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A. Proof of Proposition 2
Proposition 2. When the optimally learned encoder and
decoder achieve the same joint distribution over (x, t) and
z by optimizing (5), for any (x, t) with non-zero probability,
if z ∼ qφ(z|x, t) we have gθ(z, t) = x almost surely.

Proof. The joint distribution induced by the encoder is

penc(x, t, z) = pD(x, t)qφ(z|x, t).
The joint distribution induced by the decoder is

pdec(x, t, z) = pI(t)pz(z)δ(x− gθ(z, t)).
When the optimality is achieved so that penc = pdec, for
pD(x, t) > 0 we have

qφ(z|x, t) =
pI(t)pz(z)

pD(x, t)
δ(x− gθ(z, t)).

Therefore, given (x, t) such that pD(x, t) > 0, for Z ∼
qφ(z|x, t) we have

Pr[x = gθ(Z, t)] =

∫
1{x = gθ(z, t)}qφ(z|x, t)dz

=

∫
qφ(z|x, t)dz

= 1.

B. On the Independence Assumption
Throughout this paper, we assume the complete temporal
process f and the observation indices t are independent,
which corresponds to the missing completely at random
(MCAR) case categorized by Little & Rubin (2014). We
point out that P-VAE is still unbiased if the data are miss-
ing at random (MAR) according to Little & Rubin (2014,
Chapter 6).

We note that the introduction of the independence assump-
tion is mainly for better modeling scalability and stability.
For the most general situation that corresponds to the not
missing at random (NMAR) case, we will need to model
the dependent index distribution explicitly in both P-VAE
and P-BiGAN. One convenient choice is to model this dis-
tribution as pI(t|z) that conditions on the common latent
code z shared with the data x, which results in the following
generative process:

z ∼ pz(z), t ∼ pI(t|z), x = gθ(z, t).

This encodes the dependency between t and x when z is un-
observed. For P-VAE, we maximize the following expected
variational lower bound on log p(x, t) with additional model
parameters for pI(t|z):

E(x,t)∼pDEqφ(z|x,t)

[
log

pz(z)pI(t|z)
∏|t|
i=1 pθ(xi|z, ti)

qφ(z|x, t)

]
.

For P-BiGAN, the minimax game becomes

min
θ,φ,τ

max
D

(
E(x,t)∼pDEz∼pφ(z|x,t) [logD(x, t, z)]

+ Ez∼pz(z)Et∼pI(t|z) [log(1−D(gθ(z, t), t, z))]
)

where τ denotes the parameters of pI(t|z). For P-BiGAN,
pI(t|z) can be either stochastic or deterministic.

For time series, we can use the variational RNN (VRNN)
(Chung et al., 2015) to model the temporal point process
pI(t|z). Specifically, at each step of VRNN that corre-
sponds to an observation, it outputs the duration until the
next observation is made. Our preliminary results show that
incorporating VRNN pI(t|z) makes learning the data distri-
bution harder, especially for P-BiGAN as the discriminator
is sensitive to the discrepancy between the learned tempo-
ral point process and the empirical samples of observation
times. Specifically, modeling the dependency of the tempo-
ral point process reduces bias while significantly increasing
variance such that the overall model ends up performing
worse. The same phenomenon was also reported in the La-
tent ODE work—Rubanova et al. (2019) jointly model a
Poisson process using a Neural ODE, which also leads to
worse classification results.

Moreover, learning the temporal point process using vari-
ational RNN is quite slow due to the sequential nature of
RNNs. It is challenging to model such distribution effi-
ciently given that the number of observations may be varied
from case to case, especially for P-BiGAN that needs to dis-
criminate samples of variable lengths. Therefore, studying
how to effectively and efficiently learn the temporal point
process and incorporate it in the missing data setting for
time series is of interest in the future.

C. Autoencoding Regularization in P-BiGAN
In Section 3.3 we discussed regularizing P-BiGAN with an
autoencoding loss using the augmented objective (6). Here
we demonstrate the effect of introducing this autoencoding
loss in P-BiGAN by comparing the augmented model with
the non-regularized counterpart, which is equivalent to the
model with the autoencoding coefficient λ = 0.

Figure 5 compares P-BiGAN with the default strictly-
positive λ and the one without autoencoding regularization
using λ = 0 on the MNIST and CelebA imputation exper-
iments. Similarly, Table 3 compares P-BiGAN with the
default λ = 1 and the one without the autoencoding term on
the MIMIC-III experiment. It shows that autoencoding reg-
ularization improves the performance in almost all the cases.
Nonetheless, even without autoencoding regularization P-
BiGAN still gives reasonable imputation and classification
results. This provides empirical evidence to support the
invertibility property stated in Proposition 2.
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Figure 5. Comparing the effect of autoencoding regularization on
the imputation FIDs of P-BiGAN on MNIST and CelebA (no au-
toencoding regularization when λ = 0). The high FIDs of the
cases of low missing rates on CelebA with square observation are
due to the inconsistency between the observed region and the im-
puted part. Figure 6 shows the FIDs of the generated images under
the same settings, from which we can see that the decoder of P-
BiGAN performs roughly the same regardless of the autoencoding
regularization.

Table 3. Comparing P-BiGAN with autoencoding regularization
(λ = 1) and without it (λ = 0) on MIMIC-III classification.

AE λ AUC (%)

λ = 0 83.56 ± 0.49
λ = 1 86.05 ± 0.36

D. Synthetic Multivariate Time Series
In this section, we equip P-VAE and P-BiGAN with the
continuous decoder and encoder described in Section 4
and demonstrate how they work on a synthetic time series
dataset using the same architecture described in Section 6.2.
We generate a dataset containing 10,000 time series each
with three channels over t ∈ [0, 1] according to the follow-
ing generative process:

a ∼ N (0, 102)

b ∼ uniform(0, 10)

f1(t) = .8 sin(20(t+ a) + sin(20(t+ a)))

f2(t) = −.5 sin(20(t+ a+ 20) + sin(20(t+ a+ 20)))

f3(t) = sin(12(t+ b))

where an independent Gaussian noise N (0, 0.012) is added
to each channel.

The observation time points for each channel are drawn
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Figure 6. Comparing the effect of autoencoding regularization on
the generation FIDs of P-BiGAN on MNIST and CelebA (no
autoencoding loss when λ = 0).

independently from a homogeneous Poisson process with
rate λ = 30 sampled continuously within [d, d+0.25] where
d ∼ uniform(0, 0.75). This results in 7.4 observations in
each channel on average. The first row of Figure 7 shows
some examples from the generated synthetic dataset.

Figure 7 and 8 shows that both P-VAE and P-BiGAN are
able to learn the generative distribution reasonably given
the sparsely and irregularly-sampled observations. They are
both able to learn the periodic dynamics and infer the latent
functions according to sparse observations. Moreover, both
models also learn that the first two channels are correlated
due to the shared random offset a in the generative process,
and the shifting of the third channel is uncorrelated to the
first two channels as shown in Figure 8.

From the plots, we can see that P-VAE tends to generate
smoother curves, while P-BiGAN captures the detailed fluc-
tuation caused by the added Gaussian noise. This is similar
to the results on image modeling shown in Section 6.1:
GAN-based models capture the local details better but the
results can be noisy when the spatial signals are weak. On
the contrary, VAE-based models learn the big picture better
but the results are usually smoother.

E. Details of Experiments
E.1. Data Preparation and Preprocessing

MNIST can be downloaded from:
http://yann.lecun.com/exdb/mnist/

CelebA can be downloaded from:
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.
html
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Figure 7. Imputation results of Cont P-VAE and Cont P-BiGAN on a 3-channel synthetic time series. The first row shows four random
samples from the training data. Each sample has three channels displayed as a group and the observations in each channel are shown as
the red markers, which are drawn from the latent temporal function plotted as the gray trajectory. The second and the third rows show
the inferred latent trajectory of each channel, conditioned on the same observations shown in the first row by Cont P-VAE and Cont
P-BiGAN respectively. We can see that in general Cont P-VAE produces visually better completion results that are consistent with the
overall structure of the training samples. On the other hand, the inferred trajectories of P-BiGAN are less smooth (zoom-in to see the
details), and it seems that P-BiGAN captures more easily the Gaussian noise added in the training data. However, P-BiGAN generally
produces relatively poor imputation results that do not have the consistent overall structure such as the right tail in channel 3 of case
(c) and the right tail in channel 3 of case (d). This is similar to the case of high missing rate with independent dropout missingness in
Section 6.1, as the time series are very sparsely observed (7.4 observations in each channel on average). Note that if we trained both
model on a more densely sampled time series, such as the one with times drawn from a homogeneous Poisson process with rate λ = 200,
the two models will behave similarly.
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Figure 8. Randomly generated samples by Cont P-VAE (first row) and Cont P-BiGAN (second row) trained on the synthetic time series
shown in Figure 7. Similar to the imputation results, Cont P-VAE produces smoother trajectories that are consistent with the ground truth
generative process. On the contrary, occasionally there are artifacts in the samples generated by Cont P-BiGAN such as the trajectory of
the third channel in case (c).
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For both MNIST and CelebA, the range of pixel values of
the image is rescaled to [0, 1].

MIMIC-III can be downloaded following the instructions
from its website:
https://mimic.physionet.org/gettingstarted/
access/

We follow the GitHub repository below to preprocess the
MIMIC-III dataset:
https://github.com/mlds-lab/interp-net

For MIMIC-III, we normalize the timestamps within 48
hours to the interval [0, 1]. The observed values of the time
series are rescaled to [−1, 1] according to the minimum and
maximum value of each channel across the entire training
set.

E.2. Reference Implementations

We use the following reference implementation for the base-
line models in our experiments.

MisGAN:
https://github.com/steveli/misgan

GRU-D:
https://github.com/fteufel/PyTorch-GRU-D

Latent ODE:
https://github.com/YuliaRubanova/latent ode

M-RNN:
https://github.com/jsyoon0823/MRNN

The continuous convolutional layer described in Section 4.2
is built upon the spline-based convolution operator:
https://github.com/rusty1s/pytorch spline conv

E.3. Hyperparameters

Most of the hyperparameters of our models used in the ex-
periments are manually chosen as described in Section 6
without further tuning and are specified in the provided
implementation. The only hyperparameter we tune is the
strength of the autoencoding loss of P-BiGAN, the coeffi-
cient λ in objective (6), for the CelebA experiments. We
vary λ from {0, 10−5, 10−4, 10−3, 10−2, 10−1} and choose
the one that yields the best FID. We found that tuning this
hyperparameter makes a significant difference for different
missing patterns. For block observation, smaller λ yields
better results; while for independent dropout, larger λ yields
better results.

E.4. Computing Infrastructure

All of our experiments are computed using the NVIDIA
GeForce GTX 1080 Ti GPUs.
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Figure 9. The structure of P-VAE. qφ is the encoder and gθ is the
decoder.
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Figure 10. P-BiGAN with autoencoding regularization. qφ is the
stochastic encoder. gθ is the deterministic decoder; the two gθ
share the same parameters. D is the discriminator that takes as
input a collection of tuples (x, t, z) and (x′, t′, z′). `(x, x̂) is the
autoencoding loss. pD denotes the empirical distribution of the
training datasetD and pz is the prior distribution of the latent code
z. The part in brown is for additional autoencoding regularization.


