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Abstract

It is still common to use Q-learning and tempo-
ral difference (TD) learning—even though they
have divergence issues and sound Gradient TD
alternatives exist—because divergence seems rare
and they typically perform well. However, re-
cent work with large neural network learning sys-
tems reveals that instability is more common than
previously thought. Practitioners face a difficult
dilemma: choose an easy to use and performant
TD method, or a more complex algorithm that is
more sound but harder to tune and all but unex-
plored with non-linear function approximation or
control. In this paper, we introduce a new method
called TD with Regularized Corrections (TDRC),
that attempts to balance ease of use, soundness,
and performance. It behaves as well as TD, when
TD performs well, but is sound in cases where
TD diverges. We empirically investigate TDRC
across a range of problems, for both prediction
and control, and for both linear and non-linear
function approximation, and show, potentially for
the first time, that Gradient TD methods could be
a better alternative to TD and Q-learning.

1. Introduction

Off-policy learning—the ability to learn the policy or value
function for one policy while following another—underlies
many practical implementations of reinforcement learning.
Many systems use experience replay, where the value func-
tion is updated using previous experiences under many dif-
ferent policies. A similar strategy is employed in asyn-
chronous learning systems that use experience from several
different policies to update multiple distributed learners (Es-
peholt et al., 2018). Off-policy updates can also be used to
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learn a policy from human demonstrations. In general, many
algorithms attempt to estimate the optimal policy from sam-
ples generated from a different exploration policy. One of
the most widely-used algorithms, Q-learning—a temporal
difference (TD) algorithm—is off-policy by design: simply
updating toward the maximum value action in the current
state, regardless of which action the agent selected.

Both TD and Q-learning, however, have well documented
convergence issues, as highlighted in the seminal counterex-
ample by Baird (1995). The fundamental issue is the combi-
nation of function approximation, off-policy updates, and
bootstrapping: an algorithmic strategy common to sample-
based TD learning and Dynamic Programming algorithms
(Precup, Sutton & Dasgupta, 2001). This combination can
cause the value estimates to grow without bound (Sutton
& Barto, 2018). Baird’s result motivated over a decade of
research and several new off-policy algorithms. The most
well-known of these approaches, the Gradient TD methods
(Sutton et al., 2009), make use of a second set of weights
and importance sampling.

Although sound under function approximation, these Gradi-
ent TD methods are not commonly used in practice, likely
due to the additional complexity of tuning two learning
rate parameters. Many practitioners continue to use un-
sound approaches such as TD and Q-learning for good
reasons. The evidence of divergence is based on highly
contrived toy counter-examples. Often, many large scale
off-policy learning systems are designed to ensure that the
target and behaviour policies are similar—and therefore less
off-policy—by ensuring prioritization is mixed with random
sampling (Schaul et al., 2016), or frequently syncing the
actor policies in asynchronous architectures (Mnih et al.,
2016). However, if agents could learn from a larger variety
of data streams, our systems could be more flexible and
potentially more data efficient. Unfortunately, it appears
that current architectures are not as robust under these more
aggressive off-policy settings (van Hasselt et al., 2018). This
results in a dilemma: the easy-to-use and typically effective
TD algorithm can sometimes fail, but the sound Gradient
TD algorithms can be difficult to use.

There are algorithms that come close to achieving conver-
gence and lower variance updates without the need to tune
multiple stepsize parameters. Retrace (Munos et al., 2016)
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and its prediction variant Vtrace (Espeholt et al., 2018)
reduce the variance of off-policy updating, by clipping im-
portance sampling ratios. These methods, however, are built
on off-policy TD and so still have divergence issues (Touati
et al., 2018). The sound variants of these algorithms (Touati
et al., 2018), and the related work on an algorithm called
ABQ (Mahmood, Yu & Sutton, 2017), maintain some of
the variance reduction, but rely on Gradient TD to obtain
soundness and so inherit the issues therein—the need to tune
multiple stepsize parameters. Linear off-policy prediction
can be reformulated as a saddlepoint problem, resulting in
one time-scale, true gradient descent variant of the GTD2
algorithm (Mahadevan et al., 2014; Liu et al., 2015; Liu
et al., 2016). The Emphatic TD algorithm achieves con-
vergence with linear function approximation and off-policy
updates using only a single set of weights and thus one
stepsize parameter (Sutton et al., 2016). Unfortunately,
high variance updates reduce the practicality of the method
(White & White, 2016). Finally, Hybrid TD algorithms
(Hackman, 2012, White & White, 2016) were introduced
to automatically switch between TD updates when the data
is on-policy, and gradient-style updates otherwise, thus en-
suring convergence. In practice these hybrid methods are
more complicated to implement and can have stability issues
(White & White, 2016).

In this paper we introduce a new Gradient TD method, called
TD with Regularized Corrections (TDRC). With more regu-
larization, the algorithm acts like TD, and with no regular-
ization, it reduces to TD with gradient Corrections (TDC).
We find that for an interim level of regularization, TDRC ob-
tains the best of both algorithms, and is not sensitive to this
parameter: a regularization parameter of 1.0 was effective
across all experiments. We show that our method (1) outper-
forms other Gradient TD methods overall across a variety
of problems, and (2) matches TD when TD performs well
while maintaining convergence guarantees. We demonstrate
that TDC frequently outperforms the saddlepoint variant
of Gradient TD, motivating why we build on TDC and the
utility of being able to shift between TD and TDC by set-
ting the regularization parameter. We then highlight why
TDRC improves so significantly on TDC, by examining
TDC'’s sensitivity to its second stepsize. We conclude with
a demonstration in control, with non-linear function approx-
imation, showing that (1) TDC can perform very well in
some settings and very poorly in others, and (2) TDRC is
always comparable to Q-learning, and in some cases, is
much better.

2. Background

In this paper we tackle the policy evaluation problem in
Reinforcement Learning. We model the agent’s interactions
with its environment as a Markov Decision Process (MDP).

The agent and environment interact continually. On each
time stept = 0,1, 2,. .., the agent selects an action A; €
A in state S; € S. Based on the agent’s action A; and
the transition dynamics, P : S x A x § — [0,1], the
environment transitions into a new state, Sy 1, and emits a
scalar reward R, ;. The agent selects actions according to
its policy 7 : S x A — [0, 1]. The main objective in policy
evaluation is to estimate the value of a state s, defined as the
expected discounted sum of future rewards under 7:

def

0 (8) = Ex[Reg1 + YRiq2 + 7V Reys + -+ |Se = 5]
= ]Ew[Gt|St = S} , (D

where v € [0,1], G; € R is called the return, and E is the
expectation taken with respect to future states, actions, and
rewards generated by 7 and P.

In many problems of interest, the agent cannot directly
observe the state. Instead, on each step the agent observes

a featurized representation of the state x; & x(5;) € R,
where n < |S|. In this setting, the agent cannot estimate the
value of each state individually, but must approximate the
value with a parametric function. In this paper, we focus on
the case of linear function approximation, where the value
estimate 0 : S X R™ — R is simply formed as an inner
product between x(s) and a learned set of weights w € R”

given by 9(s, w) & wTx(s).

Our objective is to adjust w; on each time step to construct
a good approximation of the true value: © =~ v,. Perhaps
the most well known and successful algorithm for doing so
is temporal difference (TD) learning :

def T T.
0r = Reqg1 + YW Xeqp1 — Wy Xy
Wil & Wy + Xy 2

for stepsize a; > 0. TD is guaranteed to be convergent un-
der linear function approximation and on-policy sampling.

The classical TD algorithm was designed for on-policy learn-
ing; however, it can be easily extended to the off-policy set-
ting. In on-policy learning, the policy used to select actions
is the same as the policy used to condition the expectation in
the definition of the value function (Eq. 1). Alternatively, we
might want to make off-policy updates, where the actions are
chosen according to some behavior policy b, different from
the target policy 7 used in Eq. 1. If we view value estima-
tion as estimating the expected return, this off-policy setting
corresponds to estimating an expectation conditioned on one
distribution with samples collected under another. TD can
be extended to make off-policy updates by using importance
sampling ratios p; e 71:((£2||52)) > 0. The resulting algorithm
is a minor modification of TD, w11 < Wy + aupidrXy,
where 9, is defined in Eq. 2.

Off-policy TD can diverge with function approximation,
but fortunately there are several TD-based algorithms that
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are convergent. When TD learning converges, it converges
to the TD fixed point: the weight vector where E[0;x;] =
0. Interestingly, TD does not perform gradient descent on
any objective to reach the TD fixed point. So, one way
to achieve convergence is to perform gradient descent on
an objective whose minimum corresponds to the TD-fixed
point. Gradient TD methods do exactly this on the Mean
Squared Projected Bellman Error (MSPBE) (see Eq. 7).

There are several ways to approximate and simplify the gra-
dient of MSPBE, each resulting in a different algorithm. The
two most well-known approaches are TD with Corrections
(TDC) and Gradient TD (GTD2). Both these require double
the computation and storage of TD, and employ a second
set of learned weights h € R™ with a different stepsize
parameter nay, where 7 is a tunable constant. The updates
for the TDC algorithm otherwise are similar to TD:

.
Wil < Wi + ape0pxe — arpry(hy x4 )X 41

hip1 < by + noy [ped — (hyx)]xe. (3)

The GTD2 algorithm uses the same update for h,, but the
update to the primary weights is different:

.
Wip1 < Wi+ appr(xe — yxep1) (hy xi). €]

The Gradient TD algorithms are not widely used in practice
and are considered difficult to use. In particular, for TDC,
the second stepsize has a big impact on performance (White
& White, 2016), and the theory suggests that n > 1 is
necessary to guarantee convergence (Sutton et al., 2009).

Attempts to improve Gradient TD methods has largely come
from rederiving GTD2 using a saddlepoint formulation of
the MSPBE (Mahadevan et al., 2014). This formulation
enables us to view GTD2 as a one-time scale algorithm with
a single set of weights [w, h] using a single global stepsize
parameter. In addition, saddlepoint GTD2 can be combined
with acceleration techniques like Mirror Prox (Mahadevan
et al., 2014) and stochastic variance reduction methods such
as SAGA and SVRG (Du et al., 2017). Unfortunately, Mir-
ror Prox has never been shown to improve performance
over vanilla GTD2 (White & White, 2016; Ghiassian et al.,
2018). Current variance reduction methods like SAGA are
only applicable in the offline setting, and extension to the
online setting would require new methods (Du et al., 2017).
In Appendix B we include comparisons of off-policy predic-
tion algorithms in the batch setting, including recent Kernel
Residual Gradient methods (Feng et al., 2019). These exper-
iments suggest that accelerations do not change the relative
ranking of the algorithms in the batch setting.

TD is widely considered more sample efficient than all the
methods discussed above. A less well-known family of
algorithms, called Hybrid methods (Maei, 2011; Hackman,
2012; White & White, 2016), were designed to exploit the

sample efficiency of TD when data is generated on-policy—
they reduce to TD in the on-policy setting—and use gradient
corrections, like TDC, when the data is off-policy. These
methods provide some of the ease-of-use benefits of TD,
but unfortunately do not enjoy the same level of stability as
the Gradient TD methods: for instance, HTD can diverge
on Baird’s counterexample (White & White, 2016).

3. TD with Regularized Corrections

In this section we develop a new algorithm, called TD with
Regularized Corrections (TDRC). The idea is very simple:
to regularize the update to the secondary parameters h. The
inspiration for the algorithm comes from behavior observed
in experiments (see Section 4). Consistently, we find that
TDC outperforms—or is comparable to—GTD2 in terms of
optimizing the MSPBE; as we reaffirm in our experiments.
These results match previous experiments comparing these
two algorithms (White & White, 2016; Ghiassian et al.,
2018). Previous results suggested that TDC could match
TD (White & White, 2016); but, as we highlight in Section
4, this is only when the second stepsize is set so small that
TDC is effectively behaving like TD. This behavior is unsat-
isfactory because to have guaranteed convergence—e.g. on
Baird’s Counterexample—the second stepsize needs to be
large. Further, it is somewhat surprising that attempting to
obtain an estimate of the gradient of the MSPBE, as done
by TDC, can perform so much more poorly than TD.

Notice that the h update is simply a linear regression update
for estimating the (changing) target §; conditioned on xy,
for both GTD2 and TDC. As w converges, §; approaches
zero, and consequently h goes to 0 as well. But, a linear re-
gression estimate of E[d;|S; = s] is not necessarily the best
choice. In fact, using ridge regression—/» regularization—
can provide a better bias-variance trade-off: it can signif-
icantly reduce variance without incurring too much bias.
This is in particular true for h, where asymptotically h = 0
and so the bias disappears.

This highlights a potential reason that TD frequently outper-
forms TDC and GTD2 in experiments: the variance of h. If
TD already performs well, it is better to simply use the zero
variance but biased estimate h, = 0. Adding ¢ regulariza-
tion with parameter f3, i.e. 3||h||3, provides a way to move
between TD and TDC. For a very large 3, h will be pushed
close to zero and the update to w will be lower variance
and more similar to the TD update. On the other hand, for
B = 0, the update reduces to TDC and the estimator h will
be an unbiased estimator with higher variance.

The resulting update equations for TDRC are

.
Wit < Wi + apdixy — apey(hy X)xep1 5)

ht+1 — ht +« [pt(;t - (h;xt)]xt — Olﬁht. (6)
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The update to w is the same as TDC, but the update to h
now has the additional term «Sh; which corresponds to the
gradient of the /5 regularizer. The updates only have a single
shared stepsize, «, rather than a separate stepsize for the
secondary weights h. We make this choice precisely for our
motivated reason upfront: for ease-of-use. Further, we find
empirically that this choice is effective, and that the reasons
for TDC’s sensitivity to the second stepsize are mainly due
to the fact that a small second stepsize enables TDC to
behave like TD (see Section 4.2). Because TDRC has this
behavior by design, a shared stepsize is more effective.

While there are many approaches to reduce the variance of
the estimator, h, we use an ¢, regularizer because (1) using
the {5 regularizer ensures the set of solutions for TDRC
match TD; (2) the resulting update is asymptotically un-
biased, because it biases towards the known asymptotic
solution of h; and (3) the strongly convex /- regularizer
improves the convergence rate. TDC convergence proofs
impose conditions on the size of the stepsize for h to ensure
that it converges more quickly than the “slow-learner” w,
and so increasing convergence rate for h should make it eas-
ier to satisfy this condition. Additionally, the /5 regularizer
biases the estimator h towards h = 0, the known optimum
of the learning system as w converges. This means that the
bias imposed on h disappears asymptotically, changing only
the transient trajectory (we prove this in Theorem 3.1).

As a final remark, we motivate that TDRC should not require
a second stepsize, but have introduced a new parameter (/3)
to obtain this property. The idea, however, is that TDRC
should be relatively insensitive to 5. The choice of 3 sweeps
between two reasonable algorithms: TD and TDC. If we are
already comfortable using TD, then it should be acceptable
to use TDRC with a larger 3. A smaller 8 will still result in
a sound algorithm, though its performance may suffer due
to the variance of the updates in h. In our experiments, we
in fact find that TDRC performs well for a wide range of
B, and that our default choice of 8 = 1.0 works reasonably
across all the problems that we tested.

3.1. Theoretically Characterizing the TDRC Update
The MSPBE (Sutton et al., 2009) is defined as

MSPBE(Wt) déf E [(StXt]TE I:XtX;r:I ! E [5txt] (7)
=(-Aw +b)'C(~Aw +b)
where E [0;x:] = b — Awy for

def

C:E[XXT}, AdérE[x(x—fyx/)—q7 bdérJE[Rx].

The TD fixed point corresponds to E [0,x;] = 0 and so to the
solution to the system Aw; = b. The expectation is taken
with respect to the target policy 7, unless stated otherwise.

The expected update for TD corresponds to E[§;x;] = b —
Aw,. The expected update for w in TDC corresponds to
the gradient of the MSPBE,

1
—5 VMSPBE(w;) = ATC (b - Aw,).

def

Both TDC and GTD?2 estimate h = C~}(b — Aw;) =
Elxtxﬂ -1 E[d;x;], to get the least squares estimate
h'x; ~ E[d;|x;] for targets ;. TDC rearranges terms,
to sample this gradient differently than GTD2; for a given
h, both have the same expected update for w: A Th.

We can now consider the expected update for TDRC. Solv-
ing for the ¢ regularized problem with target §;, we
get (E[x;x/] + fI)h = E[§;x,] which implies hg =
Cgl (b—Aw,) for Cg & C + B To get a similar form to

TDC, we consider the modified expected update Aghg for

def

Az = A+ BI. We can get the TDRC update by rearranging
this expected update, similarly to how TDC is derived

Ajhg = (E[(x —yx)x'] + pT)hs

=(E [XXT] + I —~E [X’XT}) CglE[(Stxt]

= (]E [XXT] + BI) CElE[(StXt} —E [X/XT} CglE[(Stxt]
=E[6ixt] — 7E [X’XT] hg

This update equation for the primary weights looks precisely
like the update in TDC, except that our h is estimated differ-
ently. Despite this difference, we show in Theorem 1.1 (in
Appendix I) that the set of TDRC solutions w to A Jhz = 0
includes the TD fixed point, and this set is exactly equivalent
if A is full rank.

In the following theorem (proof in Appendix H) we directly
compare convergence of TDRC to TDC. Though the TDRC
updates are no longer gradients, we maintain the conver-
gence properties of TDC. This theorem extends the TDC
convergence result to allow for 8 > 0, where TDC corre-
sponds to TDRC with 5 = 0.

Theorem 3.1 (Convergence of TDRC) Consider the
TDRC update, with a TDC like stepsize multiplier n > 0:

h; 11 = h; +noy [Pt(st - htT Xt:| x¢ —nao S hy, ®)
Wil = Wi +0upeds Xe —Oétpt’Y(h;r Xt) X¢41, &)

with stepsizes oy € (0,1], satisfying Y ;= = oo and
Zfio a? < co. Assume that (X¢, Ry, X1 1, pt) is an i.i.d.
sequence with uniformly bounded second moments for states
and rewards, A +81 and C are non-singular, and that
the standard coverage assumption (Sutton & Barto, 2018)
holds, i.e. b(A|S) > 0 VS, A where w(A|S) > 0. Then
w; converges with probability one to the TD fixed point if
either of the following are satisfied:
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(i) A is positive definite, or

(ii) B < —DAmax(H P AAT) and n > —N\pin(C™ H), with
H %Y A+TAT. Note that when A is not positive definite,
Mmax(H VA AT and — )i, (C™' H) are guaranteed to

be positive real numbers.

We can extend this result to allow for singular C, which
was not possible for TDC. The set of conditions on 7 and
B, however, are more complex. We include this result in
Appendix H.4, with conditions given in Eq. 22.

Theorem 3.1 shows that TDRC maintains convergence when
TD is convergent: the case when A is positive definite.
Otherwise, TDRC converges under more general settings
than TDC, because it has the same conditions on 7 as given
by Maei (2011) but allows for 3 > 0. The upper bound on
[ makes sense, since as § — oo, TDRC approaches TD.
Examining the proof, it is likely that the conditions on 7
could actually be relaxed (see Eq. C3).

One advantage of TDRC is that the matrix Cg = C+f51
is non-singular by construction. This raises the question:
could we have simply changed the MSPBE objective to
use Cg and derived the corresponding TDC-like algorithm?
This is easier than TDRC, as the proof of convergence for
the resulting algorithm trivially extends the proof from Maei
(2011), as the change to the objective function is minimal.
We derive corresponding TDC-like update and demonstrate
that it performs notably worse than TDRC in Appendix A.

4. Experiments in the Prediction Setting

We first establish the performance of TDRC across sev-
eral small linear prediction tasks where we carefully sweep
hyper-parameters, analyze sensitivity, and average over
many runs. The goal is to understand if TDRC has similar
performance to TD, with similar parameter sensitivity, but
avoids divergence. Before running TDRC, we set 3 = 1.0
across all the experiments to refrain from tuning this addi-
tional parameter.

4.1. Prediction Problems

In the prediction setting, we investigate three different prob-
lems with variations in feature representations, target and
behavior policies. We choose problems that have been used
in prior work empirically investigating TD methods. The
first problem, Boyan’s chain (Boyan, 2002), is a 13 state
Markov chain where each state is represented by a compact
feature representation. This encoding causes inappropriate
generalization during learning, but v, can be represented
perfectly with the given features.

Code for all experiments is available at:
https://github.com/rlai-lab/Regularized-GradientTD

The second problem is Baird’s (1995) well-known star coun-
terexample. In this MDP, the target and behavior policy are
very different resulting in large importance sampling correc-
tions. Baird’s Counterexample has been used extensively to
demonstrate the soundness of Gradient TD algorithms, so
provides a useful testbed to demonstrate that TDRC does
not sacrifice soundness for ease-of-use.

Finally, we include a five state random walk MDP. We use
three different feature representations: tabular (unit basis
vectors), inverted, and dependent features. This last problem
was chosen so that we could exactly mirror the experiments
used in prior work benchmarking TDC, GTD2, and TD
(Sutton et al., 2009). Like Hackman (2012), we used an off-
policy variant of the problem. The behavior policy chooses
the left and right action with equal probability, and the target
policy chooses the right action 60% of the time. Figure 18
in the appendix summarizes all three problems.

We report the total RMSPBE over 3000 steps, measured
on each time step, averaged over 200 independent runs.
The learning algorithms under study have tunable meta-
parameters that can dramatically impact the efficiency of
learning. We extensively sweep the values of these meta-
parameters (as described in Appendix G), and report both
summary performance and the sensitivity of each method to
its meta-parameters. For all results reported in the predic-
tion setting, we use the Adagrad (Duchi, Hazan & Singer,
2011) algorithm to adapt a vector of stepsizes for each algo-
rithm. Additional results for constant scalar stepsizes and
ADAM vector stepsizes can be found in Appendix B and
Appendix E; the conclusions are similar.

4.2. Overall Performance

We first report performance for both the best stepsize as well
as provide the parameter sensitivity plots in Figure 1. In
the bar plot, we compactly summarize relative performance
to TDRC. TDRC performs well across problems, while
every other method has at least one setting where it does
noticeably worse than TDRC. GTD2 generally learns more
slowly than other methods. This result is unsurprising, as
it relies so heavily on h for learning w: w;;; < w; +
(X — X441 )htT x;. In the beginning, when h is inaccurate,
the updates for w are poor. TDC generally learns much
faster. In Boyan’s chain, however, TDC seems to suffer from
variance in h. The features in this environment cause bigger
changes in h than in the other environments. TDRC, on
the other hand, which regularizes h, significantly improves
learning in Boyan’s chain. TD and HTD perform very well
across all problems except for Baird’s. Finally, Vtrace—
which uses a TD update with importance sampling ratios
clipped at 1—performs slightly worse than TD due to the
introduced bias, but does not mitigate divergence issues due
to off-policy learning in Baird’s.
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Figure 1. Top: The normalized average area under the RMSPBE learning curve for each method on each problem. Each bar is normalized
by TDRC’s performance so that each problem can be shown in the same range. All results are averaged over 200 independent runs
with standard error bars shown at the top of each rectangle, though most are vanishingly small. TD and VTrace both diverge on Baird’s
Counterexample, which is represented by the bars going off the top of the plot. HTD’s bar is also off the plot due to its oscillating behavior.
Bottom: Stepsize sensitivity measured using average area under the RMSPBE learning curve for each method on each problem. HTD and
VTrace are not shown in Boyan’s Chain because they reduce to TD for on-policy problems. Values for bar graphs are given in Table 1.
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Figure 2. Sensitivity to the second stepsize, for changing parameter 7). All methods use Adagrad. All methods are free to choose any value
of « for each 7. Methods that do not have a second stepsize are shown as a flat line. Values swept are n € {276,275 ... 25 26},

The results reported here for TDC do not match previous
results which indicate performance generally as good as TD
(White & White, 2016). The reason for this discrepancy is
that previous results carefully tuned the second stepsize na
for TDC. The need to tune 7 is part of the difficulty in using
TDC. To better understand the role it is playing here, we
include an additional result where we sweep 71 as well as
« for TDC; for completeness, we also include this sweep
for GTD2 and HTD. We sweep n € {276,275 ... 25 26}
This allows for n« that is very near zero as well as na much
larger than . The theory for TDC suggests 7 should be
larger than 1. The results in Figure 2, however, demonstrate
that TDC almost always prefers the smallest 7; but for very
small ) TDC is effectively a TD update. By picking a small
1, TDC essentially keeps h near zero—its initialization—
and so removes the gradient correction term. TDC was
therefore able to match TD by simply tuning a parameter
so that it effectively was TD. Unfortunately, this is not a
general strategy, for instance in Baird’s, TDC picks n > 1
and small 7 perform poorly.

4.3. Sensitivity to

So far we have only used TDRC with a regularization pa-
rameter S = 1. This choice was both to avoid over-tuning
our method, as well as to show that an intuitive default value

could be effective across settings. Intuitively, TDRC should
not be sensitive to 3, as both TDC (8 = 0) and TD (large
B) generally perform reasonably. Picking a 5 > 0 should
enable TDRC to learn faster like TD—by providing a lower
variance correction—as long as it’s not too large, to ensure
we avoid the divergence issues of TD.

We investigate this intuition by looking at performance
across arange of 3 € 0.1 % {2°,21 ... 25 26} For 3 =0,
we have TDC. Ideally, performance should quickly improve
for any non-negligible 3, with a large flat region of good
performance in the parameter sensitivity plots for a wide
range of (. This is generally what we observe in Figure 3.
For even very small 3, TDRC noticeably improves perfor-
mance over TDC, getting halfway between TDC and TD
(Random Walk with Tabular or Dependent features) or in
some cases immediately obtaining the good performance of
TD (Random Walk with Inverted Features, Boyan’s chain
and Baird’s). Further, in these three cases, it even performs
better or comparably to both TDC and TD for all tested 3.
Notably, these are the settings with more complex feature
representations, suggesting that the regularization parame-
ter helps TDRC learn an h that is less affected by harmful
aliasing in the feature representation. Finally, the results
also show that 8 = 1.0 was in fact not optimal, and we
could have obtained even better results in the previous sec-
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Figure 3. Sensitivity to the regularization parameter, 5. TD and TDC are shown as dotted baselines, demonstrating extreme values of [3;
B = 0 represented by TDC and 5 — oo represented by TD. This experiment demonstrates TDRC’s notable insensitivity to 3. Its similar
range of values across problems, including Baird’s counterexample, motivates that 3 can be chosen easily and is not heavily problem

dependent. Values swept are: 8 € 0.1 % {207 ot ..., 25, 26}.

tion, typically with a larger 3. These improvements, though,
were relatively marginal over the choice of 5 = 1.0.

Naturally, the scale of 3 should be dependent on the magni-
tude of the rewards, because in TDRC the gradient correc-
tion term is attempting to estimate the expected TD error.
One answer is to simply employ adaptive target normaliza-
tion, such as Pop-Art (van Hasselt et al., 2016), and keep
B equal to one. We found TDRC with 5 = 1 performed
at least as well as TD in on-policy chain domains across a
large range of reward scales (see Appendix C).

5. Experiments in the Control Setting

Like TD, TDRC was developed for prediction, under linear
function approximation. Again like TD, there are natural—
though in some cases heuristic—extensions to the control
setting and to non-linear function approximation. In this sec-
tion, we investigate if TDRC can provide similar improve-
ments in the control setting. We first investigate TDRC in
control with linear function approximation, where the exten-
sion is more straightforward. We then provide a heuristic
strategy to use TDRC—and TDC—with non-linear function
approximation. We demonstrate, for the first time, that Gra-
dient TD methods can outperform Q-learning when using
neural networks, in two classic control domains and two
visual games.

5.1. Extending TDRC to Control

Before presenting the control experiments, we describe
how to extend TDRC to control, and to non-linear func-
tion approximation. The extension to non-linear function
approximation is also applicable in the prediction setting;
we therefore begin there. We then discuss the extension to
Q-learning which involves estimating action-values for the
greedy policy.

Consider the setting where we estimate 9(s) using a neu-
ral network. The secondary weights in TDRC are used to
obtain an estimate of E[d;|S; = s]. Under linear function
approximation, this expected TD error is estimated using lin-
ear regression with /5 regularization: h" x; ~ E[§|S; = s].

With neural networks, this expected TD error can be esti-
mated using an additional head on the network. The tar-
get for this second head is still §;, with a squared error
and /5 regularization. One might even expect this estimate
of E[0;]S; = s] to improve, when using a neural network,
rather than a hand-designed basis.

An important nuance is that gradients are not passed back-
ward from the error in this second head. This choice is made
for simplicity, and to avoid any issues when balancing these
two losses. The correction is secondary, and we want to
avoid degrading performance in the value estimates simply
to improve estimates of E[d;|S; = s]. It also makes the
connection to TD more clear as 3 becomes larger, as the
update to the network is only impacted by w. We have not
extensively tested this choice; it remains to be seen if using
gradients from both heads might actually be a better choice.

The next step is to extend the algorithm to action-values. For
an input state s, the network produces an estimate (s, a)
and a prediction (s, a) of E[6;|S; = s, A; = a] for each
action. The weights h;;, 4, for the head corresponding to
action A, are updated using the features produced by the
last layer x4, with S(St, Ay) = h;Atxt:

.
hiy1,4, < hya, + 06[515 - ht’Atxt} x¢ — afhy 4, (10)

For the other actions, the secondary weights are not updated
since we did not get a target J; for them.

The remaining weights w;, which include all the weights in
the network excluding h, are updated using

6t = Rip1 +7q(St41,a") — (S, Ar) (11)
Wt+1(*Wt+O[(5tvw(j(St7At)*Oé’)/g(St,At)quA(StJ,_l,a/)

where o’ is the action that the policy we are evaluating
would take in state S;;1. For control, we often select the
greedy policy, and so a’ = argmax, ¢(S¢11,a) and 6; =
Riy1 + ymax, ¢(St+1,a) — q(St, A¢) as in Q-learning.
This action a’ may differ from the (exploratory) action A1
that is actually executed, and so this estimation is off-policy.
There are no importance sampling ratios because we are
estimating action-values.
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We call this final algorithm QRC: Q-learning with Regu-
larized Corrections. The secondary weights in QRC are
initialized to 0, to maintain the similarity to TD. We can
obtain, as a special case, a control algorithm based on TDC,
which we call QC. If we set 5 = 0 in Eq. 10, we obtain QC.

We conclude this section by highlighting that there is an
alternative route to use TDRC, as is, for control: by using
TDRC as a critic within Actor-Critic. We provide the update
equations in Appendix G.1.

5.2. Control Problems

We first test the algorithms in a well-understood setting, in
which we know Q-learning is effective: Mountain Car with a
tile-coding representation. We then use neural network func-
tion approximation in two classic control environments—
Mountain Car and Cart Pole—and two visual environments
from the MinAtar suite (Young & Tian, 2019). For all en-
vironments, we fix § = 1.0 for QRC, n = 1.0 for QC
and do not use target networks (for experiments with target
networks see Appendix F).

In the two classic control environments, we use 200 runs,
an e-greedy policy with € = 0.1 and a discount of v = 0.99.
In Mountain Car (Moore, 1990; Sutton, 1996), the goal is
to reach the top of a hill, with an underpowered car. The
state consists of the agent’s position and velocity, with a
reward of —1 per step until termination, with actions to
accelerate forward, backward or do nothing. In Cart Pole
(Barto, Sutton & Anderson, 1983), the goal is to keep a pole
balanced as long as possible, by moving a cart left or right.
The state consists of the position and velocity of the cart,
and the angle and angular velocity of the pole. The reward is
+1 per step. An episode ends when the agent fails to balance
the pole or balances the pole for more than 500 consecutive
steps. For non-linear control experimental details on these
environments see Appendix G.3.

For the two MinAtar environments, Breakout and Space
Invaders, we use 30 runs, v = 0.99 and a decayed e-greedy
policy with e = 1 decaying linearly to e = 0.1 over the
first 100,000 steps. In Breakout, the agent moves a paddle
left and right, to hit a ball into bricks. A reward of +1 is
given for every brick hit; new rows appear when all the rows
are cleared. The episode ends when the agent misses the
ball and it drops. In Space Invaders, the agent shoots alien
ships coming towards it, and dodges their fire. A reward of
+1 is given for every alien that is shot. The episode ends
when the spaceship is hit by alien fire or reached by an alien
ship. These environments are simplified versions from the
Atari suite, designed to avoid the need for large networks
and make it more feasible to complete more exhaustive
comparison, including using more runs. All methods use a
network with one convolutional layer, followed by a fully
connected layer. All experimental settings are identical to

the original MinAtar paper (see Appendix G.4 for details).

5.3. Linear Control

We compare TD, TDC and TDRC for control, both within
an Actor-Critic algorithm and with their extensions to Q-
learning. In Figure 4, we can see two clear outcomes from
both control experiments. In both cases, the control algo-
rithm based on TDC fails to converge to a reasonable policy.
The TDRC variants, on the other hand, match the perfor-
mance of TD.

Action-value

Actor-Critic
2000

AC-TDC
1500

#Steps/ 444,
episode C-TDRC
500
C-TD

0

QC

QRC

25 375 50'
Steps (x10%)

\ . - - - Q-learning
0 5 10 15 20 0 125
Steps (x10°)

Figure 4. Numbers of steps to reach goal, averaged over runs, ver-
sus number of environment steps, in Mountain Car with tile-coded
features. Left: Comparison of actor-critic control algorithms with
various critics with ADAM optimizer. For actor critic experimen-
tal details see Appendix G.1. Right: Comparison of state-action
value control algorithms with constant stepsizes. Stepsizes were
sweptover a € {278,277 ..., 272 27!} and then scaled by the
number of active features. We used 16 tilings and 4 x 4 tiles.
Results are averaged over 200 independent runs, with shaded error
corresponding to standard error.

This result might be surprising, since the only difference
between TDRC and TDC is regularizing h. This small addi-
tion, though, seems to play a big role in avoiding this sur-
prisingly bad performance of TDC, and potentially explains
why gradient methods have been dismissed as hard-to-use.
When we looked more closely at TDC’s behavior, we found
that the TDC agent improved its behavior policy quickly.
But, the magnitude of the gradient corrections also grew
rapidly. This high magnitude gradient correction resulted
in a higher magnitude gradient for w, and pushed down the
learning rate for TDC. The constraint on this correction term
provided by TDRC seems to prevent this explosive growth,
allowing TDRC to attain comparable performance to the
TD-based control agent.

5.4. Non-linear Control

When moving to non-linear function approximation, with
neural networks, we find a more nuanced outcome: QC still
suffers compared to Q-learning and QRC in the classic con-
trol environments—though less than before—yet provides
substantial improvements in the two MinAtar environments.

In Figure 5, we find that QC learns more slowly than QRC
and Q-learning. Again, QRC brings performance much
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Figure 5. Performance of Q-learning, QC and QRC on two classic
control environments. On top the learning curves are shown and at
the bottom the parameter sensitivity for various stepsizes. Lower
is better for Mountain Car (fewer steps to goal) and higher is better
for Cart Pole (more steps balancing the pole). Results are averaged
over 200 runs, with shaded error corresponding to standard error.

closer to Q-learning, when QC is performing notably more
poorly. In Mountain Car, we tested a more highly off-policy
setting: 10 replay steps. By using more replay per step,
more data from older policies is used, resulting in a more off-
policy data distribution. Under such an off-policy setting,
we expect Q-learning to suffer, and in fact, we find that
QRC actually performs better than Q-learning. We provide
additional experiments on Mountain Car in Appendix D.

On the two MinAtar environments, in Figure 6, we obtain
a surprising result: QC provides substantial performance
improvements over Q-learning. QRC with # = 1 is not as
performant as QC in this setting and instead obtains perfor-
mance in-between QC and Q-learning. However, QRC with
smaller values of regularization parameter (shown as lighter
blue lines) results in the best performance. This outcome
highlights that Gradient TD methods are not only theoreti-
cally appealing, but could actually be a better alternative to
Q-learning in standard (non-adversarially chosen) problems.
It further shows that, though QRC with 5 = 1.0 generally
provides a reasonable strategy, substantial improvements
could be obtained with an adaptive method for selecting (3.

6. Conclusions and Discussion

In this work, we introduced a simple modification of the
TDC algorithm that achieves performance much closer to
that of TD. Our algorithm uses a single stepsize like TD, and
behaves like TD when TD performs well but also prevents di-
vergence under off-policy sampling. TDRC is built on TDC,
and, as we prove, inherits its soundness guarantees. In small
linear prediction problems TDRC performs best overall and
exhibits low sensitivity to its regularization parameter. In
control experiments, with extensions to non-linear function

Breakout Space Invaders
0.20 0.001 0.001 0.1 o
“O‘L 0.1 0.4 .
0.3 ;
0.2

Moving average
of returns over  0.107 /

100 episodes Q-learning
0.05 0.1 Q-learning
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0.00 0.0 T T
01 2 3 4 5 01 2 3 4 5
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Figure 6. Performance of Q-learning, QC, and QRC in the two
MinAtar environments. The learning curves in the top row depict
the average return over time for the best performing stepsize for
each agent. The stepsize sensitivity plots in the bottom row depict
the total discounted reward achieved with several stepsize values.
Higher is better. Results are averaged over 30 independent runs,
with shaded error corresponding to standard error. Light blue
lines show the performance of QRC with smaller regularization
parameters, 3 < 1.

approximation, we find that the resulting algorithm, QRC,
performs as well as Q-learning and in some cases notably
better. This constitutes the first demonstration of Gradient
TD methods outperforming Q-learning, and suggests this
simple modification to the standard Q-learning update—to
give QRC—could provide a more general purpose algo-
rithm.

An important next step is to better understand the conditions
on the regularization parameter 5 and whether we can truly
remove the second stepsize 7). The current theorem does not
remove conditions on 7n; in fact, it has the same conditions
as TDC. We hypothesize that 5 should make h converge
more quickly, and so remove the need for the stepsize for
the secondary weights to be bigger. Further, the conditions
on 1 and S both depend on domain specific quantities that
are generally difficult to compute. In the small prediction
problems, we were easily able to confirm that our choices of
meta-parameter met the theoretical conditions, however for
the larger control problems this remains an open question.
In general, developing tight conditions on 7 and 5 would
help facilitate comfort in using TDRC.

Another important next step is to thoroughly investigate if
these empirical results hold in a broader range of environ-
ments and settings. The results in this work suggest that
TDRC could potentially be a replacement for the widely
used TD algorithms. It is only a small modification to an
existing TD implementation, and so would not be difficult to
adopt. But, to make such a bold claim, much more evidence
is needed, particularly because TD has been shown to be so
successful for many years.
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