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1. Code
Code to reproduce the results of the paper will
be made available on this github repository
https://github.com/geoalgo/A-Quantile-
based-Approach-for-Hyperparameter-
Transfer-Learning/. Offline evaluations of
blackboxes are already available on this repository https:
//github.com/icdishb/hyperparameter-
transfer-learning-evaluations/.

2. Baselines Details
WS-GP. This method uses the best-performing hyperpa-
rameter configuration from each related task to warm start
the GP on the target task (Feurer et al., 2015). We also com-
pared to two variants of WS-GP: the first-one uses dataset
meta-features to detect the most closely related task and
warm-starts the GP with the best s evaluations from that
task; a second variant takes the best-performing s evalua-
tions from each task, with s > 1. As both variants were
outperformed by taking only the best evaluation from each
task (i.e., s = 1), we show results against this version in the
paper.

ABLR. The same algorithm settings as in Perrone et al.
(2018) are used. The shared neural network consists of
three fully connected layers, each with 50 units and tanh
activation functions. Its weights, as well as the task-specific
scale and noise parameters, are learned by optimizing the
marginal log-likelihood by L-BFGS. To run BO, ABLR
is combined with the EI acquisition function. We restrict
the total number of evaluations for transfer learning to be
around 2, 000 so that it is computationally feasible to train
with L-BFGS.
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SGPT. The method fits independent GPs on each related
task and weights tasks based on rank matching between the
objective values from the target task and the predictions of
these GPs on the evaluated hyperparameter configurations
(Wistuba et al., 2018). The weights are further included in
the acquisition function to scale the predictive improvement
on every relevant task. Due to the cubical scaling of GPs, we
subsampled 1, 000 hyperparameter evaluations from each
related task. We found the results to be very sensitive to the
choice of ρ, that is the bandwidth of the ranking-based dis-
tance defined in Eq. (42) of Wistuba et al. (2018). We report
all SGPT results with ρ = 0.01, which gives the best overall
performance across tasks among ρ ∈ {1.0, 0.1, 0.01}.

R-EA. As in Dong & Yang (2020), the initial population
size is 10, the number of cycles is set to infinity, and the
sample size is set to 3.

REINFORCE. As in Dong & Yang (2020), the architec-
ture encoding is optimized with ADAM. The learning rate
is set to 0.001 and the momentum for exponential moving
average is set to 0.9.

BOHB. As in Dong & Yang (2020), the number of sam-
ples for the acquisition function is set to 4, the random
fraction is set to 0, the minimum bandwidth is set to 0.3 and
the bandwidth factor to 3.

AutoGP. This method transfers information by learning a
compact search space from other tasks (Perrone et al., 2019).
First, a bounding box containing the best hyperparameter
configuration from each other task is fit to obtain a smaller
search space, which is defined by the learned coordinate-
wise lower and upper bounds. Then, standard random search
(RS) or GP-based BO (GP) is run in the learned search space.
This method comes with no hyperparameters.

GPareto. We use the four different criteria, namely EHI,
SMS, SUR and EMI, from GPareto (Binois & Picheny,
2019). When considering the new candidate with EI, we
select the best possible option over the known grid of can-
didates. Importantly, for GPareto this search becomes pro-
hibitively slow so we maximize EI over a random sample
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of 2000 candidates out of 15625. To compute the Hypervol-
ume error, the maximum of latency and error is used as a
reference point.

3. Look-up Tables
Table 1 describes the hyperparameters considered for each
tuning problem. For DeepAR and XGBoost, evaluations
were obtained by sampling hyperparameters (log) uniformly
at random from their search space. For FCNET and NAS,
all possible configurations were evaluated.

For DeepAR, we used the following 10 public datasets from
GluonTS (Alexandrov et al., 2019): {electricity, traffic,
solar, exchange-rate, m4-Hourly, m4-Daily, m4-Weekly,
m4-Montly, m4-Quarterly, m4-Yearly}1. The method was
evaluated with the Sagemaker version (Januschowski et al.,
2018). For FCNET and NAS, we used evaluations from
Klein & Hutter (2019) and Dong & Yang (2020) which
contains evaluations on {parkinson, protein, naval, slice}
for FCNET and {cifar10, cifar100, Imagenet16} for NAS.
For XGBoost, we used the tree boosting implementation
from Chen & Guestrin (2016) and evaluated 5, 000 hyperpa-
rameter configurations against 9 LIBSVM binary classifica-
tion datasets, namely {a6a, australian, german.numer, heart,
ijcnn1, madelon, spambase, svmguide1, w6a}.2

Table 1 describes the hyperparameters considered for each
tuning problem. For DeepAR and XGBoost, evaluations
were obtained by sampling hyperparameters (log) uniformly
at random from their search space. For FCNET and NAS,
all possible configurations were evaluated.
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Table 1. Search spaces description for each blackbox.
tasks hyperparameter search space scale

DeepAR

# layers [1, 5] linear
# cells [10, 120] linear

learning rate [10−4, 0.1] log10
dropout rate [10−2, 0.5] log10

context length ratio [10−1, 4] log10
# bathes per epoch [10, 104] log10

XGBoost

num round [2, 29] log2
eta [0, 1] linear

gamma [2−20, 26] log2
min child weight [2−8, 26] log2

max depth [2, 27] log2
subsample [0.5, 1] linear

colsample bytree [0.3, 1] linear
lambda [2−10, 28] log2

alpha [2−20, 28] log2

FCNET

initial lr {0.001, 0.005, 0.01, 0.05, 0.1} categorical
batch size {8, 16, 32, 64} categorical

lr schedule {cosine, fix} categorical
activation layer 1 {relu, tanh} categorical
activation layer 2 {relu, tanh} categorical

size layer 1 {16, 32, 64, 128, 256, 512} categorical
size layer 2 {16, 32, 64, 128, 256, 512} categorical

dropout layer 1 {0.0, 0.3, 0.6} categorical
dropout layer 2 {0.0, 0.3, 0.6} categorical

NAS

edge1 {zeroize, skip, 1x1 conv, 3x3 conv, 3x3 avg pool} categorical
edge2 {zeroize, skip, 1x1 conv, 3x3 conv, 3x3 avg pool} categorical
edge3 {zeroize, skip, 1x1 conv, 3x3 conv, 3x3 avg pool} categorical
edge4 {zeroize, skip, 1x1 conv, 3x3 conv, 3x3 avg pool} categorical
edge5 {zeroize, skip, 1x1 conv, 3x3 conv, 3x3 avg pool} categorical
edge6 {zeroize, skip, 1x1 conv, 3x3 conv, 3x3 avg pool} categorical


