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Abstract
The mixing time tmix of an ergodic Markov chain measures the rate of convergence towards its
stationary distribution π. We consider the problem of estimating tmix from one single trajectory of
m observations (X1, . . . , Xm), in the case where the transition kernel M is unknown, a research
program started by Hsu et al. (2015). The community has so far focused primarily on leveraging
spectral methods to estimate the relaxation time trel of a reversible Markov chain as a proxy for
tmix. Although these techniques have recently been extended to tackle non-reversible chains, this
general setting remains much less understood. Our new approach based on contraction methods is
the first that aims at directly estimating tmix up to multiplicative small universal constants instead
of trel. It does so by introducing a generalized version of Dobrushin’s contraction coefficient κgen,
which is shown to control the mixing time regardless of reversibility. We subsequently design
fully data-dependent high confidence intervals around κgen that generally yield better convergence
guarantees and are more practical than state-of-the-art.
Keywords: Ergodic Markov chain, mixing time, Dobrushin contraction coefficient

1. Introduction

The topic of this work is the construction of a non-trivial high confidence interval around the mixing
time of a finite state ergodic Markov chain, when one is only allowed to observe a single long
trajectory of states X1, X2, . . . , Xm, i.e. does not have access to a restart mechanism. The problem
is motivated by PAC-type learning problems that assume data sampled from a Markovian process,
where generalization guarantees oftentimes involve the a priori unknown mixing properties of the
chain. Other applications are in MCMC diagnostics for non-reversible Markov chains, that may
enjoy better mixing properties or asymptotic variance than their reversible counterparts, or in the
field of reinforcement learning, where bounds on the mixing time are routinely assumed. We invite
the reader to the related work sections of Hsu et al. (2019); Wolfer and Kontorovich (2019) for a
complete set of references to the aforementioned problems and additional motivation.

Main contributions.

• In Section 2, in lieu of the (pseudo-)relaxation time trel, we propose a new proxy for the
mixing time based on a contraction coefficient κgen that generalizes Dobrushin’s, and in par-
ticular, does not require reversibility. We show in Theorem 1 that this quantity controls the
mixing time up to multiplicative universal constants – which are small and given at (10) –
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such that contrary to the relaxation time, it is not subject to the gap mentioned at (5). Namely,

1

1− κgen
= Θ(tmix).

• In Section 3.1, we design fully empirical confidence intervals around κgen that in the general
(non-reversible) setting are thinner, and considerably more practical than their spectral state-
of-the-art counterparts: For a chain on d states and a chosen parameter S ∈ N, our estimator
κ̂gen[S] is such that

∣∣κ̂gen[S] − κgen
∣∣ ≤ Õ( 1

S
+ max

`∈[S]

{
1

`

√
d

N
(`)
min

})
,

where N (`)
min is the least number of visits for the `-skipped chain, a fully observable quantity

defined at (11). Additionally, the analysis leading to the confidence intervals is of an arguably
much simpler nature than that of Wolfer and Kontorovich (2019).

• In Section 3.2, for a d state Markov chain with minimum stationary probability π? (definition
at (2)), we further deduce point estimators for estimating κgen down to absolute error ε (The-

orem 5), with sample complexity m+ = Õ
(

1
π?

max
{
tmix,

d
ε2

})
and relative error ε (Theo-

rem 6), for a trajectory length of m× = Õ
(
dt2mix
π?ε2

)
, offering better guarantees than the one of

Wolfer and Kontorovich (2019) for the non-trivial classes of slow mixing chains (tmix > d),
and chains whose stationary distribution is not close to being uniform (see Remark 8).

Notation and setting. The set N will refer to {1, 2, 3, . . .} and for n ∈ N, we write [n] =
{1, 2, 3, . . . , n}. Let Ω a set such that |Ω| = d < ∞, and define ∆Ω the simplex of all distri-
butions – seen as row vectors – over Ω. For (µ,ν) ∈ ∆2

Ω, we define the total variation distance in
terms of the `1 norm:

‖µ− ν‖TV
.
=

1

2
‖µ− ν‖1 . (1)

We consider time-homogeneous Markov chains

X1, X2, . . . , Xt, . . . ∼ (µ,M)

with initial distribution µ ∈ ∆Ω, and row-stochastic transition matrix M : Ω × Ω → [0, 1]. We
say that a Markov chain (µ,M) is ergodic when M is a primitive matrix, i.e. ∃p ∈ N,Mp > 0
entry-wise. In this case,M has a unique stationary distribution π such that πM = π, the chain is
known to converge to π, and the minimum stationary probability

π?
.
= min

i∈Ω
π(i) (2)

is such that π? > 0. We measure distance to stationarity in total variation,

h(t)
.
= sup
µ∈∆Ω

∥∥µM t − π
∥∥
TV
. (3)
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For ξ ∈ (0, 1/2), the mixing time ofM is defined by

tmix(ξ)
.
= arg min

t∈N
{h(t) < ξ} , (4)

and by convention tmix
.
= tmix(1/4). The reader is referred to Levin et al. (2009, Chapter 4) for a

more detailed introduction to Markov chain mixing. We will use the standard O and Θ notations,
and Õ, Θ̃ when logarithmic dependencies in any natural parameter are omitted, and for x ∈ R+,
we will use l̃n x as a shorthand for lnx ln lnx. The definition of elements specific to contraction
methods is deferred to Section 2 for a clearer exposition.

Related work. Research has so far mostly focused on leveraging spectral methods for estimating
the relaxation time trel of a reversible (Levin et al., 2009, Section 1.6) chain as an approximation
of tmix (Hsu et al., 2015; Levin and Peres, 2016; Hsu et al., 2019; Combes and Touati, 2019; Qin
et al., 2019). Indeed, in this setting, trel, defined as the inverse of the absolute spectral gap γ?,
is known to be related – see (5) – to the mixing time up to a logarithmic correction (Levin et al.,
2009, Theorem 12.4). The problem, therefore, reduces to estimating the second largest eigenvalue
in magnitude. Moreover, as reversibility and self-adjointness of the Markov operator are equivalent
notions, dimension-free perturbation eigenvalue bounds – namely Weyl’s inequality – are available
to efficiently estimate its spectrum, which is the subject of Hsu et al. (2015); Levin and Peres
(2016); Hsu et al. (2019). In their work Combes and Touati (2019), offer a different perspective
on the problem by putting the emphasis on computational complexity, invoking power methods and
upper confidence interval techniques to design a more space-efficient estimator. Finally, Qin et al.
(2019) explore the case of general state spaces, for kernels that are trace-class operators (compact
with summable eigenvalues). Although broad collections of chains are known to be reversible such
as random walks on graphs or birth and death processes, this assumption is a strong restriction on
the class of chains that can be treated, and our approach compares favorably with this body of work
in as much as it removes this requirement.

One exception to the above list is Wolfer and Kontorovich (2019) that extends the estimation
results to the non-reversible setting, by estimating the pseudo-relaxation time (Kamath and Verdú,
2016, (16)). More specifically, even in the absence of reversibility, it was shown in Paulin (2015,
Proposition 3.4) that a related quantity, the inverse of the pseudo-spectral gap

γps
.
= max

k∈N

{
γ((M †)kMk)/k

}
,

where M † is the time-reversal of M , still traps the mixing time up to a logarithmic correction.
Wolfer and Kontorovich (2019) carry out the analysis of estimating this quantity, with a scheme
that consists in observing multi-step chains forward and backward in time. They show that it is
enough to explore a finite set of skipping rates, and recover a consistent estimator that still enjoys
spectral stability, and converges to arbitrary precision with a trajectory length polynomial in the
natural parameters d, π?, ε, tmix.

An inherent drawback of all previous approaches, however, is the existence of a known gap
between the (pseudo-)relaxation time and tmix that depends on π? or d (Levin et al., 2009, Theo-
rem 12.4), (Paulin, 2015, Proposition 3.4), (Jerison, 2013, Theorem 1.2). We can summarize these
results as

c1 · (trel − 1) ≤ tmix ≤ c2 ·min

{
d, ln

1

π?

}
trel, where (c1, c2) ∈ R2

+. (5)
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Moreover, it is known that this gap cannot generally be closed (Jerison, 2013), so that estimation of
trel down to arbitrary error still will not yield an accurate estimate for tmix as d→∞. This limitation
is the motivation behind our search for a new, tighter proxy. Although the task of estimating tmix

directly is currently believed to be more challenging than trel as raised in the concluding remarks of
Combes and Touati (2019, Conclusion), no rigorous or quantitative comparison is known in terms of
statistical complexity. This work therefore also initiates the investigations towards answering this
question. Comparisons of convergence rates with the state-of-the-art point empirical confidence
intervals and estimators are respectively carried out at Remark 4 and Remark 8.

Finally, as raised in Combes and Touati (2019), there exists an interesting trade-off between
computational complexity and statistical accuracy. This work is more concerned with the latter, such
that the designed procedures will be applicable for medium-sized state spaces, with computational
complexities of the same order to that of Wolfer and Kontorovich (2019).

2. Generalized contraction coefficient

For a Markov chain M , the Dobrushin contraction coefficient, also known as Dobrushin ergodic
coefficient (Dobrushin, 1956), (Brémaud, 1999, Definition 7.1) is defined by

κ
.
= max

(i,j)∈Ω2
‖M(i, ·)−M(j, ·)‖TV , (6)

where the term contraction refers to the property (Brémaud, 1999, Corollary 7.1) that ∀(µ,ν) ∈
∆2

Ω,

‖(µ− ν)M‖TV ≤ κ ‖µ− ν‖TV . (7)

Contraction in the sense of Dobrushin is a special case of coarse Ricci curvature (Ollivier, 2009),
where the metric taken on Ω is the discrete metric, and the Wasserstein distance between distribu-
tions reduces to total variation. In the case where κ < 1, the Bubley-Dyer path coupling bound
(Bubley and Dyer, 1997) gives an upper bound on mixing time

tmix(ξ) ≤
ln ξ

ln (1− κ)

Unfortunately, there exists a large subset of ergodic chains such that κ = 1, and for which this direct
method fails to yield convergence rates. To overcome this limitation, we consider multi-step chains,
where for s ∈ [m− 1],

X1, X1+s, X1+2s, . . . , X1+b(m−1)/scs ∼ (µ,M s),

and define the contraction coefficient of the chain with skipping rate s to be

κs
.
= max

(i,j)∈Ω2
‖M s(i, ·)−M s(j, ·)‖TV . (8)

We then introduce a generalized contraction coefficient κgen of the ergodic chainM :

κgen
.
= 1−max

s∈N

{
1− κs
s

}
, (9)

4



MIXING TIME ESTIMATION WITH CONTRACTION METHODS

and write sgen the smallest integer 1 such that κgen = 1 − 1−κsgen
sgen

. This quantity is derived in a
similar spirit as Paulin (2015) defined the pseudo-spectral gap of an ergodic Markov chain. Even
in the case where κ = 1, we now formalize in Theorem 1 the fact that κgen < 1 always holds, as

1
1−κgen traps tmix up to universal constants.

Theorem 1 Let ξ ∈ (0, 1/2), andM ergodic with mixing time tmix(ξ), then

1− 2ξ

1− κgen
≤ tmix(ξ) ≤

1 + ln 1/ξ

1− κgen
,

where κgen is defined at (9), and in particular,

1/2

1− κgen
≤ tmix ≤

1 + ln 4

1− κgen
. (10)

We point out that although we could not find any reference to the quantity at (9), or to Theorem 1,
considering multi-step contractions to study concentration or mixing properties of chains is not a
novel idea in itself; see for instance Dyer et al. (2001); Luczak (2008); Paulin (2016).

3. Statistical estimation of the mixing time from a single trajectory

This section is devoted to the analysis of the statistical complexity of estimating the mixing time
of an ergodic chain from one single long draw of observations (no restart mechanism). Section 2
introduced κgen [defined at (9)] as a tighter proxy for tmix [as shown by Theorem 1] and allows for
a reduction of the estimation problem. In Section 3.1 we construct fully empirical high-confidence
intervals around κgen. We further derive point estimators in Section 3.2 and analyze their finite
sample convergence properties both in absolute (Theorem 5) and relative (Theorem 6) error.

3.1. Fully empirical confidence intervals

For a confidence parameter δ, and a trajectory X1, . . . , Xm, our goal is to construct a non-trivial
interval Iκgen = (κgen,lb, κgen,ub) such that

P
(
κgen ∈ Iκgen

)
≥ 1− δ.

Our estimator will be a truncated plug-in version of κgen, where we only explore a prefix [S] of the
integers, a similar idea as employed in Wolfer and Kontorovich (2019) for estimating the pseudo-
spectral gap (Paulin, 2015, Section 3.1). For a chain with skipping rate s, we define the following
random variables,

N
(s)
i

.
=

b(m−1)/sc∑
t=1

1
{
X1+s(t−1) = i

}
, N

(s)
min

.
= min

i∈Ω
N

(s)
i ,

N
(s)
ij

.
=

b(m−1)/sc∑
t=1

1
{
X1+s(t−1) = i,X1+st = j

}
,

(11)

1. The existence of sgen is guaranteed by the observation that s 7→ 1−κs
s

∈ (0, 1
s
).
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and construct an estimator for the multi-step kernelM s and its contraction coefficient,

M̂
(s) .

=
∑

(i,j)∈Ω2

N
(s)
ij

N
(s)
i

1
{
N

(s)
i > 0

}
ei ⊗ ej , κ̂s

.
= κ

(
M̂

(s)
)
, (12)

where ei is the ith coordinate basis vector and ⊗ denotes the standard tensor product. When s = 1,
we will omit subscript or superscript and write respectively Ni, Nij , Nmin,M̂ and κ̂. Finally, the
estimator for κgen parametrized by an integer S is

κ̂gen[S] : Ωm → (0, 1), X 7→ 1−max
s∈[S]

{
1− κ̂s(X)

s

}
.

Theorem 2 Let δ ∈ (0, 1), S ∈ N, and X1, . . . , Xm ∼M , then with probability 1− δ,

∣∣κ̂gen[S] − κgen
∣∣ ≤ 1

S
+
√
dmax
s∈[S]

 Ls

s

√
N

(s)
min

 ,

where Ls = O
(

ln
(
dS lnm/s

δ

))
, and N (s)

min is defined at (11).

Remark 3 As we choose to carry out our analysis with unsmoothed estimators, we see that the
confidence bounds can be ill-defined for short trajectories. A slight modification of the proofs with
a smoothing parameter, for example, analyzing

M̂
(λ,s) .

=
∑

(i,j)∈Ω2

N
(s)
ij + λ

N
(s)
i + dλ

ei ⊗ ej ,

with λ > 0 instead, can yield intervals that are well defined almost surely. This would, however,
clutter the analysis while offering only incremental improvement.

Remark 4 Not only is the interval at Theorem 2 far more user-friendly than the one designed
around the pseudo-spectral gap in Wolfer and Kontorovich (2019, Theorem 8), it is also much
narrower. Denoting by ∼∼∼ a rough estimate of the rate at which we expect the intervals to decay in
width, ∣∣κ̂gen[S] − κgen

∣∣ ∼∼∼ 1

S
+

√
d

π?m
, (13)

whereas the known intervals around the pseudo-spectral gap γps of the estimator γ̂ps[S] defined by
Wolfer and Kontorovich could generally decay as slowly as∣∣γ̂ps[S] − γps

∣∣ ∼∼∼ 1

S
+

1

π
3/2
?

√
d

m

(√
d+

1

γps

)
.

We end this section with a short discussion on the choice of S, that is missing from Wolfer and
Kontorovich (2019). Assuming a 1 − δ/2 confidence interval Iπ? = (π?,lb, π?,ub) around π?, for
instance employing the estimation procedure of Hsu et al. (2015), then a practical choice of S for
balancing the two terms at (13) is

S ∼∼∼ n ∨
√
m(π?,lb ∧ 1/d)/d, (14)

where n is a small arbitrary integer. In other words, it is reasonable to wait for the trajectory length
to be of the order of the square of the state space size before starting to explore larger skipping rates.
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3.2. Point estimator for κgen
For chosen precision ε and confidence δ parameters, we construct a point estimator down to absolute
error, where the algorithm only needs knowledge of d and ε, δ in order to run.

Theorem 5 (Point estimator for κgen (absolute error)) Let (ε, δ) ∈ (0, 1)2, and let

X1, X2, . . . , Xm ∼ (µ,M)

an unknown ergodic Markov chain with minimum stationary probability π?, and generalized con-
traction coefficient κgen. There exists an estimation procedure κ̂+

gen : Ωm → (0, 1) such that for

m ≥ c L
π?

max

{
1

1− κgen
,
d

ε2

}
,

∣∣κ̂+
gen − κgen

∣∣ < ε holds with probability at least 1 − δ, where L = O
(

l̃n
(

d
δεπ?

))
, and c is a

universal constant.

From the proof of Theorem 5, we observe that, perhaps surprisingly, for a contracting chain,
i.e. κ = 1 − α with α > 0, the statistical difficulty of estimating α is of the same order (ignoring
logarithmic factors) as that of estimating κgen, while only providing with – generally sub-optimal–
upper bounds on the mixing time. One remaining question is the necessity of the dependency in d. A
heuristic argument based on the results of Jiao et al. (2018) would seem to imply that any technique
basing itself solely on the definition of a contraction coefficient – boiling down to estimating `1
distances of [d] supported distributions – would necessarily have a statistical dependency in the
support size.

We now show that it is also possible to construct an algorithm that outputs an estimate of 1 −
κgen with relative error ε. For this goal, the algorithm needs to explore at least the first S =

Θ
(

1
ε(1−κgen)

)
, involving the unknown quantity κgen. The solution is an adaptive argument that is

fleshed out in Section 4.4.

Theorem 6 (Point estimator for 1− κgen (relative error)) Let (ε, δ) ∈ (0, 1)2, and let

X1, X2, . . . , Xm ∼ (µ,M)

an unknown ergodic Markov chain with minimum stationary probability π?, and generalized con-
traction coefficient κgen. There exists an estimation procedure κ̂×gen : Ωm → (0, 1) such that for

m ≥ c Ld
π?(1− κgen)2ε2

,

∣∣∣1−κ̂×gen1−κgen − 1
∣∣∣ < ε holds with probability at least 1− δ, where L = O

(
l̃n
(

d
δεπ?(1−κgen)

))
, and c is

a universal constant.

Corollary 7 (to Theorem 6) Let δ ∈ (0, 1), and let X1, X2, . . . , Xm ∼ (µ,M) an unknown
ergodic Markov chain with minimum stationary probability π?, and mixing time tmix. There exists
an estimation procedure t̂mix : Ωm → N such that for m ≥ c

Ldt2mix
π?

, 1
3 tmix ≤ t̂mix ≤ 3tmix, holds

with probability at least 1− δ, where L = O
(

l̃n
(
tmixd
δπ?

))
, and c is a universal constant.
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Remark 8 Although in principle, direct comparison of point estimators with prior research is not
possible as all previous work focused on trel, we treat for now the question as if estimation of κgen
or tmix directly is not harder, and focus on relative error. In the general (non-reversible) setting, the
only known finite sample upper bound (Wolfer and Kontorovich, 2019, Theorem 3) for estimating
the pseudo-relaxation time is of

m× = Õ
(
t2rel
π?ε2

max {trel, β(π) min {β(π), d}}
)
,

where β(π)
.
= max(i,j)∈Ω2

{
π(i)
π(j)

}
measures how far π is from being uniform, and 1 ≤ β(π) ≤

1/π?. From Theorem 6, it is possible to estimate 1 − κgen with m× = Õ
(
dt2mix
π?ε2

)
, so that for the

two classes of slow mixing chains (tmix > d) and chains with a stationary distribution π such that
β(π) >

√
d, our result dominates, showing that the two methods offer complementary convergence

rates.

4. Proofs

4.1. Proof of Theorem 1.

The proof is standard. See for example Paulin (2015, Section 5.2) for a similar technique. We will
first bound the distance to stationarity h(t) for a given t > sgen,

h(t)
.
= sup
µ∈∆Ω

∥∥µM t − π
∥∥
TV

(i)
= sup
µ∈∆Ω

∥∥(µM t−sgen − π)M sgen
∥∥
TV

(ii)

≤ κ(M sgen) sup
µ∈∆Ω

∥∥µM t−sgen − π
∥∥
TV

(iii)

≤ κ(M sgen)bt/sgenc sup
µ∈∆Ω

∥∥∥µM t−bt/sgencsgen − π
∥∥∥
TV

(iv)

≤ κ(M sgen)(t−sgen)/sgen

where (i) is by definition of π, (ii) is the contraction property at (7), (iii) is by an inductive
argument, and (iv) is by property of the total variation distance. Since 1−κgen = 1−κ(Msgen )

sgen
≤ 1

sgen
,

and from properties of the exponential function, h(t) ≤ e · e−t(1−κgen), so that for t > ln e/ξ
1−κgen ,

h(t) ≤ ξ, hence the upper bound.
For the lower bound, notice that ∀(i, j) ∈ Ω2, by sub-additivity of the `1 norm and by definition of
successively h(t) and tmix(ξ),∥∥∥M tmix(ξ)(i, ·)−M tmix(ξ)(j, ·)

∥∥∥
TV
≤ 2h(tmix(ξ)) ≤ 2ξ,

such that by definition of κgen and κ,

1− κgen ≥
1− κ(M tmix(ξ))

tmix(ξ)
≥ 1− 2ξ

tmix(ξ)
.
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The lower bound is also a consequence of (Paulin, 2016, Proposition 3.3, (3.2)).
�

4.2. Proof of Theorem 2

We first report Wolfer and Kontorovich (2019, Lemma D.4), which we will use in our argument.

Lemma 9 (Wolfer and Kontorovich (2019)) LetX1, . . . , Xm ∼ (M ,µ) a d-state ergodic Markov
chain. Then, with probability at least 1− δ,∥∥∥M̂ −M

∥∥∥
∞
≤ 4L

√
d

Nmin
,

where

L .
= arg min

t≥1

{(
1 + dln(2m/t)e+

)
(d+ 1)e−t ≤ δ/d

}
= O

(
ln

(
d lnm

δ

))
,

M̂ is the empirical transition matrix of counts defined at (12), and Nmin is defined at (11).

In other words, Lemma 9 shows that it is possible to control with high-probability the error
in estimating the Markov kernel w.r.t the `∞ operator norm in terms of the least number of visits.
Writing for convenience κgen[S]

.
= maxs∈[S]

{
1−κs
s

}
, and for r ∈ S,

Lr
.
= arg min

t≥1

{(
1 + dln(2m/(tr))e+

)
(d+ 1)e−t ≤ δ

dS

}
= O

(
ln

(
dS lnm/r

δ

))
.

Then successively,

P

(∣∣κ̂gen[S] − κgen
∣∣ > 1

S
+ max
r∈[S]

{
4

r
Lr

√
d

N
(r)
min

})
(i)

≤ P

(
max
s∈[S]

∣∣∣∣ κ̂s − κss

∣∣∣∣ > max
r∈[S]

{
4

r
Lr

√
d

N
(r)
min

})
(ii)

≤
S∑
s=1

P

(
|κ̂s − κs| > smax

r∈[S]

{
4

r
Lr

√
d

N
(r)
min

})
(iii)

≤
S∑
s=1

P

(∥∥∥∥M̂ (s)
−M s

∥∥∥∥
∞
> 4Ls

√
d

N
(s)
min

)
(iv)

≤
S∑
s=1

δ

S
= δ,

where (i) follows from the fact that
∣∣κgen − κgen[S]

∣∣ ≤ 1/S and that for ν,θ ∈ RS it is the case
from sub-additivity of the uniform norm that |‖ν‖∞ − ‖θ‖∞| ≤ ‖ν − θ‖∞; (ii) is an application
of the union bound, (iii) stems from the fact that the `∞ operator norm dominates the distance
between Dobrushin contraction coefficients (Fact 5.1), and (iv) is Lemma 9. �
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4.3. Proof of Theorem 5

To reach arbitrary precision down to additive error, we explore the first S = d2/εe possible skipping
rates, i.e. consider the estimator κ̂gend2/εe. Then, following the same first steps (i), (ii), (iii) as in
the proof of Theorem 2 together with S > 2

ε ,

Pπ
(∣∣κ̂gend2/εe − κgen∣∣ > ε

)
≤
d2/εe∑
s=1

Pπ
(∥∥∥∥M̂ (s)

−M s

∥∥∥∥
∞
> s

ε

2

)
.

For each term,

Pπ
(∥∥∥∥M̂ (s)

−M s

∥∥∥∥
∞
> s

ε

2

)
(i)

≤ Pπ

(∥∥∥∥M̂ (s)
−M s

∥∥∥∥
∞
> 4Ls

√
d

N
(s)
min

)

+ Pπ
(
N

(s)
min <

64L2
sd

s2ε2

)
(ii)

≤ δ

2d2/εe
+ Pπ

(
N

(s)
min <

1

2
d(m− 1)/seπ?

)
where (i) stems from the fact that for functions of the sample φ and ψ, the chaining argument

Pπ (φ(X) > ε) ≤ Pπ (φ(X) > ψ(X)) + Pπ (ψ(X) > ε)

holds, and (ii) follows from the proof of Theorem 2 at confidence 1− δ/2 for the former summand,
and by already setting m ≥ c′ d

π?sε2
l̃n
(

dS
δπ?ε

)
, entailing the sufficient m ≥ 128dL2

s
π?sε2

for the latter.
The remaining error probability, which corresponds to an unreasonable number of visits to the least
visited state is controlled for m ≥ c′′(1

ε + tmix
π?

ln d
εδ ) as a result of Lemma 10, which in turn is a

consequence of Chung et al. (2012, Theorem 3.1). Finally, Paulin (2015, Proposition 3.10) extends
the bound to non-stationary chains. �

4.4. Proof of Theorem 6

Previously, in order to estimate κgen in absolute error, we could stop after computing the first d2/εe
ergodic coefficients, but for controlling the approximation error with relative accuracy, the algorithm
has to investigate on S = dc/((1− κgen)ε)e, c ∈ R+, which is unknown a priori. The solution is to
have Ŝ(X) depend on Nmin, such that the algorithm will investigate a larger space as more samples
are collected. We define the estimator κ̂gen[Ŝ] such that

Ŝ
.
= d
√
Nmin/de.

From the triangle inequality,∣∣∣κ̂gen[Ŝ] − κgen
∣∣∣ ≤ ∣∣∣κ̂gen[Ŝ] − κ̂gend3/(ε(1−κgen))e

∣∣∣
+
∣∣κ̂gend3/(ε(1−κgen))e − κgend3/(ε(1−κgen))e

∣∣
+
∣∣κgend3/(ε(1−κgen))e − κgen

∣∣ .
10
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It is easy to verify that
∣∣κgend3/(ε(1−κgen))e − κgen

∣∣ ≤ (1−κgen)ε
3 . To bound the second term with high-

probability, we use Theorem 5 at precision (1− κgen)ε/3 and confidence level 1− δ/3. It remains
to analyze the first term:

∣∣∣κ̂gen[Ŝ] − κ̂gend3/(ε(1−κgen))e

∣∣∣ =

∣∣∣∣∣max
[Ŝ]

{
1− κ̂s
s

}
− max
d3/((1−κgen)ε)e

{
1− κ̂s
s

}∣∣∣∣∣
≤ max

{
1

s
: s ∈ [Ŝ . . . d3/((1− κgen)ε)e] ∪ [d3/((1− κgen)ε)e . . . Ŝ]

}
≤ max

{
1

Ŝ
,
(1− κgen)ε

3

}
,

such that for m ≥ 36 d
π?(1−κgen)2ε2

,

Pπ
(∣∣∣κ̂gen[Ŝ] − κ̂gend3/(ε(1−κgen))e

∣∣∣ > (1− κgen)ε

3

)
≤ Pπ

(
1

Ŝ
>

(1− κgen)ε

3

)
≤ Pπ

(√
d

Nmin
>

(1− κgen)ε

3

)

≤ Pπ
(
|π? − π̂?| >

3

4
π?

)
,

where π̂? is the plug-in estimator for π? defined in Hsu et al. (2015). Thus form ≥ c tmix
π?

ln
(
d
δ

)
, c ∈

R+ (Wolfer and Kontorovich, 2019, Theorem 1), this is smaller than δ/3. Finally, the result is
extended to non-stationary chains with Paulin (2015, Proposition 3.10). Remark: This expression
for Ŝ confirms the practical choice we proposed at (14).

4.5. Proof of Corollary 7

Combining Theorem 1 and Theorem 6, and choosing t̂mix
.
= 1

1−κ̂×gen
, for the value of m in Theo-

rem 6, with probability at least 1− δ,

tmix

(1 + ε)(1 + ln 4)
≤ t̂mix ≤

2tmix

(1− ε)
,

and setting ε = 1/4 yields the corollary. �

5. Auxiliary facts

The following lemma and facts are proved in the appendix.

Lemma 10 Let X1, . . . , Xm ∼ M stationary ergodic Markov chain. For a skipping rate s, and
for m ≥ c ln d

δε
tmix
π?
, c ∈ R+,

Pπ
(
N

(s)
min <

1

2
d(m− 1)/seπ?

)
≤ δ

2dd2/εe
.

11



MIXING TIME ESTIMATION WITH CONTRACTION METHODS

Fact 5.1 For two Markov matricesM1 andM2,

|κ(M1)− κ(M2)| ≤ ‖M1 −M2‖∞ .

Fact 5.2 Let X1, . . . , Xm ∼M a stationary ergodic Markov chain with stationary distribution π
and mixing time at most tmix. Then the mixing time t(s)mix of the skipped chain for s ∈ [m],

X1, X1+s, X1+2s, . . . , X1+b(m−1)/scs ∼ (µ,M s),

is such that t(s)mix ≤ dtmix/se.

6. Discussion and future research directions

The present work offers a new perspective on the problem of estimating the mixing properties of
a Markov chain, switching the focus from spectral methods and trel to contraction methods and
tmix itself. This offers a first step in determining whether these two statistical problems are of
equivalent complexity. The proposed algorithms are primarily of theoretical interest, as they remain
computationally intensive both in space and time. Algorithmic optimization of the search over the
subset S, for example by leveraging additional properties of κgen is on our research agenda.
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Proof of auxiliary lemmas and facts

Lemma 10 Let X1, . . . , Xm ∼ M stationary ergodic Markov chain. For a skipping rate s, and
for m ≥ c ln d

δε
tmix
π?
, c ∈ R+,

Pπ
(
N

(s)
min <

1

2
d(m− 1)/seπ?

)
≤ δ

2dd2/εe
.

Proof From the Chernoff-Hoeffding lower tail concentration inequality at Chung et al. (2012,
Theorem 3.1), for X1, . . . , Xm ∼M ergodic over d states, stationary, with mixing time tmix(ξ) for
ξ ≤ 1/8, and η ∈ (0, 1),

Pπ (Ni ≤ (1− η)(m− 1)π(i)) ≤ c exp

(
− η

2mπ(i)

72tmix(ξ)

)
, c ∈ R+

where we already used the definition of Ni and that by stationarity, Eπ [1 {Xt = i}] = π(i). The
astute reader will notice that our definition of tmix is for ξ = 1/4, such that this theorem is not
applicable verbatim, however Chung et al. (2012) mentions (at p.3) that it generally holds with
1−
√

2ξ
36tmix(ξ)

instead of 1
72tmix(ξ)

. In our case, we therefore adapt the constant to c′ =
1−
√

1/2

36 , and for
η = 1/2,

Pπ
(
Ni ≤

(m− 1)π(i)

2

)
≤ c exp

(
−c
′(m− 1)π(i)

tmix

)
. (15)

We proceed and apply the above to the different multi-step chains for s ∈ [S]. The mixing time t(s)mix

of each such chain is at most about tmix
s , which is formalized in Fact 5.2.

Pπ
(
N

(s)
i ≤ 1

2
d(m− 1)/seπ(i)

)
(i)

≤ c exp

(
−c
′b(m− 1)/scπ(i)

t
(s)
mix

)
(ii)

≤ c exp

(
−c
′(m− s− 1)π(i)

tmix

)
where (i) is (15) applied to the skipped chain, as it is still the case that Eπ

[
1
{
X1+s(t−1) = i

}]
=

π(i), and (ii) is Fact 5.2. As a consequence for m ≥ c′′(1
ε + tmix

π(i) ln 2dd2/εe
δ ), this error probability

is smaller than δ
2dd2/εe . Taking a maximum over i ∈ Ω, yields the lemma.

Fact 5.1 For two Markov matricesM1 andM2,

|κ(M1)− κ(M2)| ≤ ‖M1 −M2‖∞ .

Proof This is a direct consequence of the sub-additivity of the sup norm.

2 |κ(M1)− κ(M2)| ≤ max
(i,j)∈Ω2

|‖M1(i, ·)−M1(j, ·)‖1 − ‖M2(i, ·)−M2(j, ·)‖1|

≤ max
(i,j)∈Ω2

‖M1(i, ·)−M1(j, ·)−M2(i, ·) +M2(j, ·)‖1

≤ max
(i,j)∈Ω2

(‖M1(i, ·)−M2(i, ·)‖1 + ‖M1(j, ·)−M2(j, ·)‖1)

= 2 max
i∈Ω
‖M1(i, ·)−M2(i, ·)‖1

= 2 ‖M1 −M2‖∞ .

14
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Fact 5.2 Let X1, . . . , Xm ∼M a stationary ergodic Markov chain with stationary distribution π
and mixing time at most tmix. Then the mixing time t(s)mix of the skipped chain for s ∈ [m],

X1, X1+s, X1+2s, . . . , X1+b(m−1)/scs ∼ (µ,M s),

is such that t(s)mix ≤ dtmix/se.
Proof Let t such that t > dtmix/se, then∥∥µ(M s)t − π

∥∥
TV
≤
∥∥∥µ(M s)dtmix/se − π

∥∥∥
TV

=
∥∥µM tmix − π

∥∥
TV
≤ 1

4
,

where the first inequality holds as advancing the chain can only move it closer to stationarity (Levin
et al., 2009, Exercise 4.2).

Algorithm We describe in Algorithm 1 the adaptive version of the procedure that outputs an esti-
mator for the mixing time t̂mix, with the guarantees of Corollary 7, modulo a smoothing parameter
λ.

The time complexity of the algorithm of Hsu et al. (2019) for estimating the absolute spectral
gap of a reversible chain is of the order of O(m + d3). The extension of Wolfer and Kontorovich
(2019) that involves the first S ∈ N multiplicative reversiblizations of the chain, without considering
any form of parallelization, has a computational complexity upper bounded by O(S(m + d3)).
Algorithm 1 has an equivalent time complexity, as computing the Dobrushin contraction coefficient
requires O(d3).

Interestingly, the complexity of constructing the confidence interval compares favorably with
the previous methods. In Hsu et al. (2019) the necessity of computing the pseudo-inverse of the
empirical transition matrix leads to a complexity of O(m+ d3). In Wolfer and Kontorovich (2019)
computing an interval requires Õ(m + d2) for a reversible chain, and O(S(m + d3)) in the non-
reversible case. In our algorithm, computing the interval can be done in O(S(m+ d)).

15
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Function MixingTime(d, λ, (X1, . . . , Xm)):
return 1 / (1 - GeneralizedContractionCoeffAdaptive(d, λ, (X1, . . . , Xm)))

Function GeneralizedContractionCoeffAdaptive(d, λ, (X1, . . . , Xm)):
N← [0]d Nmin ← m
for t← 1 to m− 1 do

N[Xt]← N[Xt] + 1

end
for i← 1 to d do

if N[i] < Nmin then
Nmin ← N[i]

end
end
return GeneralizedContractionCoeff(d, λ, (X1, . . . , Xm), d

√
Nmin/de)

Function GeneralizedContractionCoeff(d, λ, (X1, . . . , Xm), S):
rmax ← 0
for s← 1 to S do

κ← ContractionCoeff(d, λ, (X1, X1+s, X1+2s, . . . , X1+b(m−1)/scs))

if (1− κ)/s > rmax then
rmax ← (1− κ)/s

end
end
return 1− rmax

Function ContractionCoeff(d, λ, (X1, . . . , Xn)):
N← [dλ]d
T← [λ]d×d
for t← 1 to n− 1 do

N[Xt]← N[Xt] + 1
T[Xt, Xt+1]← T[Xt, Xt+1] + 1

end
amax ← 0
for i← 1 to d do

for j ← 1 to d do
a = 0
for k ← 1 to d do

a← a+ |T[i, k]/N[i]−T[j, k]/N[j]|
end
if a > amax then

amax ← a
end

end
end
return amax/2

Algorithm 1: The estimation procedure outputting t̂mix.
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