
  

 
 

Customizing ML Predictions For Online Algorithms 

Keerti Anand 1 Rong Ge 1 

Abstract 
A popular line of recent research incorporates 
ML advice in the design of online algorithms to 
improve their performance in typical instances. 
These papers treat the ML algorithm as a black-
box, and redesign online algorithms to take ad-
vantage of ML predictions. In this paper, we ask 
the complementary question: can we redesign ML 
algorithms to provide better predictions for on-
line algorithms? We explore this question in the 
context of the classic rent-or-buy problem, and 
show that incorporating optimization benchmarks 
in ML loss functions leads to signifcantly bet-
ter performance, while maintaining a worst-case 
adversarial result when the advice is completely 
wrong. We support this fnding both through the-
oretical bounds and numerical simulations. 

1. Introduction 
Optimization under uncertainty is a classic theme in the 
felds of algorithm design and machine learning. In the 
former, the framework of online algorithms adopts a con-
servative approach and optimizes for the worst case (or 
adversarial) future. While this ensures robustness, the inher-
ent pessimism of the adversarial approach often results in 
weak guarantees. Machine learning (ML), on the other hand, 
takes a more optimistic approach of trying to predict the 
future by ftting an appropriate model to past data. Indeed, 
a popular line of recent research is to incorporate ML pre-
dictions in the design of online algorithms to improve their 
performance while preserving the inherent robustness of the 
framework (see related work for references). In this line of 
research, ML is used as a black box, and the focus is on re-
designing online algorithms to use predictions generated by 
any ML technique. In this paper, we ask the complementary 
question: can we re-design learning algorithms to better 
serve optimization objectives? 
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The key to this question is the observation that unlike in a 
generic learning setting, we are not interested in traditional 
loss functions such as classifcation error or mean-squared 
loss, but only in the eventual performance of the online algo-
rithm. The performance of the online algorithm is measured 
by its competitive ratio – the worst-case ratio between the 
cost of the online algorithm’s solution and that of the (of-
fine) optimum. By leveraging ML predictions, one can hope 
to achieve a better competitive ratio in the typical case. Even 
if the ML algorithm does not make accurate predictions, it 
suffces if the learning errors do not adversely affect the 
decisions taken by the online algorithm. Instead of treating 
the learning algorithm and the subsequent optimization as 
independent modules as in the previous line of work, we 
ask if we can improve the overall online algorithm by de-
signing them in conjunction. That is, we seek to design a 
learning algorithm specifc to the optimization task at hand, 
and an optimization algorithm that is aware of the learning 
algorithm that generated the predictions. 

We investigate this question in the context of the classic 
rent-or-buy (a.k.a. ski rental) problem. In this problem, 
the algorithm is faced with one of two choices: a small 
recurring (rental) cost, or a large (buying) cost that has to 
be paid once but no cost thereafter. This choice routinely 
arises in our daily lives such as in the decision to rent or 
buy a house, corporate decisions to rent or buy data centers, 
expensive equipment, and so on. Naturally, the optimal 
choice depends on the duration of use, a longer duration 
justifying the decision to buy instead of renting. But, this 
is where the uncertainty lies: the length of use is often not 
known in advance. The ski rental problem is perhaps the 
most fundamental, and structurally simplest, of all problems 
in online algorithms, and has been widely studied in many 
contexts (see, e.g., Karlin et al. (1994; 2003); Lotker et al. 
(2008); Khanafer et al. (2013); Kodialam (2014)), including 
that of online algorithms with ML predictions (Purohit et al., 
2018; Gollapudi & Panigrahi, 2019). We formally defne 
this problem next. 

The ski rental problem. In the ski rental problem, a skier 
has two options: to buy skis at a one time cost of $B or to 
rent them at a cost of $1 per day. The skier does not know the 
length of the ski season in advance, and only learns it once 
the season ends. Note that if the length of the season were 
known, then the optimal policy is to buy at the beginning of 
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the season if it lasts longer than B days, and rent every day 
if it is shorter. But, in the absence of this information, an 
algorithm has to decide the duration of renting skis before 
buying them. It is well-known that the best competitive ratio 
achievable by a deterministic algorithm for this problem is 
2 (e.g., Karlin et al. (1988)), and that by a randomized 

ealgorithm is (e.g., Karlin et al. (1994)). The ski-rental e−1 
problem (Karlin et al., 1994; Lotker et al., 2008; Khanafer 
et al., 2013; Kodialam, 2014), and variants such as TCP 
acknowledgment (Karlin et al., 2003), the parking permit 
problem (Meyerson, 2005), snoopy caching (Karlin et al., 
1988), etc. model the fundamental diffculty in decision 
making under uncertainty in many situations. 

The learning framework. We use a classic PAC learning 
framework. Namely, the learning algorithm observes feature 
vectors x ∈ Rd comprising, e.g., weather predictions, skier 
history, etc. and aims to predict scalars y ∈ R+ denoting 
the length of the ski season. We assume that (x, y) belongs 
to an unknown joint distribution K. The learning algorithm 
observes n samples (the “training set”) from K. Typically, 
these samples would be used to train a model that maps 
feature vectors x to predictions ỹ = f(x) that minimizes 
some loss function (e.g., mean squared error, hinge loss, 
etc.) defned on K. In our problem, however, the goal is not 
to predict the unknown y, but rather to optimize the solution 
to the ski rental instance defned by y. Consequently, the 
learning algorithm skips y altogether and outputs a solution 
to the optimization problem directly. For the ski rental 
problem, this amounts to defning a function θ(x) that maps 
the feature vector x to the duration of renting skis. The 
expected competitive ratio is then given by the competitive 
ratio of this policy θ(x) defned on distribution K. We call 
this a “learning-to-rent” algorithm. 

Our Contributions. Our goal is to design a learning-to-
rent algorithm with an expected competitive ratio of (1 + ε), 
and analyze the dependence of the number of samples n on 
the value of ε. Contrast this with online algorithms for this 

eproblem that can at best achieve a competitive ratio of e−1 
(e.g., Karlin et al. (1994)). If the joint distribution (x, y) 
is arbitrary, then one cannot hope to achieve a competitive 
ratio of (1 + ε) since every sample may have a different 
x and the conditional distributions y|x may be unrelated 
for different values of x. However, it is natural to assume 
that the joint distribution on (x, y) is Lipschitz in the sense 
that nearby values of x imply similar conditional distribu-
tions y|x. Our frst contribution (Theorem 1) is to design a 
learning-to-rent algorithm whose competitive ratio is within 
a factor of (1+ε) of the best competitive ratio achievable for 
that distribution, under only the Lipschitz assumption. First, 
we discretize the domain of x using an �-net. Then, for each 
cell in the �-net, we have one of two cases. Either, there 
are suffciently many samples to estimate the conditional 
distribution y|x. Or, a baseline online algorithm can be used 

for the cell if it has very few samples. The dependence of 
the number of samples n on the number of feature dimen-
sions d is exponential, which we show is indeed necessary 
(Theorem 2). 

Our next goal is to improve the dependence on d since the 
number of features in a typical setting can be rather large, 
which would make the previous algorithm prohibitively 
expensive. To this end, we use a PAC learning approach 
to address the problem. Since the optimal ski rental policy 
exhibits threshold behavior (rent throughout if y < B and 
buy at the outset if y ≥ B), we treat the underlying learning 
problem as a classifcation task. In particular, we introduce 
an auxiliary binary variable z that captures the two regimes 
for the optimal ski rental policy: � 

1 if y ≥ B 
z = 

0 if y < B 

Our frst result is that if z belongs to a concept class that is 
(ε, δ) PAC-learnable from x, then we can obtain a learning-
to-rent algorithm that achieves a competitive ratio of (1 + √ 
2 �) with probability 1 − δ. This implies, for instance, that 
if there were a linear classifer for z, then the number of 
required training samples n to obtain a (1 + ε) competitive 
algorithm can be decreased from exponential to linear in d, 
specifcally O(d/ε2). 

While it’s a signifcant improvement over the previous 
bound, we hope to do even better by exploiting the spe-
cifc structure of the ski rental problem. In particular, we 
observe that the classifcation error is almost entirely due to 
samples close to the threshold, but for values of y close to 
B, mis-classifying z does not cost us signifcantly in the ski 
rental objective. This allows us to create an artifcial margin 
around the classifcation boundary and discard all samples 
that appear in this margin. Using this improvement, we can 
improve the sample complexity of the training set to remove 
the dependence on d entirely (although at a slightly worse 
dependence on ε). 

We also consider a noisy model where the labels in the train-
ing set are noisy. By this, we mean that labels for a certain 
fraction of the input distribution are fipped adverserially. 
We design a noise tolerant algorithm for the learning-to-rent 
problem with a competitive ratio of 1+ 3 

√ 
p, where p is the 

mis-classifcation error of a noise tolerant binary classifer. 
We complement this bound by showing that for a noise level√ 

ηof η, the best competitive ratio achievable is 1 + .2 

Next, we consider robustness of our algorithms, i.e., their 
performance under no assumptions on the input. An impor-
tant distinction between the recent line of research on online 
algorithms with predictions and previous “beyond worst 
case” approaches to competitive analysis is that the recent 
work simultaneously provides worst case guarantees while 
also improving the bounds if the additional assumptions on 
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the input hold. Therefore, it is crucial that our algorithms 
are also robust in this sense. Indeed, we show that in order 
to obtain a competitive ratio of (1 + ε) in the optimistic 
scenario, none of our algorithms has competitive ratios any 
worse than 1 + 1 in the adversarial setting. ε 

Finally, we perform numerical simulations to evaluate 
our learning-to-rent policies. We consider three differ-
ent regimes, corresponding to small (d = 2), moderate 
(d = 100), and large (d = 5000) number of feature dimen-
sions. Recall that our margin-based technique outperforms 
the black box learning approach for a large number of fea-
ture dimensions. This is indeed the case in our experiments: 
while the two approaches are comparable for d = 2 and 
exhibit relatively mild differences for d = 100, the margin-
based approach is decidedly superior for d = 5000. In 
principle, this shows that in large instances, there is con-
siderable beneft to customizing ML predictions to make 
them conducive to the objectives of the online algorithm. 
In fact, we also show experimentally that although margin-
based predictions achieve a smaller competitive ratio, their 
corresponding mis-classifcation error is rather large. This 
provides further evidence that a black box learning approach 
that simply tries to minimize classifcation error is not suff-
cient for generating good predictions for online algorithms. 
In addition, we also empirically evaluate the performance of 
our noise-tolerant algorithm and map the competitive ratio 
as a function of the mis-classifcation error. 

Related Work. A robust literature is beginning to emerge 
in incorporating ML predictions in online algorithms. While 
the list of papers in this domain continues to grow by the 
day, some of the representative problems that this theme has 
been applied to include: auction pricing (Medina & Vassil-
vitskii, 2017), rent or buy (Purohit et al., 2018; Gollapudi & 
Panigrahi, 2019), caching (Lykouris & Vassilvitskii, 2018; 
Rohatgi, 2020; Jiang et al., 2020), scheduling (Purohit et al., 
2018; Lattanzi et al., 2020; Mitzenmacher, 2020), frequency 
estimation (Hsu et al., 2019), Bloom flters (Mitzenmacher, 
2018), etc. As described earlier, these results consider ML 
as a black box and re-design the online algorithm, whereas 
we take the complementary approach of re-designing the 
learning algorithm to suit the optimization task. 

Our main idea is to modify the loss function in the learning 
algorithm to incorporate the optimization objective. There 
has been previous research in a similar spirit, where the 
loss function in learning is adapted to suit specifc purposes, 
albeit different ones from our work. For instance, Huang 
et al. (2019) give an “Adaptive Loss Alignment” scheme to 
meta-learn the loss function to directly optimize the evalua-
tion metric in the context of Reinforcement Learning. Gupta 
& Roughgarden (2017) present a framework for algorithm 
selection as a statistical learning problem. This framework 
captures, for instance, the notion of “self-improving algo-

rithms”, where the goal is to learn the input distribution and 
adaptively design an optimal policy (originally proposed by 
Ailon et al. (2011)). A related line of research, pioneered 
by Cole & Roughgarden (2014), is that of optimizing on 
samples of the input rather than the entire input (see also 
Morgenstern & Roughgarden (2016); Balkanski et al. (2016; 
2017)). Yet another example of adapting the loss function in 
learning is in Cost Sensitive Learning (Elkan, 2001), where 
mis-classication errors incur non-uniform penalties (see also 
Kamalaruban & Williamson (2018); Ling & Sheng (2008)). 

2. Preliminaries 
For notational convenience, we consider a continuous ver-
sion of the ski rental problem, where the buying cost is 
$1, and the length of the ski season is denoted by y. (The 
assumption on the buying cost is w.l.o.g. by appropriate 
scaling.) Therefore, the optimal offine solution is to buy 
at the outset when y ≥ 1 and rent throughout when y < 1. 
We also denote the feature vector by x ∈ Rd (e.g., weather 
predictions, skier behavior, etc.) and assume that (x, y) 
is drawn from an unknown joint distribution K. Given a 
feature vector x, the goal of the algorithm is to produce a 
threshold θ(x) such that the skier rents till time θ(x) and 
buys at that point if the ski season is longer. We call θ(x) 
the wait time of the algorithm. 

If the distribution K were known to the algorithm, then for 
each input x, it can compute the conditional distribution y|x 
and solve the resulting stochastic ski rental problem, i.e., 
where the input is drawn from a given distribution. It is well 
known that the optimal strategy in this case can be described 
by a fxed wait time that we denote θ∗(x). 

Of course, in general, the distribution K is not known to the 
algorithm, and has to be “learned” from training data. The 
“learning-to-rent” algorithm observes n training samples 
(xi, yi) ∼ K, and based on them, generates a function θ(x) 
that maps feature vectors x to the wait time. The (expected) 
competitive ratio of the algorithm is given by: 

CR(θ, K) = E(x,y)∼K[g(θ(x), y)] (1)( 
y when y < θ(x)min{y,1}where g(θ(x), y) = (2)1+θ(x) when y ≥ θ(x).min{y,1} 

The goal of the learning-to-rent algorithm is to output a 
function θ(·) that minimizes CR in Eq. (1). Since the ideal 
strategy is to output the function θ∗(·), we measure the 
performance of the algorithm as the ratio between CR(θ, K) 
and CR(θ∗ , K). 

Defnition 1. A learning-to-rent algorithm A with threshold 
function θ(·) is said be (�, δ)-accurate with n samples, if for 
any distribution K, after observing n samples, we have the 
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following guarantee with probability at least 1 − δ: 

CR(θ, K) ≤ (1 + �) · CR(θ ∗ , K). (3) 

If we say that an algorithm is (1 + �)-accurate, we mean 
Eq. (3) holds for some fxed constant δ. 

The additional parameter K can be dropped when the distri-
bution is clear from the context. 

3. A General Learning-to-Rent Algorithm 
As described in the introduction, it is natural (and required) 
to assume that the joint distribution K on (x, y) is Lipschitz 
in the sense that similar feature vectors x imply similar 
conditional distributions y|x. In this section, our main con-
tribution is to design a learning-to-rent algorithm under this 
minimal assumption. 

First, we give the precise defnition of the Lipschitz property 
we require. In particular, we measure distances between 
distributions using the earth mover distance (EMD) metric. 

Defnition 2. For probability distributions X, Y over Rd , � � 
EMD(X, Y) = min E(x,y)∼K[kx − yk] . 

K:K|x=X,K|y=Y 

The joint distribution K above is such that its marginals with 
respect to y and x are equal to X and Y respectively. 

We now defne the Lipschitz property using EMD as the 
distance measure between distributions. 

Defnition 3. A joint distribution on (x, y) ∈ Rd × R+ 

is said to be L-Lipschitz iff for all x1, x2 ∈ Rd , the 
marginal distributions Y1 = y|x1, Y2 = y|x2 satisfy 
EMD(Y1, Y2) ≤ L · kx1 − x2k2. 

Now we are ready to state our main result in this section: 

Theorem 1. For the learning-to-rent problem, if x ∈ [0, 1]d , 
and the joint distribution (x, y) is L-Lipschitz, then there � √ �O(d)

L dexists an algorithm that uses n = samples and � 

is (1 + �)-accurate with high probability.1 

Algorithm 1 Outputs θA for a given distribution on y� � 
δQuery samples for some constant δ > 0.�6 

1Initialize array l of length �2 

Let `[θ] ← average of g(θ, y) over all samples y. 
return θA ← arg minθ∈[�,1/�],θ/�∈N `[θ]. 

Let us frst consider the simple case where we have a fxed 
x and only consider the conditional distribution y|x. In this 
case, it is natural to optimize θ over the empirical samples 

1with probability exceeding 1 − �Ω(d) 

of y. However, if we don’t put any constraint on θ, the 
competitive ratio for a sample y can be unbounded (this can 
happen when θ is close to 0 or very large), which might 
hurt generalization. We solve this problem by proving that 
it suffces to consider θ in the range [�, 1/�] in order to get 
an (1 + �)-accurate solution. (See Algorithm 1.) 

Algorithm 2 Outputs θA(x) for multi-dimensional x 

Divide the hyper-cube [0, 1]d into sub-cubes of side length� √ �d 
�3 64L d√ each. The number of such cubes is N = .�364L d 

Index the cubes by i, where 1 ≤ i ≤ N .� √ �2d 
1024L dQuery Π = samples, and let I� = [�, 1/�].�6 � √ �d 

64L dSet threshold τ = .�8 

for each sub-cube Ci: 
if the number of samples from the sub-cube exceeds τ 
then 

Compute θi ← arg minθ∈I� ,θ/�∈N E(x,y):x∈Ci 
[g(θ, y)]. 

For all x ∈ Ci: return θA(x) ← θi. 
else 

For all x ∈ Ci: return θA(x) ← 1. 

To go from a single x to the whole distribution, the main 
idea is to discretize the domain of x using an �-net for small 
enough �.2 For each cell in the �-net, we show that if there 
are enough samples in the training set from that cell, then we 
can estimate the conditional probability y|x to a suffcient 
degree of accuracy for the optimization loss to be bounded 
by 1 + �. On the other hand, if there are too few samples, 
then the probability density in the cell is small enough that it 
suffces to use a worst case online algorithm for all test data 
in the cell. (The formal algorithm is given in Algorithm 2.) 
We refer the reader to the full version of the paper for a 
formal analysis of this algorithm. 

The main shortcoming of Theorem 1 is that there is an expo-
nential dependence of the sample complexity on the number 
of feature dimensions d. Unfortunately, this dependence is 
necessary, as shown by the next theorem: 
Theorem 2. For any learning-to-rent algorithm, there exists 
a family of 1-Lipschitz joint distributions (x, y) where x ∈ 

1[0, 1]d such that the algorithm must query samples in 
�Ω(d) 

order to be (1 + �)-accurate, for small enough � > 0. 

4. A PAC Learning Approach to the 
Learning-to-Rent Problem 

In the previous section, we saw that without making further 
assumptions, the number of samples required by a learning-

2The � in the �-net is not the same as the accuracy parameter �. 
We are overloading � in this description because the reader may be 
familiar with the term �-net; in the formal algorithm (Algorithm 2), 
we avoid this overloading. 
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to-rent algorithm will be exponential in the dimension of the 
feature space. To avoid this, we try to identify reasonable 
assumptions that allow the learning-to-rent algorithm to be 
more effcient. 

We follow the traditional framework of PAC learning. Recall 
that in PAC learning, the true function mapping features to 
labels is restricted to a given concept class C: 

Defnition 4. Consider a set X ∈ Rd and a concept class C 
of Boolean functions X → {0, 1}. Let c be an arbitrary hy-
pothesis in C. Let P be a PAC learning algorithm that takes 
as input the set S comprising m samples (xi, yi) where xi 

is sampled from a distribution D on X and yi = c(xi), and 
outputs a hypothesis ĉ. P is said to be have � error with 
failure probability δ, if with probability at least 1 − δ: 

Px∼D[ĉ(x) =6 c(x)] ≤ �. 

Standard results in learning theory show that if the function 
class C is “simple”, the PAC-learning problem can be solved 
with a small number of samples. In the learning-to-rent 
problem, our goal is to learn the optimal policy θ∗(·). 

We consider the situation where the value of y is determin-
istic given x. This assumption says that the features contain 
enough information to predict the length of the ski season. 

Assumption 1. In the input distribution (x, y) ∼ K for the 
learning-to-rent algorithm, the value of y is a deterministic 
function of x i.e y = f(x) for some function f . 

Note that in this case, the optimal solution is going to have 
competitive ratio of 1, so an (1+�)-accurate learning-to-rent 
algorithm must have competitive ratio 1 + �. 

Because of Assumption 1, the entire feature space can be 
divided into two regions: one where y < 1 and renting is 
optimal, and the other where y ≥ 1 and buying at the outset 
is optimal. If the boundary between these two regions is 
PAC-learnable, we can hope to improve on the result from 
the previous section. This could also be seen as a weakening 
of Assumption 1: 

Assumption 2. In the input distribution (x, y) ∼ K for the 
learning-to-rent algorithm where X is the domain for x, 
there exists a hypothesis c : X 7→ {0, 1} lying in a concept 
class C such that c separates the regions y ≥ 1 and y < 1. 
For notational purposes, we say c(x) = 1 when y ≥ 1 and 
c(x) = 0 when y < 1. 

PAC-learning as a black box. We frst show that in this 
setting, one can use the PAC-learning algorithm as a black-
box. In other words, if we can PAC-learn the concept class 
C accurately, then we can get a competitive algorithm for 
the ski-rental problem. The precise algorithm is given in 
Algorithm 3. Note that we only use Assumption 2 here. 

Algorithm 3 Black box learning-to-rent algorithm
√ 

Set τ = � 

Learning: Query n samples. Train a PAC-learner. 

For test input x: 
if PAC-learner predicts y ≥ 1 
then θ(x) = τ 
else θ(x) = 1. 

The next theorem relates the competitive ratio achieved by 
Algorithm 3 with the accuracy of the black-box PAC learner. 
This implies an upper bound on the sample complexity of 
learning-to-rent, using the sample complexity bounds for 
PAC learners. 

Theorem 3. Given an algorithm that PAC-learns the con-
cept class C with error � and failure probability δ, there 
exists a learning-to-rent algorithm that has a competitive√ 
ratio of (1 + 2 �) with probability 1 − δ. 

Remark: The above theorem can be refned for asymmetri-
cal errors (where the classifcation errors on the two sides 
are different) showing that the algorithm is more sensitive 
to errors of one type than the other. 

Next, we show that the relationship between PAC-learning 
and learning-to-rent, established in one direction in Theo-
rem 3, actually holds in other direction too. In other words, 
we can derive a PAC-learning algorithm from a learning-to-
rent algorithm. This implies, for instance, that existing lower 
bounds for PAC-learning also apply to learning-to-rent al-
gorithms. Therefore, in principle, the sample complexity of 
the algorithm in Theorem 3 is (nearly) optimal without any 
further assumptions. 

Theorem 4. If there exists an (�, δ)-accurate learning-to-
rent algorithm for a concept class C with n samples, then 
there exists an O(�, δ) PAC-learning algorithm for C with 
the same number of samples. 

4.1. Margin-based PAC-learning for Learning-to-Rent 

Theorem 3 is very general in that there are many concept 
classes for which we have existing PAC-learning bounds. 
On the other hand, even for a simple linear separator, PAC-
learning requires at least Ω(d) samples in d dimensions, 
which can be costly for large d. However, the sample com-
plexity can be reduced when the VC-dimension of the con-
cept class is small: 

Theorem 5 (e.g., (Kearns & Vazirani, 1994)). A concept 
class of VC-dimension D is (�, δ) PAC-learnable using n =� � 

D+log(1/δ)Θ samples. For fxed δ, the sample complexity � � � 
Dof PAC-learning is Θ .� 
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In particular, this result is used when the underlying data 
distribution has a margin, which is the distance of the closest 
point to the decision boundary: 
Defnition 5. Given a data set D ∈ Rd × {0, 1} and a 
separator c, the margin of D with respect to c is defned as 
min kx − x0k.x0∈Rd ,(x,y)∈D,c(x0)6=y 

The advantage of having a large margin is that it reduces 
the VC-dimension of the concept class. Since the precise 
dependence of the VC-dimension on the width of the margin 
(denoted α) depends on the concept class C, let us denote 
the VC-dimension by D(α). 

Crucially, we will show that in the learning-to-rent algo-
rithm, it is possible to reduce the sample complexity even if 
the original data (x, y) ∼ K does not have any margin. The 
main idea is that the learning-to-rent algorithm can ignore 
training data in a suitably chosen margin. This is because 
y ≈ 1 for points in the margin, and the competitive ratio 
of ski rental is close to 1 for these points even with no ad-
ditional information. Thus, although the algorithm fails to 
learn the label of test data near the margin reliably, this does 
not signifcantly affect the eventual competitive ratio of the 
learning-to-rent algorithm. 

Note that the L-Lipschitz property under Assumption 1 is: 
Assumption 3. For x1, x2 ∈ X where X is the domain of 
x, if y1 = f(x1) and y2 = f(x2), we have |y1 − y2| ≤ 
L · kx1 − x2k. 

We now give a learning-to-rent algorithm that uses this 
margin-based approach (Algorithm 4). Recall that α is the 
width of the margin used by the algorithm; we will set the 
value of α later. 

Algorithm 4 Margin-based learning-to-rent algorithm 
Set γ = Lα. 

Learning: Query n samples. Discard samples (xi, yi) 
where yi ∈ [1 − γ, 1 + γ]. Use the remaining samples to 
train a PAC-learner with margin α. 

For test input x: 
if PAC-learner predicts y ≥ 1 
then θ(x) = γ 
else θ(x) = 1 + γ. 

The fltering process creates an artifcial margin: 
Lemma 6. In Algorithm 4, the samples used in the PAC 
learning algorithm have a margin of α. 

We now analyze the sample complexity of Algorithm 4. 
Theorem 7. Given a concept class C with VC-dimension 
D(α) under margin α, there exists a learning-to-rent al-
gorithm that has a competitive ratio of 1 + O(Lα) for n 

samples with constant failure probability, where α satisfes: r 
D(α) 

= Lα. (4) 
n 

Proof. Let q denote the probability that (xi, yi) satisfes 
1 − γ ≤ yi ≤ 1 + γ, i.e., is in the margin. With probability 
1 − q, a test input does not lie in the margin and we have the 
following two scenarios: 

• With probability (1 − �), the prediction is correct and 
the competitive ratio is at most (1 + γ). 

• With probability �, the prediction is incorrect and the� � 
1competitive ratio is at most max 1 + , 2 + γ . For γ 

small γ (say γ ≤ 1/2, which will hold for any reason-
able sample size n), this value is 1 + 1 .γ 

With probability q, a test input lies in the margin and the 
competitive ratio is at most 1+γ . The expected competitive 1−γ 
ratio is: 

CR(θ, K) ≤ (1 − q) · (1 − �) · (1 + γ)+� � � � 
1 1 + γ 

+ (1 − q) · � · 1 + + q · 
γ 1 − γ� � 

1 2γ ≤ 1 + (1 − q) · (1 − �) · γ + (1 − q) · � · + q · 
γ 1 − γ 

� ≤ 1 + 4γ + (1 − q) · for γ ≤ 1/2. 
γ 

Now, note that by Chernoff bounds (see, e.g., Motwani & 
Raghavan (1997)), the number of samples used for training 
the classifer after fltering is nf ≥ n(1−q)/2 with constant 
probability. Also, by Theorem 5 and Lemma 6, we�predict� 
whether y < 1 or y ≥ 1 with an error rate of � = O D(α) 

nf 

using nf samples with constant probability. This implies: � � 
D(α)

(1 − q) · � = O . 
n � � 

Thus, CR(θ, K) ≤ 1 + 4γ + O D(α) . Optimizing for n·γ�q � 

γ, we have γ = θ D(α) . But, we also have γ = Lα n 

in the algorithm. This implies that we choose α to satisfy 
Eq. (4) and obtain a competitive ratio of 1 + O(Lα). 

We now apply this theorem for the important and widely 
used case of linear separators. The following well-known 
theorem establishes the VC-dimension of linear separators 
with a margin. 

Theorem 8 (see, e.g., Vapnik & Vapnik (1998)). For an 
input parameter space X ∈ Rd that lies inside a sphere of 
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radius R, the concept class of α-margin separating hyper-
planes for X has the VC dimension D given by: � � 

R2 

D ≤ min , d + 1. 
α2 

Feature vectors are typically assumed to be normalized to 
have constant norm, i.e., R = O(1). Thus, Theorem 7 gives 
the sampling complexity for linear separators as follows: 

Corollary 9. For the class of linear separators, there is a 
learning-to-rent algorithm that takes as input n samples� √ � 

Land has a competitive ratio of 1 + O 
n1/4 . 

For instances where a linear separator does not exist, a pop-
ular technique called kernelization (see Rasmussen (2003)), 
is to transform the data points x to a different space φ(x) 
where they become linearly separable. 

Corollary 10. For a kernel function φ satisfying 
kφ(x1) − φ(x2)k ≥ 1 · kx1 − x2k for all x1, x2, assuming ν 
the data is linearly separable in kernel space, there exists a 
learning-to-rent algorithm that achieves a competitive ratio � √ � 

Lνof 1 + O with n samples,1/4n 

Conceptually, the corollary states that we can make use of 
these kernel mappings without hurting the competitive ratio 
bounds achieved by the algorithm. This is because the sam-
ple complexity in the margin-based algorithm (Algorithm 4) 
is independent of the number of dimensions. 

5. Learning-to-rent with a Noisy Classifer 
So far, we have seen that PAC-learning a binary classifer 
with deterministic labels (Assumption 1) is suffcient for a 
learning-to-rent algorithm. However, in practice, the data 
is often noisy, which leads us to relax Assumption 1 in this 
section. Instead of requiring y|x to be deterministic, we 
only insist that y|x is predictable with suffcient probability. 
In other words, we replace Assumption 1 with the following 
(weaker) assumption: 

Assumption 1’. In the input distribution (x, y) ∼ K, there 
exists a deterministic function f and a parameter p such 
that the conditional distribution of y|x satisfes y = f(x) 
with probability at least 1 − p. 

This defnition follows the setting of binary classifcation 
with noise frst introduced by Bylander (1994). Indeed, the 
existence of noise-tolerant binary classifers (e.g., (Blum 
et al., 1998; Awasthi et al., 2014; Natarajan et al., 2013)), 
leads us to ask if these classifers can be utilized to design 
learning-to-rent algorithms under Assumption 1’. We an-
swer this question in the affrmative by designing a learning-
to-rent algorithm in this noisy setting (see Algorithm 5). 
This algorithm assumes the existence of a binary classifer 

than can tolerate a noise rate of p and achieves classifcation 
error of �. Let p0 = max(p, �). If p0 is large, then the 
noise/error rate is too high for the classifer to give reliable 
information about test data; in this case, the algorithm re-
verts to a worst-case (randomized) strategy. On the other 
hand, if p0 is small, the the algorithm uses the label output√
by the classifer, but with a minimum wait time of p0 on 
all instances to make it robust to noise and/or classifcation 
error. 

Algorithm 5 Learning-to-rent with a noisy classifer 
Set p0 = max(p, �). 

Learning: 
1if p0 ≤ 9(e−1)2 

then PAC-learn the classifer on n (noisy) training samples. 

For test input x: 
1if p0 > 9(e−1)2 ( 

z e , for z ∈ [0, 1]e−1then P[θ(x) = z] = 
0, for z > 1. 

else 
if PAC-learner predicts y < 1 
then θ(x) = 1 
else θ(x) = √ 

p0. 

The next theorem shows that this algorithm has a competi-√
tive ratio of 1+O( p0) for small p0, and does no worse than 

ethe worst case bound of irrespective of the noise/error: e−1 

Theorem 11. If there is a PAC-learning algorithm that can 
tolerate noise of p and achieve accuracy �, the above algo-√ erithm achieves a competitive ratio of min(1 + 3 p0, )e−1 
where p0 = max{p, �}. 

We also show that the above result is optimal in a rather 
strong sense: namely, even with no classifcation error, the 
competitive ratio achieved cannot be improved. 

1Theorem 12. For a given noise rate p ≤ , no (random-2 
ized) algorithm can achieve a competitive ratio smaller√ 

pthan 1 + , even when the algorithm has access to a2 
PAC-learner that has zero classifcation error. 

6. Robustness Bounds 
In this section, we address the scenario when there is no 
assumption on the input, i.e., the choice of the input is adver-
sarial. The desirable property in this setting is encapsulated 
in the following defnition of “robustness” adapted from the 
corresponding notion in (Purohit et al., 2018): 

Defnition 6. A learning-to-rent algorithm A with threshold 
function θ(·) is said to be γ-robust if g(θ(x), y) ≤ γ for any 
feature x and any length of the ski season y. 
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First, we show an upper bound on the competitive ratio for 
any algorithm based on the shortest wait time for any input. 

Lemma 13. A learning-to-rent algorithm with threshold � � 
1function θ(·) is 1 + θ0 

-robust where: 

θ0 = min θ(x). 
x∈Rd 

Proof. Note that the function g(θ, y) achieves its maximum 
value at y = θ+ρ where ρ → 0+ . In this case, the algorithm 
pays 1+θ, while the optimal offine cost approaches θ. This� � 
gives us that maxy∈R+ g(θ, y) = 1 + 1 . Now, since there θ 
is no x such that θ(x) < θ0, we get: � � 

1 
max g(θ(x), y) ≤ 1 + . 

y∈R+,x∈Rd θ0 

The robustness bounds for our algorithms are straightfor-
ward applications of the above lemma. We derive these 
bounds below. First, we consider Algorithm 2 based only 
on the Lipschitz assumption. � � 
Theorem 14. Algorithm 2 is 1 + 1 -robust. � 

Proof. Algorithm 2 always chooses a threshold in the range 
[�, 1/�], i.e., θ ≥ � for all inputs. The theorem now follows 
by Lemma 13. 

Next, we consider the black box algorithm that uses the PAC 
learning approach, i.e., Algorithm 3.� � 

1Theorem 15. Algorithm 3 is 1 + √ -robust. 
� 

√ 
Proof. Note that Algorithm 3 has θ ≥ � for all inputs, 

1which by Lemma 13 gives a robustness bound of 1+ √ .
� 

Next, we show robustness bounds for the margin-based 
approach, i.e., Algorithm 4. � � 

1Theorem 16. Algorithm 4 is 1 + -robust. Lα 

Proof. This follows from Lemma 13, with the observation 
that the shortest wait time in Algorithm 4 is γ = Lα. 

Finally, we consider the noisy classifcation setting in Algo-
rithm 5. � � 

e 1Theorem 17. Algorithm 5 is max , 1 + √ -robust. e−1 ε 

Proof. In the two cases in Algorithm 5, either the threshold 
θ satisfes θ ≥ √ 

p0 or a random threshold is chosen for 
ewhich the expected competitive ratio is for any input. e−1 

In the frst, case, we further note that p0 = max(p, ε) ≥ ε, 
√1 1i.e., 1 + p0 

≤ 1 + √ 
ε . The theorem now follows by 

applying Lemma 13. 

7. Numerical Simulations 
In this section, we use numerical simulations to evaluate the 
algorithms that we designed for the learning-to-rent prob-
lem: the black box algorithm (Algorithm 3), the margin-
based algorithm (Algorithm 4), and the algorithm for a 
noisy classifer (Algorithm 5). We compare the frst two 
algorithms and show that as the predicted by the theoretical 
analysis, the margin-based algorithm substantially outper-
forms the black box algorithm in high dimensions. For 
learning-to-rent with a noisy classifer, we show that its√
competitive ratio follows the (1 + p)-curve predicted by 
the theoretical analysis with increasing noise rate p. 

Experimental Setup. We frst describe the joint distribu-
tion (x, y) ∼ K used in the experiments. We choose a 
random vector W ∈ Rd as W ∼ N(0, I/d). We view W 
as a hyper-plane passing through the origin (W T x = 0). 
The value of y, representing the length of the ski season, is 

2calculated as −WT , such that y ≥ 1 when W T x ≥ 0 
(1+e x) 

and y < 1 otherwise. Note that this satisfes the Lipschitz 
condition given in Defnition 3, with L = 2 for kW k ≤ 1. 

Training and Validation. For a given training set, we split 
it in two equal halves, the frst half is used to train our PAC 
learner and the second half is used as a validation set to 
optimize the design parameters in the algorithms, namely τ 
in Algorithm 3 and γ in Algorithm 4. 

The input x is drawn from a mixture distribution, where 
with probability 1/2 we sample x from a Gaussian x ∼ 
N(0, I/d), and with probability 1/2, we sample x as x = 
αW + η, here α ∼ N(0, 1) is a coeffcient in the direction 

1of W and η ∼ N(0, I). Choosing x from the Gaussian d 
distribution ensures that the data-set has no margin; however, 
in high dimensions, W T x will concentrate in a small region, 
which makes all the label y very close to 1. We address this 
issue by mixing in the second component which ensures 
that the distribution of y is diverse. 

We test our algorithms for dimensions d = 2, 100, and 5000. 
For each d, we create a large corpus of samples and select 
N of them randomly and designate this as the training set; 
the remaining samples form the test set. 

Comparison between the two algorithms. The compar-
ative performance of Algorithm 3 and Algorithm 4 for 
d = 2, 100, and 5000 is given in Fig. 1.3 For small d 
(d = 2), we do not see a signifcant difference in the per-
formance of the two algorithms because the curse of dimen-
sionality suffered by Algorithm 3 is not prominent at this 
stage. In fact, in this case the optimal margin on validation 
set is very close to 0. However, as d increases, Algorithm 4 
starts outperforming Algorithm 3 as expected from the theo-

3In all the fgures, the vertical bars represent standard deviation 
of the output value and the value plotted on the curve is the mean. 
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Figure 1. Comparison of Algorithm 3 (blue) and Algorithm 4 (orange). From left to right, d = 2, 100, and 5000. 

Figure 2. Classifcation error in Algorithm 3 (green) and Algo-
rithm 4 (blue for all samples, orange for fltered samples). 

retical analysis. For d = 100, this difference of performance 
is prominent at small sample size but disappears for larger 
samples, because of the trade-off between sample size and 
number of dimensions in Corollary 9 and Theorem 3. Even-
tually, at d = 5000, Algorithm 4 is clearly superior. 

To further understand the difference between the black box 
approach and the margin-based approach, in Figure 2, we 
plot the error of the two binary classifers used in Algo-
rithm 3 and Algorithm 4 when d = 5000. Although both 
classifers achieve very low accuracy on the entire data-set, 
the margin-based classifer was able to correctly label the 
data points that are far from the decision boundary, i.e., 
the data points where mis-classifcation would be costly 
from the optimization perspective. As a result, Algorithm 4 
performs much better overall. 

Learning with noise. We now evaluate the learning-to-rent 
algorithm with a noisy classifer (Algorithm 5), We fx the 
number of dimensions d = 100, and create a training set of 
N = 105 samples using the same distribution as earlier. But 
now, we add noise to the data by declaring each data point as 
noisy with probability p (we will vary the parameter p over 
our experiments). There are two types of noisy data points: 
ones where the classifer predicts y ≥ 1 and the actual value 
is y < 1, or vice-versa. For data points of the frst type, we 
choose y from the worst case input distribution in the lower 

e −zbound given by Theorem 12, i.e, P[y = z] = · z · e e−1 
for z ∈ [0, 1] and point mass of 1/(e − 1) at some z > 1, 
say at z = 2. For data points of the second type, the input 
distribution is not crucial, so we simply choose a uniform 
random y in [1, 2]. The testing is done on a batch of 1000 
samples from the same distribution. We use a noise tolerant 

Perceptron Learner (see, e.g., Bylander (1994)) to learn the 
classes (y ≥ 1 and y < 1) in the presence of noise. We can 
see that even for noise rates as high as 40%, the competitive 
ratio of the learning-to-rent algorithm is still better than the 
e that is the best achievable in the worst case. (Figure 3)e−1 

Figure 3. Algorithm 5 with varying noise rate with d = 100. 

8. Conclusion and Future Work 
In this paper, we explored the question of customizing ma-
chine learning algorithms for optimization tasks, by incor-
porating optimization objectives in the loss function. We 
demonstrated, using PAC learning, that for the classical rent 
or buy problem, the sample complexity of learning can be 
substantially improved by incorporating the insensitivity 
of the objective to mis-classifcation near the classifcation 
boundary (which is responsible for large sample complexity 
if accurate classifcation were the end goal). In addition, we 
showed worst-case robustness bounds for our algorithms, 
i.e., that they exhibit bounded competitive ratios even if the 
input is adversarial. 

This general approach of “learning for optimization” opens 
up a new direction for future research at the boundary of 
machine learning and algorithm design, by providing an 
alternative “white box” approach to the existing “black box” 
approaches for using ML predictions in beyond worst case 
algorithm design. While we explored this for an online 
problem in this paper, the principle itself can be applied to 
any scenario where an algorithm hopes to learn patterns in 
the input that can be exploited to achieve performance gains. 
We posit that this is a rich direction for future research. 
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