
Supplementary Material:
Adversarial Robustness for Code

Pavol Bielik 1 Martin Vechev 1

We provide the following four appendices:

• Appendix A provides details of our dataset and addi-
tional experiments that evaluates the effect of dataset
size.

• Appendix B describes the method (introduced by Liu
et. al. 2019) used in our work for training neural mod-
els that abstain from making predictions if uncertain.

• Appendix C describes application of the adversarial
training in the domain of code via a set of program
mutations.

• Appendix D provides a formal defnition of the inte-
ger linear encoding used to solve the problem in Equa-
tion 2 effciently. Additionally, we provide a concrete
example illustrating the encoding.

A. Evaluation
Implementation All our models are implemented in Py-
Torch (Paszke et al., 2019). The graph neural networks are
implemented using the DGL library v0.4.3 (Wang et al.,
2019). To solve the integer linear program we use Gurobi
solver v8.11 (Gurobi Optimization, 2020).

Adaptive computation time (ACT) (Graves, 2016) Our
GNT model implements the Adaptive Computation Time
(ACT) (Graves, 2016) technique which dynamically learns
how many computational steps each node requires in order
to make a prediction. This is in instead of using a fxed
amount of steps as done for example in (Allamanis et al.,
2018; Brockschmidt et al., 2019). To achieve this, recall
that for each node vi ∈ V in the graph, a graph neural net-

iwork computes sequence of hidden states s where t ∈ Nt
is the timestep1. Following (Graves, 2016), the number of

1Department of Computer Science, ETH Zürich, Switzerland.
Correspondence to: Pavol Bielik <pavol.bielik@inf.ethz.ch>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

timesteps that the model performs is controlled by intro-
ducing an extra sigmoidal halting unit hi ∈ R(0,1) witht
associated learnable weight matrix Wh and bias bh:

ihi = σ(Whs + bh)t t

The output of the halting unit is then used to determine the
ihalting probability p as follows: t ⎧ Pt−1⎪1 − hi if t = T (last timestep) ⎨ k=0 k

i Pt−1
hi Pt pt = 1 − k if hi ≥ 1 − �⎪ k=0 k=0 k⎩

hi otherwiset

where T ∈ N is the maximum allowed number of timesteps
and � ∈ R(0,1) is a small constant introduced to allow the
network to stop after a single step (we use � = 0.01 in our

iexperiments). Finally, the halting probability p is used to t
idefne the fnal state s of a node vi as a weighted average T

of its intermediate states:
TX

i i i s = p · sT t t
t=0

Dataset To obtain the datasets used in our work, we
extend the infrastructure from DeepTyper (Hellendoorn
et al., 2018), collect the same top starred projects on
GitHub, and perform similar preprocessing steps – remove
TypeScript header fles, remove fles with less than 100
or more than 3,000 tokens and split the projects into train,
validation and test datasets such that each project is fully
contained in one of the datasets. Additionally, we remove
exact fle duplicates and fles that are similar to each other
(≈ 10% of the fles). We measure fle similarity by collect-
ing all 3-grams (excluding comments and whitespace) and
removing fles with Jaccard similarity greater than 0.7.

We compute the ground-truth types using the TypeScript
compiler version 3.4.5 based on manual type annota-
tions, library specifcations and analyzing all project fles.
While we reuse the same GitHub projects and part of
DeepTyper’s infrastructure2 to obtain the dataset, the
datasets are not directly comparable for a number of rea-
sons. First, we fxed a bug due to which DeepTyper in-

1 Note we assume only that s it is computed for each timestep correctly included some type annotations as part of the
which is independent of the concrete graph neural architecture
used to compute s it. 2https://github.com/DeepTyper/DeepTyper

https://github.com/DeepTyper/DeepTyper
mailto:pavol.bielik@inf.ethz.ch

Supplementary Material: Adversarial Robustness for Code

input. Second, the projects we used are subset of those
used in DeepTyper since some are no longer available and
were removed from GitHub. Third, we additionally predict
the types corresponding to all intermediate expressions and
constants (e.g., the expression x + y contains three predic-
tions for x, y and x+y). This improves model performance
as it is explicitly trained also on the intermediate steps re-
quired to infer the types. Finally, we train all the models to
predict four primitive types (string, number, boolean,
void), four function types (() ⇒ string, () ⇒ number,
()⇒boolean, ()⇒void) and a special unk label denoting
all the other types. While this is similar to types predicted
by some other works such as JSNice (Raychev et al.,
2015), it is only subset of types considered in DeepTyper.

All results presented in Tables 1 and 2 are obtained by
training our models using a dataset that contains 3000 pro-
grams split equally between training, validation and test
datasets. Because each program contain multiple type pre-
dictions, the number of training samples is signifcantly
higher than the number of programs. Concretely, there
are 139, 915, 223, 912 and 121, 153 samples in training,
validation and test datasets. We note that this is only
a subset of the full dataset that can be obtained by pro-
cessing all the fles included in the projects used by Hel-
lendoorn et al. We make the dataset available online at
https://github.com/eth-sri/robust-code.

During adversarial training, we explore 20 different mod-
ifcations δ ⊆ Δ(x) applied to each sample (x, y) ∈ D
which effectively increases dataset size by up to two or-
ders of magnitude since for each training epoch the modi-
fcations are different. For the purposes of evaluation, we
increase the number of explored modifcations to 1300 for
each sample – 1000 for renaming modifcations and further
300 for renaming together with structural modifcations.

B. Training Neural Models to Abstain
We now present a method for training neural models of
code that provide an uncertainty measure and can abstain
from making predictions. This is important as essen-
tially all practical tasks contain some examples for which it
is not possible to make a correct prediction (e.g., due to the
task hardness or because it contains ambiguities). In the
machine learning literature this problem is known as se-
lective classifcation (supervised-learning with a reject op-
tion) and is an active area with several recently proposed
approaches (Gal & Ghahramani, 2016; Liu et al., 2019;
Gal, 2016; Geifman & El-Yaniv, 2017; 2019). In our work,
we use one of these methods (Liu et al., 2019) which is
briefy summarized below. For a full description, we refer
the reader to the original paper (Liu et al., 2019).

Let D = {(xj , yj)}N be a training dataset and f : X → Yj=1

an existing model trained to make predictions on D. The
existing model f is augmented with an option to abstain
from making a prediction by introducing a selection func-
tion gh : X → R(0,1) with an associated threshold h ∈
R(0,1), which leads to the following defnition: (

f(x) if gh(x) ≥ h
(f, gh)(x) := (1)

abstain otherwise

That is, the model makes a prediction only if the selec-
tion function gh is confdent enough (i.e., gh(x) ≥ h) and
abstains from making a prediction otherwise. Although
conceptually the model is now defned by two functions
f (the original model) and gh (the selection function), it is
possible to adapt the original classifcation problem such
that a single function f 0 encodes both. To achieve this,
an additional abstain label is introduced and a function
f 0 : X → Y ∪ {abstain} is trained in the same way as f
(i.e., same network architecture, hyper-parameters, etc.)
with two exceptions: (i) f 0 is allowed to predict the ad-
ditional abstain label, and (ii) the loss function used to
train f 0 is changed to account for the additional label.
After f 0 is obtained, the selection function is defned as
gh := 1 − f 0(x)abstain, that is, to be the probability of
selecting any label other than abstain according to f 0 .
Then, f is defned to be re-normalized probability distribu-
tion obtained by taking the distribution produced by f 0 and
assigning zero probability to abstain label. Essentially,
as long as there is suffcient probability mass h on labels
outside abstain, f decides to select one of these labels.

Loss function for abstaining To gain an intuition be-
hind the loss function used for training f 0 , recall that the
standard way to train neural networks is to use cross en-
tropy loss:

|Y|X
` CrossEntropy(p, y) := − yi log(pi) (2)

i=1

Here, for a given sample (x, y) ∈ D, p = f(x) is a vector
of probabilities for each of the |Y| classes computed by the
model and y ∈ R|Y| is a vector of ground-truth probabili-
ties. Without loss of generality, assume only a single label
is correct, in which case y is a one-hot vector (i.e., yj =1
if j-th label is correct and zero elsewhere). Then, the cross
entropy loss for an example where the j-label is correct is
− log(pj). Further, the loss is zero if the computed proba-
bility is pj = 1 (i.e., − log(1) = 0) and positive otherwise.

Now, to incorporate the additional abstain label, the ab-
stain cross entropy loss is defned as follows:

|Y|X
` AbstainCrossEntropy(p, y) := − yi log(pioi + pabstain)

i=1
(3)

https://github.com/eth-sri/robust-code

Supplementary Material: Adversarial Robustness for Code

Here p ∈ R|Y|+1 is a distribution over the classes (includ-
ing abstain), oi ∈ R is a constant denoting the weight
of the i-th label and pabstain is the probability assigned
to abstain. Intuitively, the model either: (i) learns to
make “safe” predictions by assigning the probability mass
to pabstain, in which case it incurs constant loss of pabstain,
or (ii) tries to predict the correct label, in which case it po-
tentially incurs smaller loss if pioi > pabstain. If the scal-
ing constant oi is high, the model is encouraged to make
predictions even if it is uncertain and potentially makes lot
of mistakes. As oi decreases, the model is penalized more
and more for making mis-predictions and learns to make
“safer” decisions by allocating more probability mass to
the abstain label.

Obtaining a model which never mis-predicts on D For
the ` AbstainCrossEntropy loss, it is possible to always ob-
tain a model f 0 that never mis-predicts on samples in D.
Such a model f 0 corresponds to minimizing the loss in-
curred by Equation 3 which corresponds to maximizing
pioi + pabstain (assuming i is the correct label). This can
be simplifed and bounded from above to pi +pabstain ≤ 1,
by setting oi =1 and for any valid distribution it holds that P
1= pi∈p pi. Thus, pioi + pabstain has a global optimum
trivially obtained if pabstain =1 for all samples in D. That
is, the correctness (no mis-predictions) can be achieved by
rejecting all samples in D. However, this leads to zero re-
call and is not practically useful.

Balancing correctness and recall To achieve both cor-
rectness and high recall, similar to Liu et. al., we train our
models using a form of annealing. We start with a high
oi = |Y|, biasing the model away from abstaining, and
then train for a number of epochs n. We then gradually
decrease oi to 1 for a fxed number of epochs k, slowly
nudging it towards abstaining. Finally, we keep training
with oi = 1 until convergence. We note that the threshold
h is not used during the training. Instead, it is set after the
model is trained and is used to fne-tune the trade-off be-
tween recall and correctness (precision). Further, note that
oi = 1 is used only if the desired accuracy is 100% and
otherwise we use oi = 1 + �. Here, � is selected by de-
creasing the value oi as before but stopping just before the
model abstains from making all predictions.

Summary We described an existing technique (Liu et al.,
2019) for training a model that learns to abstain from mak-
ing predictions, allowing us to trade-off correctness (preci-
sion) and recall. A key advantage of this technique is its
generality – it works with any existing neural model with
two simple changes: (i) adding an abstain label, and (ii)
using the loss function in Equation 3. To remove clutter and
keep discussion general, the rest of our work interchange-
ably uses f(x) and (f, gh)(x).

C. Adversarial Training for Code
In Section B, we described how to learn models that are
correct on subset of the training dataset D by allowing the
model to abstain from making a prediction when uncer-
tain. We now discuss how to achieve robustness (that is,
the model either abstains or makes a correct prediction)
to a much larger (potentially infnite) set of samples be-
yond those included in D via so-called adversarial train-
ing (Goodfellow et al., 2015).

Adversarial training The goal of adversarial train-
ing (Madry et al., 2018; Wong & Kolter, 2018; Sinha et al.,
2018; Raghunathan et al., 2018) is to minimize the ex-
pected adversarial loss:

E(x,y)∼D[max `(f(x + δ), y)] (4)
δ⊆Δ(x)

In practice, as we have no access to the underlying distribu-
tion but only to the dataset D, the expected adversarial loss
is approximated by adversarial risk (which training aims
to minimize):

1
|D|

|D|X
max `(f(x + δ), y)

δ⊆Δ(x)
(x,y)∈D

(5)

Intuitively, instead of training on the original samples in D,
we train on the worst perturbation of each sample. Here,
δ ⊆ Δ(x) denotes an ordered sequence of modifcations
while x + δ denotes a new input obtained by applying each
modifcation δ ∈ δ to x. Recall that each input x = hp, li
is a tuple of a program p and a position l in that program
for which we will make a prediction. Applying a modif-
cation δ : X → X to an input x corresponds to generating
both a new program as well as updating the position l if
needed (e.g., in case the modifcation inserted or reordered
program statements). That is, δ can modify all positions in
p, not only those for which a prediction is made. Further,
note that the sequence of modifcations δ ⊆ Δ(x) is com-
puted for each x separately, rather than having the same set
of modifcations applied to all samples in D.

Using adversarial training in the domain of code requires a
set of label preserving modifcations Δ(x) over programs
which preserve the output label y (defned for a given task
at hand), and a technique to solve the optimization problem
maxδ⊆Δ(x) effciently. We elaborate on both of these next.

C.1. Label Preserving Program Modifcations

We defne three types of label preserving program modif-
cations – word substitutions, word renaming, and sequence
substitutions. Note that label preserving modifcations are
a strict superset of semantic preserving modifcations. This

Supplementary Material: Adversarial Robustness for Code

is because while label preserving modifcations only re-
quire that the correct label does not change, the semantic
preserving modifcations require that both the label does
not change as well as that the overall program semantics
do not change. Preserving programs semantics is for many
properties unnecessarily strict and therefore we focus on
the more general label preserving modifcations.

• Word substitutions are allowed to substitute a word at
a single position in the program with another word
(not necessarily contained in the program). Examples
of word substitutions include changing constants or
values of binary/unary operators.

• Word renaming is a modifcation which includes re-
naming variables, parameters, felds or methods. In
order to produce valid programs, this modifcation
needs to ensure that the declaration and all usages
are replaced jointly. Because of this, renaming a sin-
gle variable in practice always corresponds to making
multiple changes to the program (i.e., |δ| > 1 unless
the variable is used only once).

• Sequence substitution is the most general type of mod-
ifcation which can perform any label preserving pro-
gram change such as adding dead code or reordering
independent program statements.

The main property differentiating the modifcation types is
that word renaming and substitution do not change program
structure. This is used both to compute which substitution
should be made as well as to provide formal correctness
guarantees (discussed in Section 4). Further, is it used for
effcient implementation that allows us to implement word
substitutions and word renaming directly on the batched
tensors, thus making them fast. In contrast, sequence sub-
stitutions require parsing batched tensors back to programs,
applying modifcations on the programs and the processing
the resulting programs back to batched tensors. As a result,
word substitutions and renaming take 0.1 second to apply
once over the full training dataset while structural modif-
cations are ≈ 70× slower and take 7 seconds.

Additionally, it is also possible to defne modifcations that
are not label preserving (i.e., change the ground-truth la-
bel), in which case the user has to additionally provide an
oracle that computes the correct label y. However, such
oracles are typically expensive to design and run (i.e., one
would need to run a static analysis over the program or ex-
ecute the program) and therefore label preserving modif-
cation are a preferred option whenever available.

C.2. Finding Adversarial Examples

Given a program x, associated ground-truth label y, and
a set of valid modifcations Δ(x) that can be applied

over x, our goal is to select a subset of them δ ⊆ Δ(x)
such that the inner term in the adversarial risk formula
maxδ⊆Δ(x) `(f(x + δ), y) is maximized. Solving for the
optimal δ is highly non-trivial since: (i) δ is an ordered
sequence rather than a single modifcation, (ii) the set of
valid modifcations Δ(x) is typically very large, and (iii)
the modifcation can potentially perform arbitrary rewrites
of the program (due to sequence substitutions). Thus, we
focus on solving this maximization approximately, inline
with how it is solved in other domains. In what follows, we
discuss three approximate approaches to achieve this and
discuss their advantages and limitations.

C.2.1. GREEDY SEARCH

The frst approach is a greedy search that randomly samples
a sequence of modifcations δ ⊆ Δ(x). The sampling can
be performed for a predefned number of steps with the goal
of maximizing the adversarial risk, or until an adversarial
example is found (i.e., f(x + δ) 6= f(x)). Concretely, for a
given input x = hp, li, let us defne the space of valid mod-
ifcations Δ(x) ⊆ Δ(p, l1) × Δ(p, l2) × · · · × Δn(p, ln)
as the Cartesian product of possible modifcation applied
to each position in the program l1:n. We select δ us-
ing the following procedure: sample a threshold value
t ∼ N (0.1, 0.4) and apply the modifcation at each loca-
tion with probability t. If |Δi(p, li)| > 1, then the modif-
cation to apply is sampled at random from the set Δi(p, li).
Sampling of the threshold value t is done per each sample x
and ensures variety in the number of modifcations applied.

Limitations and advantages The main advantage of this
technique is that it is simple, easy to implement, and very
fast. Given its simplicity, this technique is independent of
the actual modifcation and applies equally to words substi-
tutions, word renamings as well as sequence substitutions.
However, a natural limitation of this technique is that is
uses no information about which positions and which val-
ues are important to the prediction is used.

C.2.2. GRADIENT-BASED SEARCH

Similar to prior works, gradient information can be used to
guide the search for an adversarial examples. This can done
in two ways – (i) fnding a program position to change, and
(ii) fnding both a program positions as well as the new
value to change. To fnd a program position, we can use
gradients to measure the importance of each position a for
a given prediction in the same way as described in Sec-
tion 3. Once the attribution score a is computed, the adver-
sarial attack can be generated by sampling positions to be
modifed proportionally to a, instead of the uniform sam-
pling used in the greedy search.

Additionally, as shown in the concurrent work (Yefet et al.,

Supplementary Material: Adversarial Robustness for Code

2019), the gradients can also be used to select both the pro-
gram position and the new value to be used (instead of sam-
pling from all valid values uniformly at random).

Limitations and advantages The main advantage of
gradient-based approach is that the decision of which po-
sition to changes as well as what the new value should
be is guided, rather than random. Further, for renaming
modifcations, such approach has shown to be quite ef-
fective (Yefet et al., 2019) at fnding the adversarial ex-
amples. However, the main limitation of this approach is
that it works only for replacing single value (i.e., word sub-
stitutions and word renaming) and not when the value is
a complex structure (i.e., sequence substitution). Sequence
substitutions are important class of modifcations which are
however hard to optimize for as in general, they can per-
form arbitrary changes to the program (e.g., adding dead
code, adding/removing statements, etc.).

C.2.3. REDUCING THE SEARCH SPACE

The third technique is orthogonal to the frst two and aims
to reduce the search space of relevant modifcations a pri-
ori, rather than searching it effciently. Concretely, for
a position li in the program p at which the prediction is
made, it refnes the set of valid program modifcations as
Δ(x) ⊆

Q
Δ(p, lj) for all positions {lj | lj ∈ l1:n ∧lj

reachable(lj , li)}. Here, we use reachable(lj , li) to de-
note that position lj can affect position li. When repre-
senting programs as graphs, this can be computed a priori
by checking the reachability between the two correspond-
ing nodes. Additionally, when used together with gradient
based optimization, such check is not necessary as the gra-
dients will naturally be zero. To obtain a program repre-
sentation where dependencies between many program lo-
cations are removed, we learn to refne program represen-
tation as described in Section 3 and Appendix D.

Limitations and advantages The main advantage of this
approach is that it applies to both renaming and structural
modifcations. The main disadvantage is that it depends
on the fact the dependencies between program locations
can be check effciently and learned as part of the train-
ing. While we show how this can be done for graph neural
networks, our approach currently does not support other
models such as recurrent neural networks.

Summary In this section, we described how adversarial
attacks can be applied to code via set of program modif-
cations. The adversarial attacks we consider are applied on
the discrete input (i.e., the attack always correspond to a
concrete program) rather than considering attacks in the la-
tent space that are not directly interpretable. We describe
two existing techniques that can be used to guide the search
for adversarial attacks (greedy search and gradient-based

search) and one makes the attacks easier by reducing the
search space. As such, these techniques are quite general
and can be applied to number of tasks over code. In our
experiments, we use the greedy search technique together
with reducing the search space.

D. Learning to Refne Representation
In this section, we provide formal defnition of the integer
linear program (ILP) encoding used to solve the optimiza-
tion problem presented in Section 3. Recall, that the prob-
lem statement is as follows.

Problem statement Minimize the expected size of the
refnement α ⊆ Φ subject to the constraint that the ex-
pected loss of the model f stays approximately the same:X

arg min |α(x)| (6)
α⊆Φ

(x,y)∈D

subject toP P
`(f(x), y) ≈ `(f(α(x)), y)(x,y)∈D (x,y)∈D

Our problem statement is quite general and can be di-
rectly instantiated by: (i) using ` AbstainCrossEntropy as the
loss (Appendix B), and (ii) using adversarial risk (Ap-
pendix C).

The motivation of solving Equation 6 by phrasing it as
ILP problem is that existing off-the-shelve ILP solvers can
solve it effciently and produce the optimal solution. We
discuss an alternative end-to-end solution that does not de-
pend on an external ILP solver at the end of Section 3.

Optimization via integer linear programming To solve
Equation 2 effciently, the key idea is that for each sample
(x, y)∈D we: (i) capture the relevance of each node to the
prediction made by the model f by computing the attribu-
tion a(f, x, y) ∈ R|V | (as described in Section 3), and (ii)
include the minimum number of edges necessary for a path
to exist between every relevant node (according to the attri-
bution a) and the node where the prediction is made. Pre-
serving all paths between the prediction and relevant nodes
encodes the constraint that the expected loss stays approx-
imately the same.

Concretely, let us defne a sink to be the node for which the
prediction is being made while sources are defned to be all
nodes v with attribution av >t. Here, the threshold t ∈ R is
used as a form of regularization. To encode the sources and
the sink as an ILP program, we defne an integer variable
rv associated with each node v ∈ V as: ⎧ P⎪ − if v is predicted node [sink]⎨ v0∈V \{v} rv0

rv = b100 · avc else if av > t [sources]⎪⎩
0 otherwise

Supplementary Material: Adversarial Robustness for Code

That is, rv for a source is its attribution value converted to
an integer and rv for a sink is a negative sum of all source
values. Note that in our defnition it is not possible for a sin-
gle node to be both source and a sink. For cases when the
sink node has a non-zero attribution, this attribution is sim-
ply left out since every node is trivially connected to itself.

We then defne our ILP formulation of the problem as
shown in Figure 1. Here costq is an integer variable as-
sociated with each edge feature and denotes the edge ca-
pacity (i.e., the maximum amount of fow allowed to go
trough the edge with this feature), fst is an integer vari-
able denoting the amount of fow over the edge hs, ti, the
constraint 0 ≤ fst ≤ costφ(hs,ti) encodes the edge capacity, P P
and rv + fsv = fvt encodes the {s|(s,v)∈E} {t|(v,t)∈E}
fow conservation constraint which requires that the fow
generated by the node rv together with the fow from all P
the incoming edges fsv has to be the same{s|(s,v)∈E}P
as the fow leaving the node {t|(v,t)∈E} fvt. The solu-
tion to this ILP program is a cost associated with each
edge feature q ∈ Φ. If the cost for a given edge fea-
ture is zero, it means that this feature was not relevant
and can be removed. As a result, we defne the refnement
α = {q | q ∈ Φ ∧ costq > 0} to contain all edge features
with non-zero weight.

Example As a concrete example, consider the initial
graph shown in Figure 2a and assume that the prediction
is made for node 1. For simplicity, each node has a sin-

gle attribute ξV , as shown in Figure 2b, and all edges are
of type ast. The edge feature for edge h1, 3i is there-
fore hast, A, Bi, since ξE (h1, 3i) = ast, ξV (1) = A and
ξV (3) = B, as shown in Figure 2c. The attribution a re-
veals two relevant nodes for this prediction – the node it-
self with score 0.3 and node 6 with score 0.7. We there-
fore defne a single source r6 = 70 and a sink r1 = −70
and encode both the edge capacity constraints, and the fow
conservation constraints as shown in Figure 2 (note that ac-
cording to Figure 1, we would encode all samples in D
jointly). The minimal cost solution assigns cost 70 to edge
features q3 and q7 which are needed to propagate the fow
from node 6 to node 1. The graph obtained by applying
the abstraction α = {q3, q7} is shown in Figure 2d and
makes the prediction independent of the subtree rooted at
node 2. Notice however, that an additional edge is included
between nodes 5 and 2. This is because α is computed us-
ing local edge features φ only, which are the same for edges
h3, 1i and h5, 2i.

P 0 ≤ fst ≤ costφ(hs,ti) ∀hs, ti ∈ E [edge capacity] minimize costq subj. to P P
q∈Φ rv + {s|(s,v)∈E} fsv = {t|(v,t)∈E} fvt ∀v ∈ V [fow conservation]

∀(hV, E, ξV , ξE i, y) ∈D

Figure 1. Formulation of the refnement problem from Equation 6 as a minimum cost maximum fow integer linear program.

1

(a) Original (d) Abstracted (b) Graph Nodes V
Graph G Graph α(G) V ξV a rv fow conservation constraints

2 3

4 5 6

1 A 0.3 r1 = −70
q3

2 A 0 r2 = 0
3 B 0 r3 = 0

1

2 3

4 5 6

q3 q7 4 C 0 r4 = 0
5 B 0 r5 = 0
6 D 0.7 r6 = 70

Optimization Problem P7
E ξE

edge capacity constraints minimize costqi subj. toi=1 h1, 2ifow conservation constraints
h1, 3i

Solution h3, 1i
costq3,q7 = 70 ∧ costq1,q2,q4,q5,q6 = 0 h5, 2i

α = {q3, q7} h6, 3i

r1 + f21 + f31 = f12 + f13

r2 + f12 + f42 + f52 = f21 + f24 + f25

r3 + f13 + f63 = f31 + f36

r4 + f24 = f42

r5 + f25 = f52

r6 + f36 = f63

(c) Graph Edges E
φ(hs, ti) edge capacity constraints

ast q1 = hast, A, Ai 0 ≤ f12 ≤ costq1

ast q2 = hast, A, Bi 0 ≤ f13 ≤ costq2

ast q3 = hast, B, Ai 0 ≤ f31 ≤ costq3

ast q3 = hast, B, Ai 0 ≤ f52 ≤ costq3
. . .

ast q7 = hast, D, Bi 0 ≤ f63 ≤ costq7

Figure 2. Illustration of ILP encoding from Figure 1 on a single graph where the prediction should be made for node 1.

References
Allamanis, M., Brockschmidt, M., and Khademi, M.

Learning to represent programs with graphs. In In-
ternational Conference on Learning Representations,
ICLR’18, 2018.

Brockschmidt, M., Allamanis, M., Gaunt, A. L., and Polo-
zov, O. Generative code modeling with graphs. In

Supplementary Material: Adversarial Robustness for Code

International Conference on Learning Representations,
ICLR’19, 2019.

Gal, Y. Uncertainty in Deep Learning. PhD thesis, Univer-
sity of Cambridge, Department of Engineering, 9 2016.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In Proceedings of The 33rd International Confer-
ence on Machine Learning, volume 48 of ICML’16, pp.
1050–1059, 2016.

Geifman, Y. and El-Yaniv, R. Selective classifcation for
deep neural networks. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing
Systems, NeurIPS’17, pp. 4885–4894, 2017.

Geifman, Y. and El-Yaniv, R. SelectiveNet: A deep neural
network with an integrated reject option. In Proceedings
of the 36th International Conference on Machine Learn-
ing, volume 97 of ICML’19, pp. 2151–2159, 2019.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. In 3rd In-
ternational Conference on Learning Representations,
ICLR’15, 2015.

Graves, A. Adaptive computation time for recurrent neural
networks. CoRR, abs/1603.08983, 2016.

Gurobi Optimization, L. Gurobi optimizer reference man-
ual, 2020. URL http://www.gurobi.com.

Hellendoorn, V. J., Bird, C., Barr, E. T., and Allamanis, M.
Deep learning type inference. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE’18, 2018.

Liu, Z., Wang, Z., Liang, P. P., Salakhutdinov, R. R.,
Morency, L.-P., and Ueda, M. Deep gamblers: Learn-
ing to abstain with portfolio theory. In Advances in Neu-
ral Information Processing Systems 32, NeurIPS’19, pp.
10622–10632. 2019.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to ad-
versarial attacks. In International Conference on Learn-
ing Representations, ICLR’18, 2018.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative
style, high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems 32,
NeurIPS’19, pp. 8024–8035. 2019.

Raghunathan, A., Steinhardt, J., and Liang, P. Cer-
tifed defenses against adversarial examples. In In-
ternational Conference on Learning Representations,
ICLR’18, 2018.

Raychev, V., Vechev, M., and Krause, A. Predicting pro-
gram properties from ”Big Code”. In Proceedings of
the 42Nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’15,
pp. 111–124, 2015.

Sinha, A., Namkoong, H., and Duchi, J. Certifable dis-
tributional robustness with principled adversarial train-
ing. In International Conference on Learning Represen-
tations, ICLR’18, 2018.

Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z.,
Li, M., Zhou, J., Huang, Q., Ma, C., Huang, Z., Guo,
Q., Zhang, H., Lin, H., Zhao, J., Li, J., Smola, A. J.,
and Zhang, Z. Deep Graph Library: Towards effcient
and scalable deep learning on graphs. ICLR Workshop
on Representation Learning on Graphs and Manifolds,
2019.

Wong, E. and Kolter, Z. Provable defenses against adver-
sarial examples via the convex outer adversarial poly-
tope. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of ICML’18, pp.
5286–5295, 2018.

Yefet, N., Alon, U., and Yahav, E. Adversarial examples
for models of code, 2019.

http://www.gurobi.com

