
Adversarial Robustness for Code

Pavol Bielik 1 Martin Vechev 1

Abstract
Machine learning and deep learning in particu-
lar has been recently used to successfully address
many tasks in the domain of code such as fnding
and fxing bugs, code completion, decompilation,
type inference and many others. However, the is-
sue of adversarial robustness of models for code
has gone largely unnoticed. In this work, we
explore this issue by: (i) instantiating adversar-
ial attacks for code (a domain with discrete and
highly structured inputs), (ii) showing that, simi-
lar to other domains, neural models for code are
vulnerable to adversarial attacks, and (iii) com-
bining existing and novel techniques to improve
robustness while preserving high accuracy.

1. Introduction
Recent years have seen an increased interest in using deep
learning to train models of code for a wide range of tasks
including code completion (Brockschmidt et al., 2019; Li
et al., 2018), code captioning (Alon et al., 2019; Allama-
nis et al., 2016; Fernandes et al., 2019), code classifca-
tion (Mou et al., 2016; Zhang et al., 2019) and bug de-
tection (Allamanis et al., 2018; Pradel & Sen, 2018; Li
et al., 2019). Despite substantial progress on training ac-
curate models of code, the issue of robustness has been
overlooked. Yet, this is a very important problem shown
to affect neural models in different domains (Goodfellow
et al., 2015; Szegedy et al., 2014; Papernot et al., 2016).

Challenges in modeling code In our work, we focus
on tasks that compute program properties (e.g., type in-
ference), usually addressed via handcrafted static analy-
sis, but for which a number of recent neural models with
high accuracy have been introduced (Hellendoorn et al.,
2018; Schrouff et al., 2019; Malik et al., 2019). Unsur-
prisingly, as these works do not consider adversarial ro-
bustness, their adversarial accuracy can drop signifcantly.

1Department of Computer Science, ETH Zürich, Switzerland.
Correspondence to: Pavol Bielik <pavol.bielik@inf.ethz.ch>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

BB

AdversarialLearning to Represenation
TrainingAbstain Refnement

• ••
•• •

•
• •55 5

•• •
55
5

•
• •

•• •

Figure 1. Illustration of the three key components used in our
work. Each point represents a sample, is a region where model
abstains from making predictions, and are regions of model
prediction, is the space of valid modifcations for a given sam-
ple, and B is the learned (reduced) space of valid modifcations.

However, training both robust and accurate models of code
in this setting is non-trivial and requires one to address
several key challenges: (i) programs are highly structured
and long, containing hundreds of lines of code, (ii) a sin-
gle discrete program change can affect the prediction of
a large number of properties and is much more disruptive
than a slight continuous perturbation of a pixel value, and
(iii) the property prediction problem is usually undecidable
(hence, static analyzers approximate the ideal solution).

Accurate and robust models of code As a frst step to
address these challenges, we propose a novel method that
combines three key components, illustrated in Figure 1
– as we show, all of these contribute to achieving accu-
rate and robust models of code. First, we train a model
that abstains (Liu et al., 2019) from making a prediction
when uncertain, effectively partitioning the dataset into two
parts: one part where the model makes predictions (,)
that should be accurate and robust, and one () where the
model abstains and it is enough to be robust. Second, we
instantiate adversarial training (Goodfellow et al., 2015) to
the domain of code. Third, we develop a new method to re-
fne the representation used as input to the model by learn-
ing the parts of the program relevant for the prediction.
This reduces the number of places that affect the prediction
and helps to make adversarial training for code effective.
Finally, we create a new algorithm that trains multiple mod-
els, each learning a specialized representation that makes
robust predictions on a different subset of the dataset.

We instantiate our approach to the type prediction task and
show its effectiveness – we train a model that improves ro-
bustness by 15% while preserving high accuracy.

mailto:pavol.bielik@inf.ethz.ch

Adversarial Robustness for Code

2. Accurate and Robust Models of Code
In this section, we present an overview of our approach.
Without loss of generality, we defne an input program p
to be a sequence of words p = w1:n. The words can cor-
respond to a tokenized version of the program, nodes in
an abstract syntax tree corresponding to p or other suitable
program representations. Further, let l ∈ N be a position in
the program p that corresponds to a word wl ∈ W. A train-
ing dataset D = {(xj , yj)

 }Nj=1 contains a set of samples,
where x ∈ X is an input tuple x = hp, li consisting of
a program p and a position in the program l, while y ∈ Y
contains the ground-truth label. As an example, the code
snippet in Figure 2a contains 12 different samples (x, y),
one for each position where a prediction should be made
(annotated with their ground-truth types y).

Our goal is to learn a function f : X→ R|Y|, represented as
a neural network, which for a given input program and a po-
sition in the program, computes the probability distribution
over the labels. The model’s prediction then corresponds to
the label with the highest probability according to f .

Step 1: Augment the model with an (un)certainty score
We start by augmenting the standard neural model f with
an option to abstain from making a prediction. To achieve
this, we adopt the recently proposed approach by (Liu
et al., 2019) and introduce a selection function gh : X →R,
which measures model certainty. Then, the model is de-
fned to make a prediction only if gh is confdent enough
(gh(x) ≥ h) and abstain from making a prediction other-
wise. Here, h ∈ R is an associated threshold that controls
the desired level of confdence. For example, using a high
threshold h = 0.9, the model learns to make only fve pre-
dictions for the program in Figure 2b and will abstain from
uncertain predictions such as predicting parameter types.

The frst insight from our work is that allowing the model
to abstain is benefcial for achieving robustness. This step
leads to simpler models, since learning to abstain is easier
than learning to predict the correct label. This is in con-
trast with forcing the model to learn the correct label for all
samples, which is infeasible for most practical tasks.

Step 2: Adversarial training Next, we instantiate adver-
sarial training to the domain of code. Concretely, let Δ(x)
be a set of valid modifcations of sample x and let x+δ de-
note a new input obtained by applying the modifcations in
δ ⊆ Δ(x) to x. As a concrete example, Figure 2c shows a
refactoring of the program from Figure 2b by renaming hex
to color. Even though this change does not affect the types
in the program, the model suddenly predicts incorrect types
for both the color parameter and the substring function.
Further, even though the types of parseInt and v are still
correct, the model became much more uncertain.

Intuitively, our goal is to address this issue and to en-
sure that the model is robust for all valid modifcations
δ ⊆ Δ(x) – when evaluated on x + δ, the model either ab-
stains or predicts the correct label. Concretely, we use ad-
versarial training (Goodfellow et al., 2015), which instead
of minimizing the expected loss on the original distribu-
tion E(x,y)∼D[`((f, gh)(x), y)] as usually done in standard
training, minimizes the expected adversarial loss:

E(x,y)∼D[max `((f, gh)(x + δ), y)] (1)
δ⊆Δ(x)

That is, we minimize the worst case loss obtained by apply-
ing a valid modifcation to the original sample x. Similar to
other domains, the main challenge in this setting is solving
the inner maxδ⊆Δ(x) effciently for the domain of code.

Standard adversarial training is insuffcient Although
adversarial training has been successfully applied in many
domains (Madry et al., 2018; Wong & Kolter, 2018; Sinha
et al., 2018; Raghunathan et al., 2018), in our work we
show that for code, adversarial training alone is insuffcient
to achieve model robustness. The key reason is that, ex-
isting neural models of code typically process the entire
program which can contain hundreds of lines of code. This
is problematic as it means that any program change will
affect all predictions and there can be infnitely many pro-
gram changes in Δ(x). Further, a single discrete program
change is much more disruptive in affecting the model than
a slight continuous perturbation of a pixel value. At the
same time, while not suffcient, in our evaluation we show
that adversarial training can be used to improve robustness
by 0 to 7%, depending on the model architecture.

Step 3: Representation refnement To address the is-
sue that adversarial training alone does not work well, we
develop a novel technique that: (i) learns which parts of
the input program are relevant for the given prediction, and
(ii) refnes the model representation such that only relevant
program parts are used as input to the neural network. Es-
sentially, the technique automatically learns an abstraction
α which given a program, produces a relevant representa-
tion of that program. Figure 2d shows an example of a
possible abstraction α that takes as input the entire pro-
gram but keeps only parts relevant for predicting the type of
parseInt – it is a method call with name parseInt which
has two arguments. To learn the abstraction α, we frst rep-
resent programs as graphs and then phrase the refnement
task as an optimization problem that minimizes the num-
ber of graph edges, while ensuring that the accuracy of the
model before and after applying α stays roughly the same.

Finally, we apply adversarial training, but this time on the
abstraction α obtained via representation refnement, re-
sulting in new functions f and gh. Overall, this results in
an adversarially robust model mi = hf, gh, αi.

Adversarial Robustness for Code

(a) Training Dataset D = {(xj , yj)}N (b) Learning to Abstain (Appendix B) (c) Adversarial Training (Appendix C) j=1

(hexstr , radixnum) => { (hex, radix) => { (colornum,0.9 , radix) => {
num num,1.0 num,0.4 v = parseIntnum(v = parseIntnum,1.0(v = parseIntnum,0.6(
hexstr.substringstr(1num), D hex.substringstr,0.9(1num,1.0), hf, ghi color.substringbool,0.9(1num,1.0),
radixnum radix radix

);););
rednum num >>num 16num

16num,1.0 16num,1.0= v ; red = v >> ; red = v >> ;
... δ = [rename hex → color]

Di+1 ⊂ Di Learn selection function gh that makes a prediction
only if confdent enough and abstains otherwise. Train with the worst case modifcations x + δ

(e) Apply & Train Next Model (Section 4) (d) Representation Refnement (Section 3) Retrain with hf, ghi abstraction α
(hex, radix) => { (num, radix) => {

v = parseInt<num>(v = parseInt(parseInt(
robust modelhex.substring(1<num>), num.substring(1), _, α =

radix mi = hf, gh, αi radix _
);););

red = v >> 16<num>; red = v >> 16;

Annotate programs in D with predicted types Learned abstraction α used to predict the parseInt return type

Figure 2. Overview of the main steps of our approach for learning accurate and adversarially robust models of code.

Step 4: Learning accurate models Although the
model mi is robust, it provides predictions only for a sub-
set of the samples for which it has enough confdence (i.e.,
gh(x) ≥ h). To increase the ratio of samples for which
our approach makes a prediction (i.e., does not abstain),
we perform two steps: (i) generate a new dataset Di+1

by annotating the program with the predictions made by
the learned model mi, and removing successfully predicted
samples, and (ii) learn another model mi+1 on the new
dataset Di+1. We repeat this process for as long as the new
learned model predicts some of the samples in Di+1.

Training multiple models is benefcial because: (i) the
models are easier to train as well as easier to make robust as
they do not try to learn all predictions, (ii) it allows condi-
tioning on the predictions learned by earlier models which
helps both interpretability and robustness. For example,
the model mi+1 can learn that the left hand side of the
assignment v=parseInt has the same type as the right
hand side, since the type of parseInt was already pre-
dicted by mi. Interestingly, if we think of each model as a
learned set of rules, we can essentially apply the models to
a given program in a fxed point style (similar to how a tra-
ditional sound static analysis works), and (iii) each model
learns a different representation α that is specialized for
the predictions it makes. For example, while predicting
the type of parseInt is independent of the argument val-
ues (parseInt(,)), predicting the second argument type
is not (parseInt(, radix)). Using a single abstraction to
predict both would lead to either reduced robustness or ac-
curacy, depending on which abstraction is used.

Summary Given a training dataset D, our approach
learns a set of robust models, each of which makes robust
predictions for a different subset of D. To achieve this,

we extend existing neural models of code with three key
components – the ability to abstain (with associated uncer-
tainty score), adversarial training, and learning to refne the
representation. Given the limited space, we provide for-
mal description of the the frst two components that learn
to abstain and apply adversarial training for code in Ap-
pendix B and Appendix C, respectively. Next, we formally
describe the novel components – learning to refne the rep-
resentation (Section 3) and present our training algorithm
that combines all of them together (Section 4).

3. Learning to Refne Representations
As motivated in Section 2, a key issue with many existing
neural models for code is that the model prediction f(x)
depends on the full program p, even though only small parts
of p are typically relevant. We address this issue by learn-
ing an abstraction α that takes as input p and produces only
the parts relevant for the prediction. That is, α refnes the
representation given as input to the neural model.

Overview Our method works as follows: (i) we convert
the program into a graph representation, (ii) then defne the
model to be a graph neural network (e.g., (Veličković et al.,
2018; Kipf & Welling, 2017; Wu et al., 2019; Li et al.,
2016)), which at a high level works by propagating and ag-
gregating messages along graph edges, (iii) because depen-
dencies in graph neural networks are defned by the struc-
ture of the graph (i.e., the edges it contains), we phrase the
problem of refning the representation as an optimization
problem which removes the maximum number of graph
edges (i.e., removes the maximum number of dependen-
cies) without degrading model accuracy, and (iv) we show
how to solve the optimization problem effciently by trans-
forming it to an integer linear program (ILP).

Adversarial Robustness for Code

From programs to graphs Following prior works, we
represent programs using their corresponding abstract syn-
tax trees (AST). These are further transformed into graphs,
as done in (Allamanis et al., 2018; Brockschmidt et al.,
2019), by including additional edges.

Defnition 3.1. (Directed Graph) A directed graph is a tu-
ple G = hV, E, ξV , ξE i where V denotes a set of nodes,
E ⊆ V 2 denotes a set of directed edges, ξV : V → Nk

is a mapping from nodes to their associated attributes and
ξE : E → Nm is a mapping from edges to their attributes.

We associate two attributes with each node – type which
corresponds to the type of the AST node (e.g., Block,
Identifier, BinaryExpression, etc.) and value asso-
ciated with the AST node (e.g., +, −, 0, 1, ”GET”, x, data,
etc.). For edges we use a single attribute the edge type,
which can be: (i) ast, for the edges that correspond to those
included in the AST, (ii) last usage, for edges introduced
between any two usages (either read or write) of the same
variable, and (iii) returns-to, for edges introduced between
a return statement and the function declaration. All edges
are initially added in both directions, but can be later re-
moved during the training. Depending on the task, more
edge types can be easily added.

Representation refnement Our goal is to learn an ab-
straction function α : hV, E, ξV , ξE i→hV, E0 ⊆E, ξV , ξE i
that removes a subset of the edges from the graph. To quan-
tify the size of the abstraction, we use |α(x)| := |E0| to
denote the number of edges after applying α on x.

Defning valid graph refnements Because the goal of
representation refnement is to reduce the number of nodes
on which a prediction depends, we need to ensure that α
itself does not depend on all the graph nodes. This is nec-
essary as otherwise we only shift the dependency on the
entire program from the model f to the representation re-
fnement α. To achieve this, the decision to include or re-
move a given edge is done locally, based only on the edge
attributes and attributes of the nodes it connects.

Concretely, for a given edge hs, ti ∈ E, we defne an edge
feature φ(hs, ti) := hξE (hs, ti), ξV (s), ξV (t)i to be a tu-
ple of the edge attributes and attributes of the nodes it con-
nects. As a form of regularization, we condition only on the
type attribute of each node. We denote the set of all possi-
ble edge features Φ to be the range of the function φ evalu-
ated over all edges in D. Further, we defne the refnement
α as a subset of edge features α ⊆ Φ. Finally, the seman-
tics of executing α over edges E is that only edges whose
features are in α are kept, i.e., {e | e ∈ E ∧ φ(e) ∈ α}.

Problem statement Minimize the expected size of the
refnement α ⊆ Φ subject to the constraint that the ex-

pected loss of the model f stays approximately the same: X
arg min |α(x)| (2)

α⊆Φ
(x,y)∈D

subject to P P
`(f(x), y) ≈ `(f(α(x)), y)(x,y)∈D (x,y)∈D

Our problem statement is quite general and can be instan-
tiated by: (i) using ` AbstainCrossEntropy as the loss (Ap-
pendix B), and (ii) using adversarial risk (Appendix C).

Allowing the model to abstain from making predictions is
especially important in order to obtain small α (i.e., sparse
graphs). This is because the restriction that the model accu-
racy is roughly the same is otherwise too strict and would
require that most edges are kept. Further, note that the
problem formulation is defned over all samples in D, not
only those for which the model f predicts the correct label.
This is necessary since the model needs to make a predic-
tion for all samples, even if that prediction is to abstain.

Optimization via integer linear programming (ILP)
To solve Equation 2, the key idea is that for each sample
(x, y)∈D we frst capture the relevance of each node to the
prediction made by the model f by computing: � �

a(f, x, y) = kGi,:k1, . . . , G|p|,: ,
1

where G = rx `(f(x), y) ∈ R|p|×emb denotes the gra-
dient with respect to the input x = hp, li and a given pre-
diction y. As positions in p correspond to discrete words,
the gradient is computed with respect to their embedding
emb ∈ R. The score for each position in p is computed by
applying the L1-norm over the embedding gradients, pro-
ducing a vector of unnormalized scores a ∈ R|p|. To obtain
a probability distribution â(f, x, y) over all positions in p,
we normalize the entries in a accordingly.

Then, we phrase the solution of Equation 2 as an opti-
mization problem of including the minimum number of
edges necessary for a path to exist between every relevant
node (according to â) and the node where the prediction
is made. Preserving all paths between the prediction and
relevant nodes encodes the constraint that the expected loss
stays approximately the same, since it allows propagating
information throughout the graph neural network. This
optimization can be naturally encoded as minimum-cost
maximum-fow problem and solved effciently with off-
the-shelf ILP solvers. We provide formal defnition of the
ILP encoding as well as concrete examples in Appendix D.

Even though our ILP formulation is very fast (in all our
experiments the ILP solver takes less than a second), it does
result in a more complex approach compared to an end-to-
end trainable solution. We note however that an end-to-end

Adversarial Robustness for Code

trainable solution is also possible. For example, one could
defne α to be continuous by defning a learnable weight for
each edge feature φ, encode the sparsity on α as part of the
loss, and extend the graph neural network such that each
message propagated along an edge e is scaled according to
the corresponding value of the edge feature φ(e). We have
explored this option in the work of (Abstreiter et al., 2020).

4. Training Algorithm
We now describe our algorithm that combines learning to
abstain, adversarial training and representation refnement.

Training a single adversarially robust model The train-
ing procedure used to learn a single adversarially robust
model is shown in Algorithm 1. The input is a training
dataset D and the desired accuracy tacc that the learned
model should have. Here, setting tacc = 1.0 corresponds
to a model that makes no mis-prediction (i.e., 100% accu-
racy) while tacc = 0 corresponds to training a model that
never abstains.

We start by training a model f and a selection function gh

as described in Appendix B (line 3). At this point we do not
use adversarial training and train with a weaker threshold
tacc −�, as our goal is only to obtain a fast approximation of
the samples that can be predicted with high certainty. We
use f and gh to obtain an initial representation refnement α
(line 5) which is applied to the dataset D to remove edges
that are not relevant according to f and gh (line 8). After
that, we perform adversarial training (line 9) as described in
Appendix C. However, instead of training from scratch, we
reuse model f and gh learned so far, which speeds-up train-
ing. Next, we refne the representation again (line 5) and if
the new representation is smaller (line 6), we repeat the
whole process. Note that the adversarial training also uses
threshold tacc − � to account for the fact that the suitable
representation is not known in advance. After the training
loop fnishes, we set the threshold h used by gh to match

the desired accuracy tacc (more details on this step are pro-
vided in Appendix B). The fnal result is a model consisting
of the function f trained to make adversarially robust pre-
dictions, the selection function gh and the abstraction α.

Incorporating robust predictions Once a single model
is learned, it makes robust predictions on a subset of the
dataset Dpredict ={(x, y) | (x, y)∈D∧ gh(α(x)) ≥h} and
abstains from making a prediction on the remainder of the
samples Dabstain = D \ Dpredict. Next, for all samples
in Dpredict, we use the learned model to annotate the po-
sition l in the program p (recall that each x = hp, li con-
sists of a program p and a position l) with the ground-truth
label y (denoted as Apply in Algorithm 2). Annotating
a program position corresponds to either defning a new at-
tribute (as illustrated in Figure 2e) or replacing an existing
attribute (e.g., the value attribute) of a given node. Note
that annotating programs is useful only in cases where the
same program p is shared by multiple samples (x, y) ∈ D
(i.e., multiple predictions are computed for different posi-
tions in the same program).

Main training algorithm Our main training algorithm
is shown in Algorithm 2. It takes as input the training
dataset D and learns multiple models M , each of which
makes robust predictions on a different subset of D (as mo-
tivated in Section 2). The number of models and the subsets
for which they make predictions is not fxed a priori and is
learned as part of our training. Model training (line 4) and
model application (line 5) are performed as long as a non-
empty robust model exists (i.e., it makes at least one predic-
tion). If the goal is to make predictions for all the samples
in D, the Algorithm 2 is run iteratively, with decreasing
values of tacc until the full dataset is covered.

Verifying model correctness A natural extension of our
approach is to formally verify that the learned models are
correct. Even though formally verifying the correctness of
all samples is typically infeasible, it is possible to verify
a subset of them. This can be achieved since using repre-

Algorithm 1 Training procedure used to learn a single ad-
versarially robust model hf, gh, αi.

1: function RobustTrain(D, tacc) :
2: αlast ← Φ
3: f, gh ← Train (D, tacc − �)
4: while true do
5: α ← RefineRepresentation (D, f, gh)
6: if |α| ≥ |αlast| then break
7: αlast ← α
8: D ← {(α(x), y) | (x, y) ∈ D}
9: f,gh ←AdversarialTrain (D,f,gh, tacc − �)

10: set threshold h in gh such that the accuracy is tacc

11: return hf, gh, αi

Algorithm 2 Training multiple adversarially robust mod-
els, each of which learns to make predictions for a different
subset of the dataset D.

1: function AccurateAndRobustTrain(D, tacc =1.0)
2: M ← []
3: while true do
4: hf, gh, αi ← RobustTrain(D, tacc)
5: Dabstain ← Apply(D, f, gh, α)
6:
7:

if |Dabstain| = |D| then break
D ← Dabstain

8: M ← M · hf, gh, αi
9: return M

Adversarial Robustness for Code

sentation refnement signifcantly simplifes the problem of
proving correctness of all positions (nodes) in the program
to a much smaller set of relevant positions. In fact, for some
cases the refned representation is so small that it is possible
to simply enumerate all valid modifcations (e.g., a fnite
set of valid variable renamings) and check that the model
is correct for all of them. Additionally, it would be possi-
ble to adapt the recently proposed techniques (Huang et al.,
2019; Jia et al., 2019), based on Interval Bound Propaga-
tion, that verify robustness to any valid word renaming and
word substitution modifcations. However, applying these
techniques to realistic networks in a scalable and precise
ways is an open problem beyond the scope of our work.

5. Evaluation
We instantiated our approach to a task studied by a num-
ber of prior works – predicting types for two dynamically
typed languages JavaScript and TypeScript (Hellen-
doorn et al., 2018; Schrouff et al., 2019; Malik et al., 2019;
Raychev et al., 2015). In this task, the need for model ro-
bustness is natural since the model is queried each time
a program is modifed by the user. Our key results are:

• Our approach learns accurate and adversarially ro-
bust models for the task of type inference, achiev-
ing 87.7% accuracy while improving robustness from
52.1% to 67.0%.

• We train highly accurate and robust models for a sub-
set of the dataset, with 99.9% accuracy and 99.9% ro-
bustness for 29% of the samples.

We implemented our code in PyTorch (Paszke et al., 2019)
and DGL library (Wang et al., 2019). We used a sin-
gle Nvidia TITAN RTX for all the experiments. For our
dataset, we collect the same top starred projects on Github
and perform similar preprocessing steps as Hellendoorn
et al. We provide detailed description in the supplemen-
tary material. The code and datasets are available at:

https://github.com/eth-sri/robust-code

Evaluation metrics We use two main evaluation metrics:

Accuracy is computed over the unmodifed dataset D and
corresponds to the accuracy used in prior works. Con-
cretely, the accuracy is defned as the ratio of samples (x, y)
for which the most likely label according to the model f ,
denoted f(x)best, is the same as the ground truth label y: (X 1 if f(x)best = y1

|D| 0 otherwise
(x,y)∈D

Robustness is the ratio of samples (x, y) ∈ D for which
the model f evaluated on all valid modifcations δ ⊆ Δ(x)

either abstains or makes a correct prediction: (X1 0 /if ∃δ⊆Δ(x)f(x + δ)best ∈ {y, abstain}
|D| 1 otherwise

(x,y)∈D

Models We evaluate fve neural model architectures:

LSTM is a bidirectional LSTM with attention which takes as
input a sequence of AST nodes, including both types and
values, obtained using pre-order traversal.

DeepTyper is a model proposed by Hellendoorn et al. and
consists of a bidirectional LSTM layer, followed by a single
layer graph neural network that connects all variables with
the same name (referred as consistency layer), followed by
another bidirectional LSTM layer. Our only modifcation
is that the input to our model is a sequence of AST types
and values, instead of using syntactic program tokens.

GCN, GGNN and GNT are three graph neural networks that
use as input the graph program representation described
in Section 3. Here, GCN is a Graph Convolutional Net-
work (Kipf & Welling, 2017), GGNN is Gated Graph Neural
Network (Li et al., 2016) and GNT is a graph implemen-
tation of a recently proposed transformer neural network
architecture (Vaswani et al., 2017; Dehghani et al., 2019).

All models were trained with an embedding and hidden
size of 128, batch size of 32, dropout 0.1 (Srivastava et al.,
2014), initial learning rate of 0.001, using Adam opti-
mizer (Kingma & Ba, 2014) and between 10 to 20 epochs.

Reducing dependencies via dynamic halting We fur-
ther strengthen our GNT model by implementing the Adap-
tive Computation Time (ACT) (Graves, 2016) which dy-
namically learns how many computational steps each node
requires in order to make a prediction. This is in contrast to
using a fxed amount of steps as done in (Allamanis et al.,
2018; Brockschmidt et al., 2019). In our experiments, ACT
signifcantly reduces the number of steps each node per-
forms (half of the nodes perform ≤3 steps).

Program modifcations We instantiate the adversar-
ial training with both semantic preserving and label-
preserving modifcations shown in Table 1. Here, expr is
either an existing expression or a new expression consisting
of a random binary expression over constants up to depth 3,
const is a randomly selected constant that results in a valid
expression and x, y, z are variables in the program scope.
Our modifcations extend those used by Bielik et al. (2017)
but the list is not exhaustive and can be extended further.

To measure the model robustness, we run the adversarial at-
tack for 1000 iterations for renaming modifcations and ad-
ditional 300 iterations for structural modifcations. These
thresholds are rather high and were selected with the goal

https://github.com/eth-sri/robust-code

Adversarial Robustness for Code

Table 1. Illustration of semantic and label preserving program modifcations used in our work.

Substitutions and Renaming Examples Structural Modifcations Examples

Semantic Preserving Label Preserving
variable renaming x → y new function parameters def inc(x) → def inc(x, y)

object feld renaming obj.x → obj.y new method arguments inc(x) → inc(x, expr)
property assignment renaming

Label Preserving

{x : obj} → {y : obj} Semantic Preserving
ternary expressions expr1 → (expr)2 : expr1 ? expr1

number substitution 2 → 7 array access expr → [expr, expr][const]

string substitution
boolean substitution

”get” → ”load”
true → false

Dead Code
side-effect free expressions ∅ → expr

adding object expressions ∅ → {x : y, z : expr}

Table 2. Comparison of accuracy and robustness across various models and training techniques considered in our work for the task of
type inference. Adversarial training and the ability to abstain is applicable to all the models. The representation refnement is designed
specifcally to models defned over graphs, including GCN, GGNN and GNT.

Standard Training Adversarial Training Abstain + Adversarial + Refnement
`(f(x), y) maxδ⊆Δ(x) `(f(x + δ), y) maxδ⊆Δ(x) ` AbstainCE((f, gh)(α(x + δ)), y)

Model Accuracy Robustness Accuracy Robustness Model Accuracy Robustness

LSTM

DeepTyper

GCN

GNT

88.2 ± 0.2

88.4 ± 0.2

82.6 ± 0.6

89.3 ± 0.9

44.9 ± 1.3

52.4 ± 1.2

49.1 ± 1.1

47.4 ± 1.0

87.5 ± 0.4

87.1 ± 0.3

81.9 ± 0.5

88.3 ± 0.4

51.9 ± 1.3

55.1 ± 2.6

49.3 ± 3.1

50.0 ± 0.5

tacc = 1.00 (Abstain ≈ 70%)
GNT 99.93%
GGNN 99.80%

tacc = 0.00
GNT 86.6%

99.98%
99.01%

62.3%
GGNN 86.7 ± 0.4 52.1 ± 0.4 86.1 ± 0.2 57.9 ± 1.5 GGNN 87.7% 67.0%

of closely estimating the true number of adversarial sam-
ples. Further, note that since δ ⊆ Δ(x) is a set, each itera-
tion explores a set of concrete program modifcations.

5.1. Accurate and Adversarially Robust Models

We summarize the main results in Table 2. The frst col-
umn (left) shows the median test accuracy and standard
deviation of various models (across three trials trained with
different random seeds). The GCN achieves the worst accu-
racy of 82.6% and the accuracy of the remaining models is
similar with GNT model performing the best with 89.3%.

Existing models are not robust While highly accurate,
all models are also non-robust for up to half of the samples
in the dataset. In other words, for every second sample x
in our dataset, there exists a modifcation δ ⊆ Δ(x) for
which f(x) predicts the type correctly while f(x + δ) mis-
predicts it. However, since these models were not trained
with the goal of adversarial robustness, it is expected for
them to be (atleast partially) non-robust.

Adversarial training alone is insuffcient To improve
the robustness, we next train the models using adversarial
training as described in Appendix C. Unfortunately, while

the adversarial training increase the robustness, it does so
only slightly. The best improvement was achieved for
LSTM and GGNN models (7% and 5.8%, respectively). For
DeepTyper and GNT the robustness increased by ≈ 2.5%
while for GCN it is only 0.2%. This illustrates that while
useful, if used alone, adversarial training is not enough.

Our work: training accurate models with abstain The
models trained using our approach are shown in Table 2
(right). First, we trained our models to be both accu-
rate and robust on a subset of the dataset. This can be
achieved by setting the desired accuracy thresholds, in our
case tacc = 1.00, which corresponds to training the model
to make only correct predictions. For tacc = 1.00, our
approach learns an almost perfect model that is both ac-
curate and robust for ≈ 30.0% of samples. Here, GNT
learned 7 models and achieved 99.98% robustness while
GGNN learned 8 models with robustness of 99.01%. Learn-
ing multiple models is crucial for achieving higher cover-
age as a single model would not abstain for only 17 − 20%
of the samples, compared to 30% using multiple models.

The model did not achieve 100% accuracy and robustness
for tacc = 1.00 due to several samples included in the test
set. These samples were mis-predicted because they con-

Adversarial Robustness for Code

Table 3. Robustness breakdown for the GNT and GGNN models
trained using our approach from Table 2 (right).

Robustness

Dataset Size ∀ Correct ∃ Incorrect Abstain

GNT tacc = 1.00

Dcorrect 29.3% 90.0% 0.00% 10.00%

Dabstain 70.6% − 0.01% 99.99%

GGNN tacc = 1.00

Dcorrect 30.6% 75.5% 0.06% 23.94%

Dabstain 69.3% − 1.46% 98.54%

∀ Correct := ∀δ⊆Δ(x)(f, gh)(α(x + δ))best = y
∃ Incorrect := ∃δ⊆Δ(x)(f, gh)(α(x + δ))best /∈ {y, abstain}

tained code structure not seen during training and not cov-
ered by modifcations δ ⊆ Δ(x). This illustrates that it
is important that the samples in D are diverse and contain
all the language features and corner cases of the programs,
or that the modifcations Δ(x) are expressive enough such
that these can be discovered automatically during training.

Our work: improving robustness Next, we train mod-
els that take advantage of the highly accurate and robust
models trained using tacc =1.00, but make predictions for
all the samples (i.e., do not abstain). This can be achieved
by continuing the training while reducing tacc to zero and
conditioning on all the models trained with higher tacc. In
our experiments, we train a single additional model by di-
rectly setting tacc = 0 after training with tacc =1.00. The
results are shown in Table 2 (right) and lead to additional
robustness increase of 9.2% and 12.3% compared to using
adversarial training only for GGNN and GNT, respectively.
For GNT, the accuracy slightly decreases by 1.7% which is
expected as increasing model robustness typically comes at
the cost of reduced accuracy (Tsipras et al., 2019). Inter-
estingly, for GGNN our robust training increases the accu-
racy over both the adversarial training as well as standard
training by 1.9% and 1.0%, respectively.

Adversarial robustness breakdown Table 3 provides
a detailed breakdown of the robustness metric for the GNT
and GGNN models trained with tacc = 1.00 from Table 2
(right). Here, Dabstain contains samples for which the
model abstains from making a prediction and Dcorrect con-
tains samples for which the model evaluated on a non-
adversarial input (i.e., x without any modifcation) makes
a correct prediction. We use ∀ correct to denote that a sam-
ple (x, y) is correct for all possible modifcations δ ⊆Δ(x),
the ∃ incorrect has the same defnition as robustness (i.e.,
there exists a modifcation that leads to an incorrect predic-
tion), and abstain denotes the remaining samples.

The GNT is precise and keeps predicting the correct label in
90% of cases and abstain in the rest. This is even though
the requirements for ∀ correct are very strict and require
that all samples are correct. When considering Dabstain,
the GNT model is also precise and produces incorrect pre-
diction for only a single sample (0.01%). For GGNN the
results are similar but the model is both less precise (keeps
the correct prediction in 75.5% of cases) and less robust
(1.46% of samples in Dabstain can be modifed to cause
a mis-prediction). This shows that the majority of robust-
ness errors from Table 2 are due to mis-predicted samples
for which the model originally abstained.

6. Related Work
Our work is related to a number of different areas from
adversarial machine learning and learning over code.

Model certainty Several approaches have been recently
proposed to extend neural models with certainty mea-
sure (Gal & Ghahramani, 2016; Liu et al., 2019; Gal, 2016;
Geifman & El-Yaniv, 2017; 2019). In our work, we use the
method proposed by Liu et al. (2019) but in a novel way –
applied to the adversarial setting with the goal of training
robust models.

Learning static analyzers from data A closely related
work addresses the task of learning static analyzers (Bielik
et al., 2017): it defnes a domain specifc language to rep-
resent static analyzers, uses decision tree learning to obtain
an interpretable model, and defnes a procedure that fnds
counter-examples the model mis-classifes (used to re-train
the model). At a high-level, some of the steps are similar
but the actual technical solution is very different as we ad-
dress a general class of neural models and do not assume
any prior knowledge (i.e., a domain specifc language).

Adversarial training Even though the problem of adver-
sarial robustness of code has been overlooked, the adversar-
ial training has already been applied to related domains –
natural language processing (Miyato et al., 2017; Papernot
et al., 2016; Gao et al., 2018; Liang et al., 2018; Belinkov
& Bisk, 2017; Ebrahimi et al., 2018) and graphs (Dai et al.,
2018; Z¨ ugner & G¨ugner et al., 2018; Z¨ unnemann, 2019).

In the domain of graphs, existing works focus on attack-
ing the graph structure (Dai et al., 2018; Zügner et al.,
2018; Zügner & Günnemann, 2019) by considering that the
nodes are fxed and edges can be added or removed. While
this setting is natural for modelling many types of graphs,
such approaches do not apply for the domain of code where
graph edges can not be added and removed arbitrarily.

In natural language processing, existing approaches gen-
erally perform two steps: (i) measure the contribution of

Adversarial Robustness for Code

individual words or characters to the prediction (e.g., us-
ing gradients (Liang et al., 2018), forward derivatives (Pa-
pernot et al., 2016) or head/tail scores (Gao et al., 2018)),
and (ii) replace or remove those whose contribution is high
(e.g., using dictionaries (Jia et al., 2019), character level
typos (Gao et al., 2018; Belinkov & Bisk, 2017; Ebrahimi
et al., 2018), or handcrafted strategies (Liang et al., 2018)).
The adversarial training used in our work operates similarly
except our modifcations are designed over programs.

Program representations A core challenge of using ma-
chine learning for code is designing a suitable program rep-
resentation used as model input. Due to its simplicity, the
most commonly used program representation is a sequence
of words, obtained either by tokenizing the program (Hel-
lendoorn et al., 2018) or by linearizing the abstract syntax
tree (Li et al., 2018). This however ignores the fact that
programs do have a rich structure – an issue addressed by
representing programs as graphs (Allamanis et al., 2018;
Brockschmidt et al., 2019) or as a combination of abstract
syntax tree paths (Alon et al., 2019). In our work, we fol-
low the approach proposed in recent works and represent
programs as graphs. More importantly, we develop a novel
technique that learns to refne the representation based on
model predictions instead of fxing it a priori. As shown in
our evaluation, this is crucial for learning robust models.

Adversarial attacks for code Concurrent to our work,
Yefet et al. (2019) explored the task of generating adversar-
ial attacks for code via gradient based optimization. In con-
trast, we introduce an approach to reduce the search space
an adversarial attack needs to consider by learning to re-
fne the representation. Such reduced search space is useful
for both for renaming and structural modifcations, whereas
gradient based optimization has been explored only for re-
naming. However, both of these approaches are orthogonal
and can be combined into one that learns both to reduce
the search space as well as to effciently fnd adversarial
examples in this reduced search space.

Type inference We evaluated our work on the task of
type inference for which a number of recent works pro-
posed new neural architectures with the goal of improv-
ing accuracy. In contrast, the goal of our work is to study
and improve robustness of these models. To achieve this,
we compare to two prior works in our evaluation (Schrouff
et al., 2019; Hellendoorn et al., 2018). In addition to pre-
dicting types from source code, Malik et al. (2019) showed
that it is possible to predict parameter types using natu-
ral language information obtained from method docstrings.
Here, existing attacks on text (LSTM) can be used to as-
sess its robustness but evaluating text models is outside
the scope of our work. Finally, two concurrent works
to ours have proposed new models to improve accuracy:

Typilus (Allamanis et al., 2020) and LambdaNet (Wei
et al., 2020). Both of these works represent programs as
graphs and use graph neural networks as the underlying
model architecture, which makes our approach applicable.
However, we note that for LambdaNet we expect the model
to be quite robust as the authors manually designed a sparse
graph representation (by designing a static analysis to ex-
tract the type dependence graph) over which to learn.

7. Conclusion
We presented a new technique to train accurate and ro-
bust neural models of code. Our work addresses two key
challenges inherent to the domain of code: the diffculty of
computing the correct label for all samples (i.e., the input is
incomplete code snippet, program semantics are unknown)
as well as the fact that programs are signifcantly larger and
more structured compared to images or natural language.

To address the frst challenge, we allow the model to ab-
stain from making a prediction, rather than forcing the
model to make predictions for all samples (as done in prior
works). To address the second challenge, we learn which
parts of the program are relevant for the prediction, and ab-
stract the rest (instead of using the entire program as input).

Further, we introduce a new procedure that trains multiple
models, instead of one. This has several advantages, as
each model is simpler and thus easier to train robustly, the
learned representation is specialized to the kind of predic-
tions it makes, and the model directly conditions on predic-
tions of prior models (instead of having to re-learn them).
However, a disadvantage of our approach is that the mod-
els are learned sequentially which slows down the train-
ing (i.e., training 10 models will take 10× more time). To
speed up the training, it would be interesting to allow learn-
ing multiple models in parallel at each sequential step and
then combine them as explored by Shazeer et al. (2017).

We believe than our work is only one step in addressing the
task of adversarially robust models of code and that many
challenges remain open. For example, it remains to be seen
how effective our approach is at other tasks over code, be-
yond type inference. Further, we optimize for the worst
case adversarial robustness, which corresponds to learn-
ing a robust model for all programs. An interesting future
work is to optimize with respect to those modifcation that
are common among developers, especially if it is not possi-
ble to be robust for all of them. While we checked robust-
ness for a wide range of program modifcations, these are
still far from exhaustive and more work is needed in defn-
ing new ones. Finally, as the number of possible modifca-
tion is large and growing, an interesting area is designing
how they can be combined effciently, as explored recently
by Ramakrishnan et al. (2020) and Zhang et al. (2020).

Adversarial Robustness for Code

Acknowledgements
We would like to thank the anonymous reviewers who gave
useful comments and provided interesting suggestions on
how our work can be improved and extended. Further, we
would like to acknowledge the work of (Hellendoorn et al.,
2018) which is publicly available and provided useful in-
frastructure for generating datasets used in our work. The
research leading to these results was partially supported by
an ERC Starting Grant 680358.

References
Abstreiter, K., Bielik, P., and Vechev, M. Improving

robustness for models of code via sparse graph neural
networks. Technical report, ETH Zurich, june 2020.
URL https://www.research-collection.
ethz.ch/handle/20.500.11850/431559.

Allamanis, M., Peng, H., and Sutton, C. A convolutional
attention network for extreme summarization of source
code. In International Conference on Machine Learning
(ICML), 2016.

Allamanis, M., Brockschmidt, M., and Khademi, M.
Learning to represent programs with graphs. In In-
ternational Conference on Learning Representations,
ICLR’18, 2018.

Allamanis, M., Barr, E. T., Ducousso, S., and Gao, Z. Typ-
ilus: Neural type hints. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI’20, pp. 91–105, 2020.

Alon, U., Zilberstein, M., Levy, O., and Yahav, E.
Code2Vec: Learning distributed representations of code.
In Proceedings of the 46st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, volume 3 of POPL ’19, pp. 40:1–40:29, 2019.

Belinkov, Y. and Bisk, Y. Synthetic and natural
noise both break neural machine translation. CoRR,
abs/1711.02173, 2017.

Bielik, P., Raychev, V., and Vechev, M. Learning a
static analyzer from data. In International Conference
on Computer Aided Verifcation, CAV’17, pp. 233–253,
2017.

Brockschmidt, M., Allamanis, M., Gaunt, A. L., and Polo-
zov, O. Generative code modeling with graphs. In
International Conference on Learning Representations,
ICLR’19, 2019.

Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and
Song, L. Adversarial attack on graph structured data.
In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of ICML’18, pp. 1115–
1124. PMLR, 2018.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, L. Universal transformers. In International Con-
ference on Learning Representations, ICLR’19, 2019.

Ebrahimi, J., Rao, A., Lowd, D., and Dou, D. HotFlip:
White-box adversarial examples for text classifcation.
In Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short
Papers), ACL’18, pp. 31–36, 2018.

Fernandes, P., Allamanis, M., and Brockschmidt, M. Struc-
tured neural summarization. In International Conference
on Learning Representations, ICLR’19, 2019.

Gal, Y. Uncertainty in Deep Learning. PhD thesis, Univer-
sity of Cambridge, Department of Engineering, 9 2016.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-
imation: Representing model uncertainty in deep learn-
ing. In Proceedings of The 33rd International Confer-
ence on Machine Learning, volume 48 of ICML’16, pp.
1050–1059, 2016.

Gao, J., Lanchantin, J., Soffa, M. L., and Qi, Y. Black-box
generation of adversarial text sequences to evade deep
learning classifers. CoRR, abs/1801.04354, 2018.

Geifman, Y. and El-Yaniv, R. Selective classifcation for
deep neural networks. In Proceedings of the 31st Inter-
national Conference on Neural Information Processing
Systems, NeurIPS’17, pp. 4885–4894, 2017.

Geifman, Y. and El-Yaniv, R. SelectiveNet: A deep neural
network with an integrated reject option. In Proceedings
of the 36th International Conference on Machine Learn-
ing, volume 97 of ICML’19, pp. 2151–2159, 2019.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-
ing and harnessing adversarial examples. In 3rd In-
ternational Conference on Learning Representations,
ICLR’15, 2015.

Graves, A. Adaptive computation time for recurrent neural
networks. CoRR, abs/1603.08983, 2016.

Hellendoorn, V. J., Bird, C., Barr, E. T., and Allamanis, M.
Deep learning type inference. In Proceedings of the 2018
26th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE’18, 2018.

Huang, P.-S., Stanforth, R., Welbl, J., Dyer, C., Yogatama,
D., Gowal, S., Dvijotham, K., and Kohli, P. Achieving
verifed robustness to symbol substitutions via interval
bound propagation. In Empirical Methods in Natural
Language Processing, EMNLP’19, 2019.

https://www.research-collection.ethz.ch/handle/20.500.11850/431559
https://www.research-collection.ethz.ch/handle/20.500.11850/431559

Adversarial Robustness for Code

Jia, R., Raghunathan, A., Göksel, K., and Liang, P. Cer-
tifed robustness to adversarial word substitutions. In
Empirical Methods in Natural Language Processing,
EMNLP’19, 2019.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, ICLR’14, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classi-
fcation with graph convolutional networks. In In-
ternational Conference on Learning Representations,
ICLR’17, 2017.

Li, J., Wang, Y., Lyu, M. R., and King, I. Code comple-
tion with neural attention and pointer networks. In Pro-
ceedings of the 27th International Joint Conference on
Artifcial Intelligence, IJCAI’18, pp. 4159–25, 2018.

Li, Y., Zemel, R., Brockschmidt, M., and Tarlow, D. Gated
graph sequence neural networks. In International Con-
ference on Learning Representations, ICLR’16, 2016.

Li, Y., Wang, S., Nguyen, T. N., and Van Nguyen, S. Im-
proving bug detection via context-based code representa-
tion learning and attention-based neural networks. Proc.
ACM Program. Lang., (OOPSLA):162:1–162:30, 2019.

Liang, B., Li, H., Su, M., Bian, P., Li, X., and Shi, W.
Deep text classifcation can be fooled. In Proceedings
of the 27th International Joint Conference on Artifcial
Intelligence, IJCAI’18, pp. 4208–4215, 2018.

Liu, Z., Wang, Z., Liang, P. P., Salakhutdinov, R. R.,
Morency, L.-P., and Ueda, M. Deep gamblers: Learn-
ing to abstain with portfolio theory. In Advances in Neu-
ral Information Processing Systems 32, NeurIPS’19, pp.
10622–10632. 2019.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to ad-
versarial attacks. In International Conference on Learn-
ing Representations, ICLR’18, 2018.

Malik, R. S., Patra, J., and Pradel, M. NL2Type: Inferring
javascript function types from natural language informa-
tion. In Proceedings of the 41st International Conference
on Software Engineering, ICSE ’19, pp. 304–315, 2019.

Miyato, T., Dai, A. M., and Goodfellow, I. Adversar-
ial training methods for semi-supervised text classifca-
tion. In International Conference on Learning Represen-
tations, ICML’17, 2017.

Mou, L., Li, G., Zhang, L., Wang, T., and Jin, Z. Con-
volutional neural networks over tree structures for pro-
gramming language processing. In Proceedings of the
Thirtieth AAAI Conference on Artifcial Intelligence,
AAAI’16, pp. 1287–1293, 2016.

Papernot, N., McDaniel, P. D., Swami, A., and Harang,
R. E. Crafting adversarial input sequences for recurrent
neural networks. CoRR, abs/1604.08275, 2016.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. PyTorch: An imperative
style, high-performance deep learning library. In Ad-
vances in Neural Information Processing Systems 32,
NeurIPS’19, pp. 8024–8035. 2019.

Pradel, M. and Sen, K. DeepBugs: A learning approach to
name-based bug detection. Proc. ACM Program. Lang.,
(OOPSLA):147:1–147:25, 2018.

Raghunathan, A., Steinhardt, J., and Liang, P. Cer-
tifed defenses against adversarial examples. In In-
ternational Conference on Learning Representations,
ICLR’18, 2018.

Ramakrishnan, G., Henkel, J., Wang, Z., Albarghouthi, A.,
Jha, S., and Reps, T. Semantic robustness of models of
source code, 2020.

Raychev, V., Vechev, M., and Krause, A. Predicting pro-
gram properties from ”Big Code”. In Proceedings of
the 42Nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’15,
pp. 111–124, 2015.

Schrouff, J., Wohlfahrt, K., Marnette, B., and Atkinson, L.
Inferring javascript types using graph neural networks.
In Representation Learning on Graphs and Manifolds.
ICLR Workshop, 2019.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q. V., Hinton, G. E., and Dean, J. Outrageously large
neural networks: The sparsely-gated mixture-of-experts
layer. CoRR, abs/1701.06538, 2017.

Sinha, A., Namkoong, H., and Duchi, J. Certifable dis-
tributional robustness with principled adversarial train-
ing. In International Conference on Learning Represen-
tations, ICLR’18, 2018.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overftting. J. Mach. Learn. Res.,
15(1):1929–1958, January 2014. ISSN 1532-4435.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing proper-
ties of neural networks. In International Conference on
Learning Representations, ICLR’14, 2014.

Adversarial Robustness for Code

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and
Madry, A. Robustness may be at odds with accuracy. In
International Conference on Learning Representations,
ICLR’19, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. In Advances in Neural Infor-
mation Processing Systems 30, NeurIPS’17, pp. 5998–
6008. 2017.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph Attention Networks. Inter-
national Conference on Learning Representations, 2018.

Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z.,
Li, M., Zhou, J., Huang, Q., Ma, C., Huang, Z., Guo,
Q., Zhang, H., Lin, H., Zhao, J., Li, J., Smola, A. J.,
and Zhang, Z. Deep Graph Library: Towards effcient
and scalable deep learning on graphs. ICLR Workshop
on Representation Learning on Graphs and Manifolds,
2019.

Wei, J., Goyal, M., Durrett, G., and Dillig, I. Lamb-
daNet: Probabilistic type inference using graph neural
networks. In International Conference on Learning Rep-
resentations, ICLR’20, 2020.

Wong, E. and Kolter, Z. Provable defenses against adver-
sarial examples via the convex outer adversarial poly-
tope. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of ICML’18, pp.
5286–5295, 2018.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks.
In Proceedings of the 36th International Conference on
Machine Learning, ICML’19, pp. 6861–6871. PMLR,
2019.

Yefet, N., Alon, U., and Yahav, E. Adversarial examples
for models of code, 2019.

Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., and
Liu, X. A novel neural source code representation based
on abstract syntax tree. In Proceedings of the 41st In-
ternational Conference on Software Engineering, ICSE
’19, pp. 783–794, 2019.

Zhang, Y., Albarghouthi, A., and D’Antoni, L. Robust-
ness to programmable string transformations via aug-
mented abstract training. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML’20,
2020.

Zügner, D. and Günnemann, S. Adversarial attacks
on graph neural networks via meta learning. In In-
ternational Conference on Learning Representations,
ICLR’19, 2019.

Zügner, D., Akbarnejad, A., and Günnemann, S. Adver-
sarial attacks on neural networks for graph data. In Pro-
ceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, KDD
’18, pp. 2847–2856, 2018.

