denote Ui :=

Fk(Xi) ∼ U([0, 1]), then for any i ∈ {1, . . . , n},

∣∣∣F̂ (k)
n (Xi)− Fk(Xi)

∣∣∣ =

∣∣∣∣∣∣ 1n
n∑
j=1

1(Xj ≤ Xi)− Fk(Xi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
n∑
j=1

1 (Fk(Xj) ≤ Fk(Xi))− Fk(Xi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
n∑
j=1

1(Uj ≤ Ui)− Ui

∣∣∣∣∣∣
=

∣∣∣∣∣∣n− 1

n

 1

n− 1

∑
j 6=i

1(Uj ≤ Ui)− Ui

+
1

n
− 1

n
Ui

∣∣∣∣∣∣
≤ n− 1

n

∣∣∣∣∣∣ 1

n− 1

∑
j 6=i

1(Uj ≤ Ui)− Ui

∣∣∣∣∣∣+
1

n
(1− Ui)

≤ n− 1

n

∣∣∣∣∣∣ 1

n− 1

∑
j 6=i

1(Uj ≤ Ui)− Ui

∣∣∣∣∣∣+
1

n
.
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Therefore, using Hoeffding’s inequality, for any i ∈ {1, . . . , n},

E
[
1

(∣∣∣F̂ (k)
n (Xi)− Fk(Xi)

∣∣∣ > ε2

)]
≤ E

1
n− 1

n

∣∣∣∣∣∣ 1

n− 1

∑
j 6=i

1(Uj ≤ Ui)− Ui

∣∣∣∣∣∣+
1

n
> ε2


= E

E

1
∣∣∣∣∣∣ 1

n− 1

∑
j 6=i

1(Uj ≤ Ui)− Ui

∣∣∣∣∣∣ > ε2 −
1

n− 1

 ∣∣∣∣ Ui


≤ exp

(
−2(n− 1)

(
ε2 −

1

n− 1

)2
)
.

The same reasoning gives, for any i ∈ {1, . . . , n},

E
[
1

(∣∣∣F̌ (k)
n (Xi)− Fk(Xi)

∣∣∣ > ε2

)]
≤ exp

(
−2(n− 1)

(
ε2 −

1

n− 1

)2
)
.

Therefore,

E
[
1

(∥∥∥F̂k(τ (k)
n )− Fk

∥∥∥
∞
> ε2

)]
≤ 2n exp

(
−2(n− 1)

(
ε2 −

1

n− 1

)2
)

+ 2 exp(−2nε22)

≤ 2(n+ 1) exp

(
−2(n− 1)

(
ε2 −

1

n− 1

)2
)
.

We can therefore bound term (A).

(A) ≤ K

(
1 +

∞∑
n=2

2(n+ 1) exp

(
−2(n− 1)

(
ε2 −

1

n− 1

)2
))

.

D.2. Bounding (B)

In this subsection, we are going to bound the term (B) by decomposing the remaining term of the
regret. Recall that we have assumed that the optimal arm is arm 1.

E

[
T∑
t=1

1
(
VI(t)(t) < µ∗ − ε1

)]

= E

[
T∑
t=1

T∑
n=1

1
(
VI(t)(t) < µ∗ − ε1, N1(t) = n

)]

= E

[
T∑
n=1

T∑
m=1

1

(
T∑
t=1

1
(
VI(t)(t) < µ∗ − ε1, N1(t) = n

)
≥ m

)]
,

where we used the property that, for any series of events (At),

T∑
t=1

1(At) =

T∑
m=1

1(

T∑
t=1

1(At) ≥ m).
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Then, if the event {V1(t) > µ∗ − ε1, maxj 6=1 Vj(t) ≤ µ∗ − ε1, N1(t) = n} occurs at time t0,
then N1(t) = n will not hold for any t > t0. Thus, denoting τ1, . . . , τm the first m rounds at which
the event {maxj 6=1 Vj(t) ≤ µ∗ − ε1, N1(t) = n} holds, it is necessary to have V1(t) ≤ µ∗ − ε1 at

all τ1, . . . , τm so as to have the event
{∑T

t=1 1(VI(t)(t) < µ∗ − ε1, N1(t) = n) ≥ m
}

. Thus, we
can compute

E

[
T∑
t=1

1
(
VI(t)(t) < µ∗ − ε1

)]

≤
T∑
n=1

T∑
m=1

E

[
m∏
k=1

1 (V1(τk) ≤ µ∗ − ε1)

]

≤
T∑
n=1

T∑
m=1

EX1,...,Xn∼F1

[
m∏
k=1

P (V (τk) ≤ µ∗ − ε1 | X1, . . . , Xn)

]

=

T∑
n=1

EX1,...,Xn∼F1

[
T∑

m=1

(
PL∼Dir(1)

(
L>X ≤ µ∗ − ε1

∣∣∣ X1, . . . , Xn

))m]

≤
T∑
n=1

EX1,...,Xn∼F1

[
PL∼Dir(1)

(
L>X ≤ µ∗ − ε1 | X1, . . . , Xn

)
1− PL∼Dir(1) (L>X ≤ µ∗ − ε1 | X1, . . . , Xn)

]
.

where in the last computation, all the variables refer to arm 1 (the optimal arm). But we dropped
all 1 in the superscript for the sake of clarity (thus X := X(1) and L := L1). We then perform the
following decomposition of the events.

EX1,...,Xn∼F1

[
PL∼Dir(1)

(
X>L ≤ µ∗ − ε1 | X1, . . . , Xn

)
1− PL∼Dir(1) (X>L ≤ µ∗ − ε1 | X1, . . . , Xn)

]

= EX1,...,Xn∼F1

[
1

(
1

n

n∑
i=1

Xi ≥ µ∗ −
ε1
2

)
PL∼Dir(1)

(
X>L ≤ µ∗ − ε1 | X1, . . . , Xn

)
1− PL∼Dir(1) (X>L ≤ µ∗ − ε1 | X1, . . . , Xn)

]
︸ ︷︷ ︸

(B1)

+ EX1,...,Xn∼F1

[
1

(
µ∗ − ε1

2
>

1

n

n∑
i=1

Xi ≥ µ∗ − ε1

)

×
PL∼Dir(1)

(
X>L ≤ µ∗ − ε1 | X1, . . . , Xn

)
1− PL∼Dir(1) (X>L ≤ µ∗ − ε1 | X1, . . . , Xn)

]
︸ ︷︷ ︸

(B2)

+ EX1,...,Xn∼F1

[
1

(
µ∗ − ε1 >

1

n

n∑
i=1

Xi

)
PL∼Dir(1)

(
X>L ≤ µ∗ − ε1 | X1, . . . , Xn

)
1− PL∼Dir(1) (X>L ≤ µ∗ − ε1 | X1, . . . , Xn)

]
︸ ︷︷ ︸

(B3)

.

We are going to provide an exponentially small bound to each of these terms. Recall that we denoted
X = (1, X1, X2, . . . , Xn) with an additional 1 in the beginning.
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D.2.1. BOUNDING (B1)

In this subsection, we provide an upper bound to term (B1), defined as

EX1,...,Xn∼F1

[
1

(
1

n

n∑
i=1

Xi ≥ µ∗ −
ε1
2

)
PL∼Dir(1)

(
X>L ≤ µ∗ − ε1 | X1, . . . , Xn

)
1− PL∼Dir(1) (X>L ≤ µ∗ − ε1 | X1, . . . , Xn)

]
.

Applying the corollary of Lemma 15 in Appendix G.1 on conditional probabilities, for any η ∈
(0, 1),

PL∼Dir(1)

(
X>L ≤ µ∗ − ε1 | X1, . . . , Xn

)
≤ 1

η
exp

(
−n
(
Kinf(

˜̂
F, 1− µ∗ + ε1)− η1− µ∗ + ε1

µ∗ − ε1

))
.

But under the assumption 1
n

∑n
i=1Xi ≥ µ∗ − ε1

2 , we know that

E
X∼ ˜̂

F
[X] = EX∼F̂ [1−X] ≤ 1− µ∗ +

ε1
2
< 1− µ∗ + ε1.

Thus, denoting δ := infF,G: E[F ]≤1−µ∗+ ε1
2

E[G]≥1−µ∗+ε1 KL(F‖G) > 0, we have that, for any
η > 0,

PL∼Dir(1)

(
X>L ≤ µ∗ − ε1

∣∣∣ X1, . . . , Xn

)
≤ 1

η
exp

(
−n
(
δ − η1− µ∗ + ε1

µ∗ − ε1

))
.

In particular, let η ∈ (0, 1) such that η 1−µ∗+ε1
µ∗−ε1 ≤

δ
2 . For such η ∈ (0, 1), we have

PL∼Dir(1)

(
X>L ≤ µ∗ − ε1

∣∣∣ X1, . . . , Xn

)
≤ 1

η
exp

(
−nδ

2

)
.

Then, we can decompose

T∑
n=1

EX1,...,Xn∼F1

[
1

(
1

n

n∑
i=1

Xi ≥ µ∗ −
ε1
2

)
PL∼Dir(1)

(
X>L ≤ µ∗ − ε1 | X1, . . . , Xn

)
1− PL∼Dir(1) (X>L ≤ µ∗ − ε1 | X1, . . . , Xn)

]

≤
T∑
n=1

EX1,...,Xn∼F1

[
1

(
1

n

n∑
i=1

Xi ≥ µ∗ −
ε1
2

)
1

η exp(n δ2)− 1

]

≤
T∑
n=1

1

η exp(n δ2)− 1
,

which proves that
T∑
n=1

(B1) = O(1).
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D.2.2. BOUNDING (B2)

In this subsection, we provide an upper bound to

(B2) := EX1,...,Xn∼F1

[
1

(
µ∗ − ε1

2
>

1

n

n∑
i=1

Xi ≥ µ∗ − ε1

)

×
PL∼Dir(1)

(
X>L ≤ µ∗ − ε1 | X1, . . . , Xn

)
1− PL∼Dir(1) (X>L ≤ µ∗ − ε1 | X1, . . . , Xn)

]

≤ EX1,...,Xn∼F1

[
1

(
µ∗ − ε1

2
>

1

n

n∑
i=1

Xi ≥ µ∗ − ε1

)

× 1

PL∼Dir(1) (L>X ≥ µ∗ − ε1 | X1, . . . , Xn)

]
.

But in the case µ∗ − ε1
2 > 1

n1>X ≥ µ∗ − ε1, we have

PL∼Dir(1)

(
X>L ≥ µ∗ − ε1

∣∣∣ X1, . . . , Xn

)
≥ PL∼Dir(1)

(
X>L ≥ 1

n

n∑
i=1

Xi

∣∣∣∣ X1, . . . , Xn

)
.

But using Lemma 17 in Appendix G.2 on conditional probabilities, for n ≥ 2, we have

PL∼Dir(1)

(
X>L ≥ µ∗ − ε1

∣∣∣ X1, . . . , Xn

)
≥ PL∼Dir(1)

(
X>L ≥ 1

n

n∑
i=1

Xi

∣∣ X1, . . . , Xn

)

≥

(
1− 1

n

n∑
i=1

Xi

)
1

25n2

≥
(

1− µ∗ +
ε1
2

) 1

25n2
,

since we are in the case µ∗ − ε1
2 > 1

n

∑n
i=1Xi ≥ µ∗ − ε1. Therefore, we can bound term (B2).

(B2) = EX1,...,Xn∼F1

[
1

(
µ∗ − ε1

2
>

1

n

n∑
i=1

Xi ≥ µ∗ − ε1

)

×
PL∼Dir(1)

(
X>L ≤ µ∗ − ε1 | X1, . . . , Xn

)
1− PL∼Dir(1) (X>L ≤ µ∗ − ε1 | X1, . . . , Xn)

]

≤ 25n2

1− µ∗ + ε1
2

EX1,...,Xn∼F1

[
1

(
µ∗ − ε1

2
>

1

n

n∑
i=1

Xi ≥ µ∗ − ε1

)]
.

But Hoeffding’s inequality provides the bound

EX1,...,Xn∼F1

[
1

(
µ∗ − ε1

2
>

1

n

n∑
i=1

Xi ≥ µ∗ − ε1

)]
≤ exp(−nε

2
1

2
).
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Therefore, combining the results gives, for n ≥ 2,

(B2) ≤ 1

1− µ∗ + ε1
2

25n2 exp(−nε
2
1

2
),

which proves that:
T∑
n=1

(B2) = O(1).

D.2.3. BOUNDING (B3)

In this subsection, we are going to provide an upper bound to term (B3), defined as

EX1,...,Xn∼F1

[
1

(
µ∗ − ε1 >

1

n

n∑
i=1

Xi

)
PL∼Dir(1)

(
X>L ≤ µ∗ − ε1 | X1, . . . , Xn

)
1− PL∼Dir(1) (X>L ≤ µ∗ − ε1 | X1, . . . , Xn)

]
.

Let M := d 3
ε1
e ≥ 1. For any i ∈ {1, . . . , n} we denote X̃i := bMXic

M and X̃ := (1, X̃1, . . . , X̃n).
For any i ∈ {0, . . . ,M}, let αi := |{j ∈ {0, . . . , n} : X̃j = i

M }| be the number of samples that
the discretized value is equal to i

M . The expectation we are interested in is bounded by

(B3) ≤ EX1,...,Xn∼F1

[
1

(
µ∗ − ε1 >

1

n

n∑
i=1

Xi

)
1

PL∼Dir(1) (X>L ≥ µ∗ − ε1 | X1, . . . , Xn)

]

≤ EX1,...,Xn∼F1

1(µ∗ − ε1 > 1

n

n∑
i=1

X̃i

)
1

PL∼Dir(1)

(
X̃>L ≥ µ∗ − ε1

∣∣∣ X1, . . . , Xn

)


≤ EX1,...,Xn∼F1

[
1

(
µ∗ − ε1 +

1

M
>

1

n

n∑
i=1

X̃i

)

× 1

PL∼Dir(1)

(
X̃>L ≥ µ∗ − ε1 + 1

M

∣∣∣ X1, . . . , Xn

)]

≤ EX1,...,Xn∼F1

[
1

(
µ∗ − 2ε1

3
>

1

n

n∑
i=1

X̃i

)

× 1

PL∼Dir(1)

(
X̃>L ≥ µ∗ − 2ε1

3

∣∣∣ X1, . . . , Xn

)].
Recall that Pα = 1

n+1(α0, α1, . . . , αn) is the normalization of α. We denote S := {x ∈ [0, 1]n+1 :

1>x = 1, u>x ≥ µ∗ − 2ε1
3 }, and P ∗ := arg minx∈S KL(Pα‖x). Using Lemma 14 from Ap-

pendix F.2, we know that

PL̃∼Dir(α)

(
u>L̃ ≥ µ

)
≥ C2(n+ 1)−

M
2 exp(−(n+ 1)KL(Pα‖P ∗))

PαM
P ∗M

,
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where C2 =
(

1√
2π

)M
e−

M+1
12 , since N =

∑M
i=0 αi = n + 1 in this setting. Then, we can clearly

derive the lower bound

PL̃∼Dir(α)

(
u>L̃ ≥ µ

)
≥ C2(n+ 1)−

M
2 exp(−(n+ 1)KL(Pα‖P ∗))PαM

≥ C2(n+ 1)−
M
2
−1 exp(−(n+ 1)KL(Pα‖P ∗)).

Reinjecting in the computation and replacing C2 by its value gives

(B3) ≤ EX1,...,Xn∼F1

[
1

(
µ∗ − 2ε1

3
>

1

n

n∑
i=1

X̃i

)
e
M+1
12 (
√

2π)M (n+ 1)
M
2

+1

× exp((n+ 1)KL(Pα‖P ∗))

]
= e

M+1
12 (
√

2π)M (n+ 1)
M
2

+1

× EX1,...,Xn∼F1

[
1

(
µ∗ − 2ε1

3
>

1

n
u>α

)
exp((n+ 1)KL(Pα‖P ∗))

]
≤ e

M+1
12 (
√

2π)M (n+ 1)
M
2

+1

× EX1,...,Xn∼F1

[
1

(
µ∗ − 2ε1

3
>

u>α

n+ 1

)
exp((n+ 1)KL(Pα‖P ∗))

]
.

We denote by p the distribution of X̃1 and Y the random variable denoting the distribution of the α.
Denoting A := {α ∈ {0, . . . , n+ 1}M+1 : 1>α = n+ 1, 1

n+1u
>α ≤ µ} and H(P ) the entropy of

the multinomial distribution of parameter P , we can directly compute the remaining expectation.

EX1,...,Xn∼F1

[
1

(
µ∗ − 2ε1

3
>

1

n+ 1
u>α

)
exp((n+ 1)KL(Pα‖P ∗))

]
=
∑
α∈A

P (Y = α) exp((n+ 1)KL(Pα‖P ∗))

=
∑
α∈A

exp(−(n+ 1)H(Pα)) exp(−(n+ 1)KL(Pα‖p)) exp((n+ 1)KL(Pα‖P ∗))

=
∑
α∈A

exp(−(n+ 1)H(Pα)) exp (−(n+ 1)(KL(Pα‖p)−KL(Pα‖P ∗))) .

Now, recall that u>Pα ≤ µ∗ − 2ε1
3 and u>p = µ∗. Then, using a result from Honda and Takemura

(2010, Lemma 13), we can bound

KL(Pα‖p)−KL(Pα‖P ∗) = KL(Pα‖p)−Kinf

(
Pα, µ

∗ − 2ε1
3

)
≥ Kinf(Pα, µ

∗)−Kinf

(
Pα, µ

∗ − 2ε1
3

)
≥

(µ∗ − (µ∗ − 2ε1
3 ))2

2µ∗(1− µ∗ + 2ε1
3 )
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=
2ε21

9µ∗(1− µ∗ + 2ε1
3 )

> 0.

Denoting C :=
2ε21

9µ∗(1−µ∗+ 2ε1
3

)
, we can then bound

∑
α∈A

exp(−(n+ 1)H(Pα)) exp(−(n+ 1)(KL(Pα‖p)−KL(Pα‖P ∗)))

≤
∑
α∈A

exp(−(n+ 1)H(Pα)) exp(−C(n+ 1))

≤
∑
α∈A

exp(−C(n+ 1))

= |A| exp(−C(n+ 1))

≤ (n+ 1)M+1 exp(−C(n+ 1)).

Reinjecting in the computation, we can then bound

(B3) ≤ e
M+1
12 (
√

2π)M (n+ 1)
M
2

+1

× EX1,...,Xn∼F1

[
1

(
µ∗ − 2ε1

3
>

u>α

n+ 1

)
exp((n+ 1)KL(Pα‖P ∗))

]
≤ e

M+1
12 (
√

2π)M (n+ 1)
M
2

+1(n+ 1)M+1 exp(−C(n+ 1))

= e
M+1
12 (
√

2π)M (n+ 1)
3M
2

+2 exp(−C(n+ 1)).

which proves that
T∑
n=1

(B3) = O(1).

Appendix E. Application of Stirling Formula

In this small section, we are going to prove the following Lemma 12.

Lemma 12 Letα := (α0, . . . , αM ) andN :=
∑M

j=0 αj . Assume that for any i ∈ {0, . . . ,M}, αi ≥
1. We will denote Pα := 1

Nα, which implies that 1>Pα = 1. Then:(
1√
2π

)M
e−(M+1)/12N−

M
2

M∏
i=0

1√
Pαi
≤ Γ(N)

NN−1

M∏
i=0

ααi−1
i

Γ(αi)
,

Γ(N)

NN−1

M∏
i=0

ααi−1
i

Γ(αi)
≤
(

1√
2π

)M
e1/12N−

M
2

M∏
i=0

1√
Pαi

.

Proof Applying Stirling’s formula:

Γ(N) ≥
√

2πNN−1/2e−N .
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Therefore,
Γ(N)

NN−1
≥
√

2πe−N
√
N.

We can apply Stirling’s formula to each of the αi, for i ∈ {0, . . . ,M}.

Γ(αi) ≤
√

2πe1/12α
αi−1/2
i e−αi .

Therefore,
Γ(αi)

ααi−1
i

≤
√

2πe1/12√αie−αi .

Using the fact that
∑M

i=0 αi = N , we deduce that

M∏
i=0

Γ(αi)

ααi−1
i

≤
(√

2π
)M+1

e(M+1)/12e−N
M∏
i=0

√
αi

=
(√

2π
)M+1

e(M+1)/12e−NN
M+1

2

M∏
i=0

√
Pαi .

Then,
M∏
i=0

ααi−1
i

Γ(αi)
≥
(

1√
2π

)M+1

e−(M+1)/12eNN−
M+1

2

M∏
i=0

1√
Pαi

.

Therefore,
Γ(N)

NN−1

M∏
i=0

ααi−1
i

Γ(αi)
≥
(

1√
2π

)M
e−(M+1)/12N−

M
2

M∏
i=0

1√
Pαi

,

which is the desired lower bound.
Then, we try to derive the desired upper bound. Applying Stirling’s formula,

Γ(N) ≤
√

2πe1/12NN−1/2e−N .

Therefore,
Γ(N)

NN−1
≤
√

2πe1/12e−N
√
N.

We can apply Stirling’s formula to each of the αi, for i ∈ {0, . . . ,M}.

Γ(αi) ≥
√

2πα
αi−1/2
i e−αi

Therefore,
Γ(αi)

ααi−1
i

≥
√

2π
√
αie
−αi .

Using the fact that
∑M

i=0 αi = N , we deduce that

M∏
i=0

Γ(αi)

ααi−1
i

≥
(√

2π
)M+1

e−N
M∏
i=0

√
αi

=
(√

2π
)M+1

e−NN
M+1

2

M∏
i=0

√
Pαi .
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Then,
M∏
i=0

ααi−1
i

Γ(αi)
≤
(

1√
2π

)M+1

eNN−
M+1

2

M∏
i=0

1√
Pαi

.

Therefore,
Γ(N)

NN−1

M∏
i=0

ααi−1
i

Γ(αi)
≤
(

1√
2π

)M
e1/12N−

M
2

M∏
i=0

1√
Pαi

,

which is the desired bound.

Appendix F. Bounds for Tails of Dirichlet Distributions

In this section, we prove lower and upper bounds of the probability of the end-tail of a Dirichlet
distribution.

F.1. Upper Bounds for Tails of Dirichlet Distributions

In this section, we prove Lemma 13 below.

Lemma 13 AssumeL ∼ Dir(α0, α1, . . . , αM ) a Dirichlet distribution over the probability simplex
P . We assume that 1>α = n + M + 1 and for any j ∈ {0, 1, . . . ,M}, αj ≥ 1. We will denote
Pα = 1

n+M+1α, the mean of the Dirichlet distribution. Let S ⊂ P , a closed convex set included in
the probability simplex. Then, the following upper bound holds.

PL∼Dir(α)(L ∈ S) ≤ C1(n+M + 1)M/2 exp(−(n+M + 1)KL(Pα‖P ∗)),

where we denoted P ∗ := arg minx∈S KL(Pα‖x) and C1 := e1/12

Γ(M+1)

(
1√
2π

)M
.

If Pα does not belong to S, this provides an exponential upper bound to an end-tail probability.
Proof We keep using the notation N = n + M + 1. Given that the Dirichlet distribution is the
conjugate distribution of the multinomial distribution, we can write the following formula.

PL∼Dir(α)(L ∈ S) =

∫
x∈S π(x)PZ∼Mult(N,x)(Z = α)dx∫
x∈P π(x)PZ∼Mult(N,x)(Z = α)dx

=

∫
x∈S PZ∼Mult(N,x)(Z = α)dx∫
x∈P PZ∼Mult(N,x)(Z = α)dx

,

where π is the prior distribution, chosen as the uniform distribution over the simplex P . We are go-
ing to rewrite differently the term

∫
x∈S PZ∼Mult(N,x)(Z = α)dx and the term

∫
x∈P PZ∼Mult(N,x)(Z =

α)dx. Denoting H(P ) the entropy of the multinomial distribution of parameter P , let us rewrite the
numerator of the fraction:∫

x∈S
PZ∼Mult(N,x)(Z = α)dx

=

∫
x∈S

exp(−NH(Pα)) exp(−NKL(Pα‖x))dx

= exp(−NH(Pα)) exp(−NKL(Pα‖P ∗))
∫
x∈S

exp(−N [KL(Pα‖x)−KL(Pα‖P ∗)])dx,
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where we denoted P ∗ := arg minx∈S KL(Pα‖x). Denoting B(α) :=
∏M
i=0 Γ(αi)

Γ(
∑M
i=0 αi)

=
∏M
i=0 Γ(αi)
Γ(N) , re-

call that the Dirichlet distribution of parameters α0, . . . , αM , Dir(α0, . . . , αM ) has density function
1

B(α)

∏M
i=0 x

αi−1
i over the probability simplex P . Rewriting the denominator of the fraction, we

obtain ∫
x∈P

PZ∼Mult(N,x)(Z = α)dx =

∫
x

exp(−NH(Pα)) exp(−NKL(Pα‖x))dx

= exp(−NH(Pα))

∫
x∈P

M∏
i=0

(
xi
Pαi

)αi
dxi

= exp(−NH(Pα))

∫
x∈P

1
B(α+1)

∏M
i=0(xi)

αidxi
1

B(α+1)

∏M
i=0(Pαi)

αi

= exp(−NH(Pα))
1

1
B(α+1)

∏M
i=0(Pαi)

αi
.

We want to divide the upper term by the lower term and see what we have. Then, dividing both the
terms we previously obtained, we have∫
x∈S P (Z = α)dx∫
x∈P P (Z = α)dx

= exp(−NKL(Pα‖P ∗))

×
∫
x∈S

exp(−N [KL(Pα‖x)−KL(Pα‖P ∗)])dx
1

B(α+ 1)

M∏
i=0

(Pαi)
αi

= exp(−NKL(Pα‖P ∗))
B(α)

B(α+ 1)

M∏
i=0

Pαi

×
∫
x∈S

exp(−N [KL(Pα‖x)−KL(Pα‖P ∗)])dx
1

B(α)

M∏
i=0

(Pαi)
αi−1.

Then, it is easy to bound B(α)
B(α+1) ≤ 1. Then,

∫
x∈S P (Z = α)dx∫
x∈P P (Z = α)dx

≤ exp(−NKL(Pα‖P ∗))
M∏
i=0

Pαi

×
∫
x∈S

exp(−N [KL(Pα‖x)−KL(Pα‖P ∗)])dx
1

B(α)

M∏
i=0

(Pαi)
αi−1.

We will try to apply a simple bound, using Stirling’s formula. Recall that we want to provide
an upper bound to

∫
x∈S exp(−N(KL(Pα‖x) − KL(Pα‖P ∗)))dx, but the integrand is bounded by

1 by definition of P ∗. Therefore, this can be bounded by
∫
x∈S 1dx ≤

∫
x∈P 1dx = 1

Γ(M+1) .
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We also want to provide a lower bound to 1
1

B(α)

∏M
i=0(Pαi )

αi−1 . Indeed, we would like to bound

the quotient of the first one divided by the second one, by a polynomial of N . Let us compute∫
x∈S

exp(−N(KL(Pα‖x)−KL(Pα‖P ∗)))dx
1

B(α)

M∏
i=0

(Pαi)
αi−1

≤ 1

Γ(M + 1)

1

B(α)

M∏
i=0

(Pαi)
αi−1

=
1

Γ(M + 1)

Γ(N)∏M
i=0 Γ(αi)

M∏
i=0

(Pαi)
αi−1

=
1

Γ(M + 1)

Γ(N)∏M
i=0 Γ(αi)

M∏
i=0

ααi−1
i

Nαi−1

=
NM

Γ(M + 1)

Γ(N)

NN−1

M∏
i=0

ααi−1
i

Γ(αi)
.

Replacing N by n+M + 1, we obtain

∫
x∈S

exp(−(n+M + 1)(KL(Pα‖x)−KL(Pα‖P ∗)))dx
1

B(α)

M∏
i=0

(Pαi)
αi−1

≤ (n+M + 1)M

Γ(M + 1)

Γ(n+M + 1)

(n+M + 1)n+M

M∏
i=0

ααi−1
i

Γ(αi)
.

We can then use the upper bound of Lemma 12 in Appendix E (application of Stirling formula),
which gives∫

x∈S
exp(−(n+M + 1)(KL(Pα‖x)−KL(Pα‖P ∗)))dx

1

B(α)

M∏
i=0

(Pαi)
αi−1

≤ (n+M + 1)M

Γ(M + 1)

(
1√
2π

)M
e1/12(n+M + 1)−

M
2

M∏
i=0

1√
Pαi

= C1(n+M + 1)
M
2

M∏
i=0

1√
Pαi

,

where we denoted C1 = e1/12

Γ(M+1)

(
1√
2π

)M
. Therefore, we have reached the desired upper bound.

PL∼Dir(α)(L ∈ S) ≤ C1

(
M∏
i=0

√
Pαi

)
(n+M + 1)M/2 exp(−(n+M + 1)KL(Pα‖P ∗))

≤ C1(n+M + 1)M/2 exp(−(n+M + 1)KL(Pα‖P ∗)).
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F.2. Lower Bounds for Tails of Dirichlet Distributions

Let L ∼ Dir(α) be a random variable following Dirichlet distribution with parameter α = (α0, α1,
. . . , αM ) such that αM ≥ 1. We sometimes consider the case αi = 0, and in this case we re-
define L ∼ Dir(α) as a random variable such that Li = 0 and (L0, . . . , Li−1, Li+1, . . . , LM ) ∼
Dir(α0, . . . , αi−1, αi+1, . . . , αM ).

Let us denote S := {x ∈ [0, 1]M+1 : 1>x = 1, u>x ≥ 1
N u
>α + ∆}, where ∆ ≥ 0 and

N =
∑M

i=0 αi. We will also denote P ∗ := arg minx∈S KL(Pα‖x). In this section, we prove
Lemma 14 given below.

Lemma 14 For n sufficiently big:

PL∼Dir(α)

(
u>L ≥ u>α

N
+ ∆

)
≥ C2N

−M
2 exp(−NKL(Pα‖P ∗))

PαM
P ∗M

,

where we denoted C2 :=
(

1√
2π

)M
e−(M+1)/12.

This lemma provides a lower bound to the tails of Dirichlet distributions.
Proof Note that we always have P ∗i > 0 for any i such that αi > 0 from definition P ∗ :=

arg minx∈S KL(Pα‖x) =
∑M

i=0 Pαi log
Pαi
xi

.
Let S := {x ∈ [0, 1]M+1 : 1>x = 1, u>x ≥ 1

N u
>α + ∆}. Let S2 := {x ∈ [0, 1]M+1 :

1>x = 1, ∀i ∈ {0, . . . ,M − 1}, xi ∈ [0, P ∗i ]}. Then, we notice that S2 ⊂ S, and therefore

PL∼Dir(α)(L ∈ S) ≥ PL∼Dir(α)(L ∈ S2).

Let us denote I = {i ∈ {0, 1, . . . ,M} : αi > 0}, I− = {i ∈ {0, 1, . . . ,M − 1} : αi > 0}, and
S3 := {x ∈ [0, 1]M : ∀i ∈ I−, xi ∈ [0, P ∗i ]}. Then we have

PL∼Dir(α)

(
u>L ≥ 1

N
u>α+ ∆

)
= PL∼Dir(α)(L ∈ S)

≥ PL∼Dir(α)(L ∈ S2)

=
Γ(N)∏
i∈I Γ(αi)

∫
x∈S3

∏
i∈I−

xαi−1
i

(
1−

M−1∑
i=0

xi

)αM−1 ∏
i∈I−

dxi

≥ Γ(N)∏
i∈I Γ(αi)

(P ∗M )αM−1

∫
x∈S3

∏
i∈I−

xαi−1
i dxi

=
Γ(N)∏
i∈I Γ(αi)

(P ∗M )αM−1
∏
i∈I−

∫ P ∗i

xi=0
xαi−1
i dxi

=
Γ(N)∏
i∈I Γ(αi)

(P ∗M )αM−1
∏
i∈I−

(P ∗i )αi

αi
.
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Then, recall that for any i ∈ {0, . . . ,M}, αi = NPαi , we can perform the computation

Γ(N)∏
i∈I Γ(αi)

(P ∗M )αM−1
∏
i∈I−

(P ∗i )αi

αi
=

Γ(N)∏
i∈I Γ(αi)

1

P ∗M

∏
i∈I

(P ∗i )αi
∏
i∈I−

1

αi

=
Γ(N)∏
i∈I Γ(αi)

1

P ∗M

∏
i∈I

(
P ∗i
Pαi

)αi∏
i∈I

(Pαi)
αi
∏
i∈I−

1

NPαi

≥ Γ(N)∏
i∈I Γ(αi)

PαM
NMP ∗M

∏
i∈I

(
P ∗i
Pαi

)αi∏
i∈I

(Pαi)
αi−1.

Here note that ∏
i∈I

(
P ∗i
Pαi

)αi
= exp(−NKL(Pα‖P ∗)).

Then, reinjecting in the computation, we have

PL∼Dir(α)

(
u>L ≥ 1

N
u>α+ ∆

)
≥ Γ(N)∏

i∈I Γ(αi)

PαM
NMP ∗M

exp(−NKL(Pα‖P ∗))
∏
i∈I

(Pαi)
αi−1

=
Γ(N)∏
i∈I Γ(αi)

PαM
NMP ∗M

exp(−NKL(Pα‖P ∗))
∏
i∈I

(αi
N

)αi−1

=
Γ(N)

Nn+M

PαM
P ∗M

exp(−NKL(Pα‖P ∗))
∏
i∈I

ααi−1
i

Γ(αi)
.

Now, using the results of Lemma 12 in Appendix E (application of Stirling formula), we have

PL∼Dir(α)

(
u>L ≥ 1

N
u>α+ ∆

)
≥ Γ(N)

Nn+M
exp(−NKL(Pα‖P ∗))

PαM
P ∗M

∏
i∈I

ααi−1
i

Γ(αi)

≥
(

1√
2π

)M
e−(M+1)/12N−

M
2 exp(−NKL(Pα‖P ∗))

PαM
P ∗M

∏
i∈I

1√
Pαi

= C2N
−M

2 exp(−NKL(Pα‖P ∗))
PαM
P ∗M

∏
i∈I

1√
Pαi

≥ C2N
−M

2 exp(−NKL(Pα‖P ∗))
PαM
P ∗M

,

where we denoted C2 :=
(

1√
2π

)M
e−(M+1)/12, which is the result we wanted to prove.

Appendix G. Bounds for Conditional Random Average

In this section, we provide, for different values of µ, upper and lower bounds on the probability
P (L>X ≥ µ | X) where L ∼ Dir(1).
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G.1. Upper Bound for Conditional Random Average

Let µ ∈ [0, 1]. Assume V = L>X , where L ∼ Dir(1n+1) a Dirichlet distribution, and denote
X = (ξ,X1, . . . , Xn), where X1, . . . , Xn are iid random variables of distribution P , where ξ is a
deterministic constant equal to 0 or 1. We want to prove the following upper bound on the following
conditional probability.

Lemma 15 For any η ∈ (0, 1),

PL∼Dir(1n+1)

(
L>X ≥ µ

∣∣∣ X) ≤ 1

η
exp

(
−n
(
Kinf(F̂ , µ)− η µ

1− µ

))
,

where we denotedKinf(F, µ) := infG: E[G]≥µ KL(F‖G) and F̂ the empirical distribution ofX1, . . . , Xn.

This provides an exponential upper bound to an end-tail probability.

Corollary 16 Applying this result to 1 − X provides an upper bound for PL∼Dir(1n+1)(L
>X ≥

µ|X). For any η ∈ (0, 1),

PL∼Dir(1n+1)

(
L>X ≤ µ

∣∣∣ X) = PL∼Dir(1n+1)

(
1− L>X ≥ 1− µ

∣∣∣ X)
= PL∼Dir(1n+1)

(
L>(1−X) ≥ 1− µ

∣∣∣ X)
≤ 1

η
exp

(
−n
(
Kinf(

˜̂
F, 1− µ)− η1− µ

µ

))
where we denoted by ˜̂

F the empirical distribution of (1−X1, . . . , 1−Xn).

Proof Let R0, . . . , Rn iid exponential random variables of distribution E(1), and let us denote, for
any i ∈ {0, . . . , n}, R′i := Ri∑n

j=0Rj
. L ∼ Dir(1n+1), and thus it has the same distribution as

R′ = (R′0, . . . , R
′
n) and we can rewrite the probability

PL∼Dir(1n+1)

(
L>X ≥ µ

∣∣∣ X) = PR′∼Dir(1n+1)(R
′>X ≥ µ

∣∣∣ X)

= PR0,...,Rn∼E(1)

(∑n
i=0RiXi∑n
i=0Ri

≥ µ
∣∣∣∣ X)

= PR0,...,Rn∼E(1)

(
n∑
i=0

(Xi − µ)Ri ≥ 0

∣∣∣∣ X
)
.

Then, using Markov’s inequality, for any t ∈ [0, 1
1−µ), we know that

PL∼Dir(1n+1)

(
L>X ≥ µ

∣∣∣ X) ≤ E

[
exp

(
t
n∑
i=0

(Xi − µ)Ri

) ∣∣∣∣ Xi

]

=
n∏
i=0

E [exp (t(Xi − µ)Ri) | X]

= exp

(
n∑
i=0

ΨXi(t)

)
,
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where we denoted, for any i ∈ {0, . . . , n}, ΨXi(t) := log E[exp(t(Xi − µi)Ri) | Xi]. Let us then
compute ΨXi(t), for any i ∈ {0, . . . , n}.

E[exp(t(Xi − µ)Ri) | Xi] =

∫ ∞
0

exp(t(Xi − µ)x) exp(−x)dx

=

∫ ∞
0

exp(−(1− t(Xi − µ))x)dx

=
1

1− t(Xi − µ)
.

Therefore,
ΨXi(t) = − log(1− t(Xi − µ)).

We deduce that

exp

(
n∑
i=0

ΨXi(t)

)
= exp

(
−

n∑
i=0

log(1− t(Xi − µ))

)
,

and thus, that for any t ∈ [0, 1
1−µ),

PL∼Dir(1n+1)

(
L>X ≥ µ

∣∣∣ X) ≤ exp

(
−

n∑
i=0

log(1− t(Xi − µ))

)

= exp

(
− log(1− t(ξ − µ))− n 1

n

n∑
i=1

log(1− t(Xi − µ))

)

=
1

1− t(ξ − µ)
exp

(
−n 1

n

n∑
i=1

log(1− t(Xi − µ))

)

=
1

1− t(ξ − µ)
exp(−nφ(t)), (7)

where we defined φ(t) := 1
n

∑n
i=1 log(1− t(Xi − µ)).

Let η ∈ (0, 1) be arbitrary. For this η, if ξ ∈ {0, 1} and t ∈ [0, 1−η
1−µ ] then we have

1

1− t(ξ − µ)
≤ 1

η
.

Therefore, since t ∈ [0, 1
1−µ) is arbitrary in (7), we have

PL∼Dir(1n+1)

(
L>X ≥ µ

∣∣∣ X) ≤ 1

η
exp

−n sup
t∈[0, 1−η

1−µ ]

φ(t)

 . (8)
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Here note that φ(t) is concave in t. Thus, for any t ∈ [ 1−η
1−µ ,

1
1−µ ] we have

φ(t) ≤ φ
(

1− η
1− µ

)
+

η

1− µ
φ′
(

1− η
1− µ

)
= φ

(
1− η
1− µ

)
− η

1− µ
EX∼F̂

[
X − µ

1− 1−η
1−µ(X − µ)

]

≤ φ
(

1− η
1− µ

)
− η

1− µ
0− µ

1− 1−η
1−µ(0− µ)

= φ

(
1− η
1− µ

)
+

ηµ(1− µ)

(1− µη)(1− µ)

≤ φ
(

1− η
1− µ

)
+

ηµ

1− µ
,

where the second inequality follows since x−µ
1−t(x−µ) is increasing in x ∈ [0, 1]. This implies that

sup
t∈[0, 1

1−µ ]

φ(t) ≤ sup
t∈[0, 1−η

1−µ ]

φ(t) +
ηµ

1− µ
. (9)

From Honda and Takemura (2010, Theorem 8), we know that

Kinf(F, µ) = sup
t∈[0, 1

1−µ ]

EX∼F [log(1− t(X − µ))]

and

Kinf(F̂ , µ) = sup
t∈[0, 1

1−µ ]

φ(t). (10)

Putting (8)–(10) together, we obtain

PL∼Dir(1n+1)

(
L>X ≥ µ

∣∣∣ X) ≤ 1

η
exp

−n
 sup
t∈[0, 1

1−µ ]

φ(t)− ηµ

1− µ


≤ 1

η
exp

(
−n
(
Kinf(F̂ , µ)− ηµ

1− µ

))
for any η ∈ [0, 1).

G.2. Lower Bound for Conditional Random Average

Lemma 17 Assume that n ≥ 2 and let L ∼ Dir(1n+1) and X = (X0, X1, . . . , Xn) where we
know that X0 = 1 is deterministic. Then, we have the lower bound

P

(
X>L ≥ 1

n

n∑
i=1

Xi

∣∣∣∣∣X
)
≥

(
1− 1

n

n∑
i=1

Xi

)
1

25n2
.
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Proof Since L ∼ Dir(1n+1), then we know that (L0, . . . , Ln) ∼
(

R0∑n
i=0Ri

, . . . , Rn∑n
i=0Ri

)
, where

R0, . . . , Rn independently follow the exponential distribution E(1) with rate parameter 1.
Then, we can compute

P

(
X>L ≥ 1

n

n∑
i=1

Xi

∣∣∣∣∣ X
)

= P

(
n∑
i=0

RiXi ≥
1

n

n∑
i=1

Xi

n∑
i=0

Ri

∣∣∣∣∣ X
)

= P

(
n∑
i=0

(
Xi −

1

n

n∑
i=1

Xi

)
Ri ≥ 0

∣∣∣∣∣ X
)

= 1− P

(
n∑
i=0

(
Xi −

1

n

n∑
i=1

Xi

)
Ri < 0

∣∣∣∣∣ X
)
.

Then, we know by Markov’s inequality that, for any random variable Y and for any t > 0, we have

P (Y < 0) ≤ E
[
e−tY

]
.

Thus, applying this small result, we have, for any t > 0,

P

(
X>L ≥ 1

n

n∑
i=1

Xi

∣∣∣∣∣ X
)
≥ 1− E

exp

−t n∑
j=0

(
Xj −

1

n

n∑
i=1

Xi

)
Rj

 ∣∣∣∣∣ X


= 1−
n∏
j=0

E

[
exp

(
−t

(
Xj −

1

n

n∑
i=1

Xi

)
Rj

) ∣∣∣∣∣ X
]
.

But we know that if Y ∼ E(1), then for any λ < 1,

E
[
eλY

]
=

∫ ∞
0

eλye−ydy

=
1

1− λ
.

Since, for any t ∈ (0, 1) and for any j,
∣∣t (Xj − 1

n

∑n
i=1Xi

)∣∣ < 1, we can compute for any
t ∈ (0, 1),

E

[
exp

(
−t

(
Xj −

1

n

n∑
i=1

Xi

)
Rj

) ∣∣∣∣∣ X
]

=
1

1 + t
(
Xj − 1

n

∑n
i=1Xi

) .
As a consequence, for any t ∈ (0, 1),

P

(
X>L ≥ 1

n

n∑
i=1

Xi

∣∣∣∣∣ X
)
≥ 1−

n∏
j=0

1

1 + t
(
Xj − 1

n

∑n
i=1Xi

)
= 1− 1

1 + t
(
1− 1

n

∑n
i=1Xi

) n∏
j=1

1

1 + t
(
Xj − 1

n

∑n
i=1Xi

) .
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Then, we are going to study carefully the polynomial in t,
∏n
j=1

(
1 + t

(
Xj − 1

n

∑n
i=1Xi

))
and provide a nice lower bound to it.

For any j ∈ {1, . . . , n}, let aj :=
(
Xj − 1

n

∑n
i=1Xi

)
and let a0 :=

(
1− 1

n

∑n
i=1Xi

)
. Recall

that
∑n

j=1 aj = 0 and that for any j ∈ {1, . . . , n}, |aj | ≤ 1. We would like to prove that for any
|t| ≤ 1

10n(n+1) ,
n∏
j=1

(1 + taj) ≥ 1− t2
n∑
j=1

a2
j .

First, note that:

2
∑
i<j

aiaj +
∑
i

a2
i =

(
n∑
i=1

ai

)2

= 0.

Then, we define the functions: f(t) :=
∏n
j=1(1 + taj) and g(t) := f(t) − 1 + t2

∑
i a

2
i . We are

going to prove that, for any t ∈
[
0, 1

10n(n+1)

]
, g(t) ≥ 0. We notice that g(0) = 0, so it is enough

to prove that g is increasing on
[
0, 1

10n(n+1)

]
. For any t ∈

[
0, 1

10n(n+1)

]
,

g(t) = t2
n∑
i=1

a2
i + t2

∑
i<j

aiaj +
n∑
k=3

tk
∑

i1<···<ik

ai1 . . . aik

=
1

2
t2

n∑
i=1

a2
i +

n∑
k=3

tk
∑

i1<···<ik

ai1 . . . aik

Let us compute the derivative of g and gather the terms by powers of t.

g′(t) = t
n∑
i=1

a2
i +

n∑
k=3

ktk−1
∑

i1<···<ik

ai1 . . . aik

= t
n∑
i=1

a2
i +

n−1∑
k=2

(k + 1)tk
∑

i1<···<ik+1

ai1 . . . aik+1
.

Now, we bound
∑

i1<i2<···<ik<ik+1
ai1 . . . aikaik+1

. By symmetry, we can assume that: |a1| ≤
|a2| ≤ · · · ≤ |an| ≤ 1. Then, we can easily bound: |ai1 . . . aikaik+1

| ≤ |aiaj | where i =
inf{i1, . . . , ik+1} and j = inf{i1, . . . , ik+1} − {i}. As a consequence, if we bound the sum∑

i1<i2<···<ik<ik+1
|ai1 . . . aikaik+1

| term by term, then we bound:

•
(
n− 2

k − 1

)
terms by |a1a2|,

•
(
n− 3

k − 1

)
terms by |a1a3|,

•
(
n− 3

k − 1

)
terms by |a2a3|,
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•
(
n− 4

k − 1

)
terms by |a1a4|,

• ...

•
(
n− j
k − 1

)
terms by |aiaj | for any i ∈ {1, . . . , j − 1}.

Indeed, there are
(
n− j
k − 1

)
subsets of k + 1 elements of {1, . . . , n} whose smallest elements are i

and j.
Therefore, we can bound, for any k ≥ 2,∣∣∣∣∣∣

∑
i1<i2<..<ik<ik+1

ai1 . . . aikaik+1

∣∣∣∣∣∣ ≤
∑
i<j

(
n− j
k − 1

)
|aiaj |

≤
∑
i<j

(
n− j
k − 1

)
a2
i + a2

j

2

=
n∑
j=1

(
n− j
k − 1

) j−1∑
i=1

a2
i + a2

j

2

=
n∑
j=1

(
n− j
k − 1

)(
j − 1

2
a2
j +

1

2

j−1∑
i=1

a2
i

)

=

n∑
j=1

(
n− j
k − 1

)
j − 1

2
a2
j +

n∑
j=1

(
n− j
k − 1

)
1

2

j−1∑
i=1

a2
i

=:
n∑
j=1

βja
2
j .

Let us now bound the βj for j ∈ {1, . . . , n}.

βj =

(
n− j
k − 1

)
j − 1

2
+

n∑
l=j+1

(
n− l
k − 1

)
1

2

=
1

2

(j − 1)

(
n− j
k − 1

)
+

n∑
l=j+1

(
n− l
k − 1

)
≤ 1

2

n∑
l=0

(
n− l
k − 1

)

=
1

2

1

(k − 1)!

n∑
l=0

(n− l)!
(n− l − k + 1)!

≤ 1

2

1

(k − 1)!
(n+ 1)

n!

(n− k + 1)!
.
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Thus, re-injecting the result in the previous sum, we can bound∣∣∣∣∣∣
∑

i1<i2<···<ik<ik+1

ai1 . . . aikaik+1

∣∣∣∣∣∣ ≤ 1

2

n∑
i=1

a2
i

1

(k − 1)!
(n+ 1)

n!

(n− k + 1)!
.

There, we can eventually study the second sum in the derivative of g. For any t ∈
[
0, 1

10n(n+1)

]
,∣∣∣∣∣∣

n−1∑
k=2

(k + 1)tk
∑

i1<···<ik+1

ai1 . . . aik+1

∣∣∣∣∣∣
≤

n−1∑
k=2

(k + 1)tk
1

2

n∑
i=1

a2
i

1

(k − 1)!
(n+ 1)

n!

(n− k + 1)!

=
n+ 1

2

(
n∑
i=1

a2
i

)
n−1∑
k=2

k + 1

(k − 1)!

n!

(n− k + 1)!
tk

=
n+ 1

2

(
n∑
i=1

a2
i

)
n−1∑
k=2

k + 1

(k − 1)!

n!

(n− k + 1)!nk
(nt)k

=
n+ 1

2n

(
n∑
i=1

a2
i

)
n−1∑
k=2

k + 1

(k − 1)!

n!

(n− k + 1)!nk−1
(nt)k

≤ n+ 1

2n

(
n∑
i=1

a2
i

)
n−1∑
k=2

k + 1

(k − 1)!
(nt)k

=
(n+ 1)t

2

(
n∑
i=1

a2
i

)
n−1∑
k=2

k + 1

(k − 1)!
(nt)k−1

≤ (n+ 1)t

2

(
n∑
i=1

a2
i

) ∞∑
k=2

k + 1

(k − 1)!
(nt)k−1.

But we know that, for any x ≥ 0,
∞∑
k=2

k + 1

(k − 1)!
xk−1 =

∞∑
k=2

(k + 1)k

k!
xk−1

=
d2

dx2

( ∞∑
k=2

1

k!
xk+1

)

=
d2

dx2
{x(exp(x)− 1− x)}

=
d

dx
{x exp(x) + exp(x)− 2x− 1}

= x exp(x) + 2 exp(x)− 2.

As a consequence, for n ≥ 1, we have that
∞∑
k=2

k + 1

(k − 1)!
(nt)k−1 = ent(nt+ 2)− 2.
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Thus, for n ≥ 1,∣∣∣∣∣∣
n−1∑
k=2

(k + 1)tk
∑

i1<···<ik+1

ai1 . . . aik+1

∣∣∣∣∣∣ ≤ 1

2
t(n+ 1)

(
ent(nt+ 2)− 2

)( n∑
i=1

a2
i

)
.

But since t ∈
[
0, 1

10n(n+1)

]
, then nt ∈ (0, 1) so ent ≤ 1 + ent. Therefore,

ent(nt+ 2) ≤ (1 + ent)(nt+ 2)

= 2 + (2e+ 1)nt+ en2t2.

Thus,
ent(nt+ 2)− 2 ≤ (2e+ 1)nt+ en2t2.

Therefore, for any t ∈
[
0, 1

10n(n+1)

]
,∣∣∣∣∣∣

n−1∑
k=2

(k + 1)tk
∑

i1<···<ik+1

ai1 . . . aik+1

∣∣∣∣∣∣ ≤ 1

2
t(n+ 1)

(
(2e+ 1)nt+ en2t2

)( n∑
i=1

a2
i

)
.

We can now provide a lower bound to g′(t) for t ∈
[
0, 1

10n(n+1)

]
by

g′(t) = t
n∑
i=1

a2
i +

n∑
k=3

ktk−1
∑

i1<i2<···<ik

ai1 . . . aik

≥ t

(
n∑
i=1

a2
i

)
− 1

2
t(n+ 1)

(
(2e+ 1)nt+ en2t2

)( n∑
i=1

a2
i

)

= t

(
n∑
i=1

a2
i

)(
1− 1

2
(n+ 1)

(
(2e+ 1)nt+ en2t2

))

≥ t

(
n∑
i=1

a2
i

)(
1− 1

2

(
2e+ 1

10
+

e

100(n+ 1)

))

≥ t

(
n∑
i=1

a2
i

)(
1− 1

2

(
2e+ 1

10
+

e

10

))

= t

(
n∑
i=1

a2
i

)(
1− 3e+ 1

20

)

≥ t

(
n∑
i=1

a2
i

)
.

We then deduce that g is increasing on
[
0, 1

10n(n+1)

]
, but recall that

g(t) = f(t)− 1− t2
∑
i

a2
i ,
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where f(t) :=
∏n
j=1(1 + taj). Since g(0) = 0 and g is increasing on

[
0, 1

10n(n+1)

]
, for any

t ∈
[
0, 1

10n(n+1)

]
we have g(t) ≥ 0. It implies, for any t ∈

[
0, 1

10n(n+1)

]
,

f (t) ≥ 1− t2
n∑
i=1

a2
i > 0.

We deduce that, for any t ∈
[
0, 1

10n(n+1)

]
,

1− 1

1 + ta0

n∏
i=1

1

1 + tai
≥ 1− 1

1 + ta0

1

1− t2
∑n

i=1 a
2
i

.

Therefore, for any t ∈
[
0, 1

10n(n+1)

]
,

P

(
X>L ≥ 1

n

n∑
i=1

Xi

∣∣∣∣∣X
)
≥ 1− 1

1 + ta0

1

1− t2
∑n

i=1 a
2
i

.

Since a0 > 0, we can bound the RHS by using polynomial series as

1

1 + ta0
=

∞∑
n=0

(−ta0)n

≤ 1− ta0 + t2a2
0

and

1

1− t2
∑n

i=1 a
2
i

=

∞∑
n=0

(
t2

n∑
i=1

a2
i

)n

≤ 1 + 2t2
n∑
i=1

a2
i .

Therefore, for any t ∈
[
0, 1

10n(n+1)

]
,

P

(
X>L ≥ 1

n

n∑
i=1

Xi

∣∣∣∣∣X
)
≥ 1− (1− ta0 + t2a2

0)

(
1 + 2t2

n∑
i=1

a2
i

)

= a0t−

(
2

n∑
i=1

a2
i + a2

0

)
t2 + 2a0

n∑
i=1

a2
i t

3 − 2a2
0

n∑
i=1

a2
i t

4.

In particular, if t = 1
20n2 , we have

P

(
X>L ≥ 1

n

n∑
i=1

Xi

∣∣∣∣∣X
)
≥ a0

20

1

n2
−

(
2

n∑
i=1

a2
i + a2

0

)
1

400n4

+ 2a0

n∑
i=1

a2
i

1

8000n6
− 2a2

0

n∑
i=1

a2
i

1

160000n8
,
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where the last three terms can be bounded by∣∣∣∣∣−
(

2

n∑
i=1

a2
i + a2

0

)
1

400n4
+ 2a0

n∑
i=1

a2
i

1

8000n6
− 2a2

0

n∑
i=1

a2
i

1

160000n8

∣∣∣∣∣
≤ (2n+ 1)

1

400n4
+ 2n

1

8000n6
+ 2n

1

160000n8

=
1

100n3
.

Thus, since a0 > 0,

P

(
X>L ≥ 1

n

n∑
i=1

Xi

∣∣∣∣∣X
)
≥ a0

1

20n2
− 1

100n3

≥ a0
1

25n2
.

Recall that a0 =
(
1− 1

n

∑n
i=1Xi

)
, we conclude

P

(
X>L ≥ 1

n

n∑
i=1

Xi

∣∣∣∣∣X
)
≥

(
1− 1

n

n∑
i=1

Xi

)
1

25n2
,

which is the result we wanted to prove.

Appendix H. Domination of the Lévy Distance by the Infinite Distance

In this section we show the following lemma on the relation between the Lévy distance and the L∞

distance.

Lemma 18 Let F and G two cumulative distribution functions on [0, 1]. Then,

DL(F,G) ≤ ‖F −G‖∞.

Proof Recall that DL(F,G) = inf{ε > 0 : ∀x ∈ [0, 1], F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε},
where in this definition, we naturally extended the definition of F and G on R by ∀x ≤ 0, F (x) =
G(x) = 0 and ∀x ≥ 1, F (x) = G(x) = 1. Let us denote ε := ‖F −G‖∞, then, for any x ∈ [0, 1],

|F (x)−G(x)| ≤ ε.

In other words, for any x ∈ [0, 1],

F (x)− ε ≤ G(x) ≤ F (x) + ε,

which implies that, for any x ∈ [0, 1], F (x−ε)−ε ≤ G(x) ≤ F (x+ε)+ε because F is increasing.
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Appendix I. Proof of Lemma 6

First note that

K(M)
inf (F̃ , µ) = max

t∈[0,(1−µ)−1]
E[log(1− t(X̃ − µ))],

Kinf(F, µ) = max
t∈[0,(1−µ)−1]

E[log(1− t(X − µ))].

Since

d

dµ
K(M)

inf (F̃ , µ) ≤ 1

1− µ
,

by Honda and Takemura (2010, Theorem 6), the first inequality of (6) is obtained by

K(M)
inf (F̃ , µ) ≥ K(M)

inf (F̃ , µ+ 1/M)− 1

M(1− µ− 1/M)

= max
t∈[0,(1−µ)−1]

E[log(1− t(X̃ − µ− 1/M))]− 1

M(1− µ− 1/M)

≥ max
t∈[0,(1−µ)−1]

E[log(1− t(X − µ))]− 1

M(1− µ− 1/M)

= Kinf(F, µ)− 1

M(1− µ− 1/M)
.

The second inequality of (6) is derived from

K(M)
inf (F̃ , µ) = max

t∈[0,(1−µ)−1]
E[log(1− t(X̃ − µ))]

= max
t∈[0,(1−µ)−1]

E[E[log(1− t(X̃ − µ))|X]]

≤ max
t∈[0,(1−µ)−1]

E[log(1− t(E[X̃|X]− µ))]

= max
t∈[0,(1−µ)−1]

E[log(1− t(X − µ))]

= Kinf(F, µ),

where the inequality follows from Jensen’s inequality.

50


	Introduction
	Preliminaries
	Proposed Algorithms
	Main Results
	Simulation Results
	Conclusion
	Proof of Proposition 7
	Proof of Proposition 8
	Bounding (A)
	Bounding (B)
	Bounding (B1)
	Bounding (B2)
	Bounding (B3)


	Proof of Proposition 10
	Proof of Proposition 11
	Bounding (A)
	Bounding (B)
	Bounding (B1)
	Bounding (B2)
	Bounding (B3)


	Application of Stirling Formula
	Bounds for Tails of Dirichlet Distributions
	Upper Bounds for Tails of Dirichlet Distributions
	Lower Bounds for Tails of Dirichlet Distributions

	Bounds for Conditional Random Average
	Upper Bound for Conditional Random Average
	Lower Bound for Conditional Random Average

	Domination of the Lévy Distance by the Infinite Distance
	Proof of Lemma 6

