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Abstract
Many modern large-scale machine learning prob-
lems benefit from decentralized and stochastic
optimization. Recent works have shown that uti-
lizing both decentralized computing and local
stochastic gradient estimates can outperform state-
of-the-art centralized algorithms, in applications
involving highly non-convex problems, such as
training deep neural networks. In this work, we
propose a decentralized stochastic algorithm to
deal with certain smooth non-convex problems
where there are m nodes in the system, and each
node has a large number of samples (denoted as
n). Differently from the majority of the exist-
ing decentralized learning algorithms for either
stochastic or finite-sum problems, our focus is
given to both reducing the total communication
rounds among the nodes, while accessing the min-
imum number of local data samples. In particular,
we propose an algorithm named D-GET (decen-
tralized gradient estimation and tracking), which
jointly performs decentralized gradient estima-
tion (which estimates the local gradient using a
subset of local samples) and gradient tracking
(which tracks the global full gradient using lo-
cal estimates). We show that, to achieve certain
✏ stationary solution of the deterministic finite
sum problem, the proposed algorithm achieves an
O(mn

1/2
✏
�1) sample complexity and an O(✏�1)

communication complexity. These bounds sig-
nificantly improve upon the best existing bounds
of O(mn✏

�1) and O(✏�1), respectively. Simi-
larly, for online problems, the proposed method
achieves an O(m✏

�3/2) sample complexity and
an O(✏�1) communication complexity.
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1. Introduction
Recent advances of decentralized optimization enable us
to utilize distributed resources to significantly improve the
computation efficiency (Boyd et al., 2011; Lian et al., 2017).
Compared to the typical parameter-server type distributed
system with a fusion center, decentralized optimization has
its unique advantages in preserving data privacy, enhancing
network robustness, and improving the computation effi-
ciency (Lian et al., 2017; Nedic & Ozdaglar, 2009; Chen
& Sayed, 2012; Yuan et al., 2016). Furthermore, in many
emerging applications such as collaborative filtering (Ali
& Van Stam, 2004), federated learning (Konečnỳ et al.,
2016) and dictionary learning (Chen et al., 2014), the data
is naturally collected in a decentralized setting, and it is
not possible to transfer the distributed data to a central lo-
cation. Therefore, decentralized computation has sparked
considerable interest in both academia and industry.

Motivated by these facts, in this paper we consider the
following decentralized optimization problem,

min
x2Rmd

f(x) =
1

m

mX

i=1

f
i(xi), (1)

s.t. xi = xk, 8(i, k) 2 E .

where f
i(·) : Rd

! R denotes the loss function which is
smooth (possibly non-convex), and m is the total number
of such functions. We consider the scenario where each
node i 2 [m] := {1, · · · ,m} can only access its local
function f

i(·), and can communicate with its neighbors via
an undirected and unweighted graph G = {E ,V}. And x
stacks all the variables: x := [x1;x2; · · · ;xm] 2 Rmd.

In this work, we consider two typical representations of the
local cost functions:

1. Finite-Sum Setting: Each f
i(·) is defined as the aver-

age cost of n local samples, that is:

f
i(·) =

1

n

nX

j=1

f
i
j(·), 8i (2)

where n is the total number of local samples at node i,
f
i
j(·) denotes the cost for jth data sample at ith node.

2. Online Setting: Each f
i(·) is defined as:
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f
i(·) = E⇠⇠Di [f

i
⇠(·)], 8i (3)

where Di denotes the data distribution at node i.

For the above decentralized non-convex problem (1), one
essential task is to find an ✏ stationary solution x⇤ :=
[x⇤

1; · · · ;x
⇤
m] 2 Rmd such that the optimality gap h

⇤ satis-
fies

�����
1
m

mX

i=1

rf i(x⇤
i )

�����

2

+
1
m

mX

i

�����x
⇤
i �

1
m

mX

i

x⇤
i

�����

2

 ✏. (4)

This solution quality measure encodes both the size of local
gradient error for classical centralized non-convex problems
and the consensus error for decentralized optimization.

Many modern decentralized methods can be applied to ob-
tain the above mentioned ✏ stationary solution for problem
(1). In the finite-sum setting (2), deterministic decentral-
ized methods (Hong et al., 2017; Di Lorenzo & Scutari,
2016; Sun et al., 2019; Sun & Hong, 2019), which process
the local dataset in full batches, typically achieve O(✏�1)
communication complexity (i.e., O(✏�1) rounds of mes-
sage exchanges are required to obtain ✏ stationary solution),
and O(mn✏

�1) sample complexity.1 Meanwhile, stochastic
methods (Lian et al., 2017; Tang et al., 2018; Assran et al.,
2019; Lu et al., 2019), which randomly pick subsets of local
samples, achieve O(m✏

�2) sample and O(✏�2) communi-
cation complexity. These complexity bounds indicate that,
when the sample size is large (i.e., ✏�1 = o(n)), the stochas-
tic methods are preferred for lower sample complexity, but
the deterministic methods still achieve lower communica-
tion complexity. On the other hand, in the online setting (3),
only stochastic methods can be applied, and those methods
again achieve O(m✏

�2) sample and O(✏�2) communica-
tion complexity (Tang et al., 2018).
1.1. Our Contribution
Compared with the majority of the existing decentralized
learning algorithms for either stochastic or deterministic
problems, the focus of this work is given to both reducing
the total communication and sample complexity. Specifi-
cally, we propose a decentralized gradient estimation and
tracking (D-GET) approach, which uses a subset of samples
to estimate the local gradients (by utilizing modern vari-
ance reduction techniques (Fang et al., 2018; Nguyen et al.,
2017)), while using the differences of past local gradients
to track the global gradients (by leveraging the idea of de-
centralized gradient tracking (Di Lorenzo & Scutari, 2016;
Pu & Nedić, 2018)). Remarkably, the proposed approach
enjoys a sample complexity of O(mn

1/2
✏
�1) and commu-

nication complexity of O(✏�1) for finite sum problem (2),
1Note that for the finite sum problem (2), the “sample com-

plexity” refers to the total number of samples accessed by the
algorithms to compute sample gradient rf i

j (xi)’s. If the same
sample j 2 [ni] is accessed k times and each time the evaluated
gradients are different, then the sample complexity increases by k.

which outperforms all existing decentralized methods. The
sample complexity rate is

p
m worse than the known sample

complexity lower bound for centralized problem (Fang et al.,
2018), and the communication complexity matches the ex-
isting communication lower bound (Sun & Hong, 2019) for
decentralized non-convex optimization (in terms of the de-
pendency in ✏). Furthermore, the proposed approach is also
able to achieve O(m✏

�3/2) sample complexity and O(✏�1)
communication complexity for the online problem (3), re-
ducing the best existing bounds (such as those obtained in
(Tang et al., 2018; Lu et al., 2019; Lu & Wu, 2020)) by fac-
tors of O(✏�1/2) and O(✏�1), respectively, through a more
restrictive mean-squared smoothness assumption (Arjevani
et al., 2019). The rate O(m✏

�3/2) is m worse than the cen-
tralized stochastic lower bound O(✏�3/2) for non-convex
problems (Arjevani et al., 2019). We illustrate the main
results of this work and compare the gradient and commu-
nication cost for state-of-the-art decentralized non-convex
optimization algorithms in Table 1.2 Note that in Table 1,
by constant step-size we mean that it is not dependent on
the target accuracy ✏, nor the iteration number.

1.2. Related Works
Decentralized Optimization. Decentralized optimization
has been extensively studied for convex problems and can
be traced back to the 1980s (Bertsekas, 1989). We refer
the readers to the recent survey (Nedić et al., 2018) and the
references therein for a complete review. When the problem
becomes non-convex, many algorithms such as primal-dual
based methods (Hong et al., 2016; 2017), gradient tracking
based methods (Di Lorenzo & Scutari, 2016; Daneshmand
et al., 2016), and non-convex extensions of DGD methods
(Zeng & Yin, 2018) have been proposed, where the O(✏�1)
iteration and communication complexity have been shown.
Note that the above algorithms all require O(1) full gradient
evaluations per iteration, so when directly applied to solve
problems where each f

i(·) takes the form in (2), they all
require O(mn✏

�1) local data samples.

However, due to the requirement that each iteration of the
algorithm needs a full gradient evaluation, the above batch
methods can be computationally very demanding. One nat-
ural solution is to use the stochastic gradient to approximate
the true gradient. Stochastic decentralized non-convex meth-
ods can be traced back to (Bianchi & Jakubowicz, 2013;
Bianchi et al., 2013), and recent advances including DSGD
(Jiang et al., 2017), PSGD (Lian et al., 2017), D2 (Tang
et al., 2018), GNSD (Lu et al., 2019) and stochastic gradi-
ent push (Assran et al., 2019). However, the large variance
coming from the stochastic gradient estimator and the use of

2For batch algorithms DGD, NEXT, Prox-PDA and xFILTER,
the bounds are obtained by multiplying their convergence rates
with m⇥n, since when applied to solve finite-sum problems, each
iteration requires O(1) full gradient evaluation.
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Table 1. Comparison of algorithms on decentralized non-convex optimization
ALGORITHM CONSTANT STEPSIZE FINITE-SUM ONLINE COMMUNICATION

DGD (ZENG & YIN, 2018) 7 O(mn✏�2) 7 O(✏�2)
SONATA (SUN ET AL., 2019) 3 O(mn✏�1) 7 O(✏�1)
PROX-PDA (HONG ET AL., 2017) 3 O(mn✏�1) 7 O(✏�1)
XFILTER (SUN & HONG, 2019) 3 O(mn✏�1) 7 O(✏�1)
PSGD (LIAN ET AL., 2017) 7 O(m✏�2) O(m✏�2) O(✏�2)
D2 (TANG ET AL., 2018) 3 O(m✏�2) O(m✏�2) O(✏�2)
GNSD (LU ET AL., 2019) 3 O(m✏�2) O(m✏�2) O(✏�2)
D-GET (THIS WORK) 3 O(m

p
n✏�1) O(m✏�3/2) O(✏�1)

Lower Bound (FANG ET AL., 2018; SUN & HONG, 2019) O(
p
mn✏�1) - O(✏�1)

diminishing step-size slow down the convergence, resulting
at least O(m✏

�2) sample and O(✏�2) communication cost.

Variance Reduction. Consider the following non-convex
finite sum problem: minw2Rd f(w) = 1

mn

Pmn
j=1 fj(w).

If we assume that f(·) has Lipschitz gradient, and directly
apply the vanilla gradient descent (GD) method on f(w),
then it requires O(mn✏

�1) gradient evaluations to reach
krf(w)k2  ✏ (Nesterov, 1998). When m⇥ n is large, it
is usually preferable to process a subset of data each time. In
this case, stochastic gradient descent (SGD) can be used to
achieve an O(✏�2) convergence rate (Ghadimi & Lan, 2013).
To bridge the gap between the GD and SGD, many variance
reduced gradient estimators have been proposed, including
SAGA (Defazio et al., 2014) and SVRG (Johnson & Zhang,
2013). The idea is to reduce the variance of the stochastic
gradient estimators and substantially improves the conver-
gence rate. In particular, the above approaches have been
shown to achieve sample complexities of O((mn)2/3✏�1)
for finite sum problems (Reddi et al., 2016; Allen-Zhu &
Hazan, 2016; Lei et al., 2017) and O(✏�5/3) for online
problem (Lei et al., 2017). Recent works further improve
the above gradient estimators and achieve O((mn)1/2✏�1)
sample complexity for finite sum problems (Nguyen et al.,
2019; Fang et al., 2018; Wang et al., 2019; Zhou et al.,
2018) and O(✏�3/2) sample complexity for online prob-
lems (Fang et al., 2018; Wang et al., 2019). At the same
time, the O((mn)1/2✏�1) sample complexity is shown to
be optimal when m⇥ n  O(✏�2) (Fang et al., 2018).

Decentralized Variance Reduction. The variance reduced
decentralized optimization has been extensively studied
for convex problems. The DSA proposed in (Mokhtari
& Ribeiro, 2016) combines the algorithm design ideas from
EXTRA (Shi et al., 2015) and SAGA (Defazio et al., 2014),
and achieves the first expected linear convergence for decen-
tralized stochastic optimization. Recent works also include
the DSBA (Shen et al., 2018), diffusion-AVRG (Yuan et al.,
2018), ADFS (Hendrikx et al., 2019), SAL-Edge (Wang &
Li, 2019), GT-SAGA (Xin et al., 2019), Network-DANE (Li
et al., 2019), and Cen et al. (2019), just to name a few. How-
ever, when the problem becomes non-convex, to the best of
our knowledge, no algorithms with provable guarantees are
available.

2. The Finite Sum Setting
In this section, we consider the non-convex decentralized
optimization problem (1) with finite number of samples as
defined in (2), which is restated below:

min
x2Rmd

f(x) =
1

mn

mX

i=1

nX

j=1

f
i
j(xi), (P1)

s.t. xi = xk, 8(i, k) 2 E .

We make the following standard assumptions on the above
problem:

Assumption 1. The objective function has Lipschitz contin-

uous gradient with constant L:

krf
i(xi)�rf

i(x0
i)k  Lkxi � x0

ik, 8i (5)

while the component function has average Lipschitz contin-

uous gradient with constant L:

Ejkrf
i
j(xi)�rf

i
j(x

0
i)k  Lkxi � x0

ik, 8i (6)

Assumption 2. The mixing matrix W is symmetric, and

satisfying the following

|
¯
�max(W)| := ⌘ < 1, W1 = 1, (7)

where
¯
�max(W) denotes the second largest eigenvalue of

W 2 Rm⇥m
.
3

Note that many choices of mixing matrices

satisfy the above condition, see Appendix A.

Next, let us formally define our communication and sample
complexity measures.

Definition 1. (Sample Complexity) The Incremental First-

order Oracle (IFO) is defined as an operation in which, one

node i 2 [m] takes a data sample j 2 [n], a point w 2 Rd
,

and returns the pair (f i
j(w),rf

i
j(w)). The sample com-

plexity is defined as the total number of IFO calls required

across the entire network to achieve an ✏ stationary solution

defined in (4).
3For notation simplicity when dealing with mixing matrix mul-

tiplication, but without loss of generality, we will assume that
the optimization variable xi in (1) is a scalar. The results can be
extended to vector case via the Kronecker product.
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Definition 2. (Communication Complexity) In one round

of communication, each node i 2 [m] is allowed to broad-

cast and received one d-dimensional vector to and from its

neighbors, respectively. Then the communication complex-

ity is defined as the total rounds of communications required

to achieve an ✏ stationary solution defined in (4).

2.1. Algorithm Design
In this section, we introduce the proposed algorithm named
Decentralized Gradient Estimation and Tracking (D-GET),
for solving problem (P1). To motivate our algorithm design,
we can observe from our discussion in Section 1.2 that, the
existing deterministic decentralized methods typically suffer
from the high sample complexity, while the decentralized
stochastic algorithms suffer from the high communication
cost. Such a phenomenon inspires us to find a solution in
between, which could simultaneously reduce the sample
and the communication costs.

One natural solution is to incorporate the modern variance
reduction techniques into the classical decentralized meth-
ods. Our idea is to use some variance reduced gradient
estimator to track the full gradient of the entire problem,
then perform decentralized gradient descent update. The gra-
dient tracking step gives us fast convergence with a constant
step-size, while the variance reduction method significantly
reduces the variation of the estimated gradient.

Unfortunately, the decentralized methods and variance re-
duction techniques cannot be directly combined. Compared
with the existing decentralized and variance reduction tech-
niques in the literature, the key challenges in the algorithm
design and analysis are given below:

1) Due to the decentralized nature of the problem, none of
the nodes can access the full gradient of the original objec-
tive function. The (possibly uncontrollable) consensus error
always exists during the whole process of implementing
the decentralized algorithm. Therefore, it is not clear that
the existing variance reduction methods could be applied at
each individual node effectively, since all of those require
accurate global gradient evaluation from time to time.

2) It is then natural to integrate some procedure that is able to
approximate the global gradient. For example, one straight-
forward way to perform gradient tracking is to introduce a
new auxiliary variable y as the following (Di Lorenzo &
Scutari, 2016; Lu et al., 2019), which is updated by only
using local estimated gradient and neighbors’ parameters:

yr
i =

X

k2Ni

Wiky
r�1
k +

1

|Sr
2 |

X

j2Sr
2

rf
i
j(x

r
i ) (8)

�
1

|S
r�1
2 |

X

j2Sr�1
2

rf
i
j(x

r�1
i ),

where S
r
2 and S

r�1
2 are the samples selected at the r and

r�1th iterations, respectively. If the tracked yi’s were used

in the (local) variance reduction procedure, there would be
at least two main issues of decreasing the variance resulted
from the tracked gradient as follows: i) at the early stage
of implementing the decentralized algorithm, the consen-
sus/tracking error may dominate the variance of the tracked
gradient, since the message of the full gradient has not been
sufficiently propagated through the network. Consequently,
performing variance reduction on yi’s will not be able to
increase the quality of the full gradient estimation; ii) even
assuming that there was no consensus error. Since only
the stochastic gradients, i.e.,

P
j2Sr

2
rf

i
j(x

r
i ), were used in

the tracking, the yr
i ’s themselves had high variance, result-

ing that such (possibly low-quality) full gradient estimates
may not be compatible to variance reduction methods as
developed in the current literature (which often require full
gradient evaluation from time to time).

The challenges discussed above suggest that it is non-trivial
to design an algorithm that can be implemented in a fully de-
centralized manner, while still achieving the superior sample
complexity and convergence rate achieved by state-of-the-
art variance reduction methods. In this work, we propose an
algorithm which uses a novel decentralized gradient estima-
tion and tracking strategy, together with a number of other
design choices, to address the issues raised above.

To introduce the algorithm, let us first define two auxiliary
local variables vi and yi, where vi is designed to estimate
the local full batch gradient 1

n

Pn
j=1 rf

i
j(xi) by only using

sample gradient rf
i
j(xi)0s, while yi is designed to track

the global average gradient 1
mn

Pm
i=1

Pn
j=1 rf

i
j(xi) by

utilizing vi’s. After the local and global gradient estimates
are obtained, the algorithm performs local update based on
the direction of yi; see the main steps below.

1) Local update using estimated gradient (x update): Each
local node i first combines its previous iterates xr�1

i with
its local neighbors xr�1

k , k 2 Ni (by using the kth row of
weight matrix W), then makes a prediction based on the
gradient estimate yr�1

i , i.e.,

xr
i =

X

k2Ni

Wikx
r�1
k � ↵yr�1

i . (9)

2) Estimate local gradients (v update): Depending on the
iteration r, each local node i either directly calculates the
full local gradient rf

i(xr
i ) when mod(r, q) = 0

vr
i = rf

i(xr
i ), (10)

or estimates its local gradient via an estimator v using |S2|

random samples otherwise,

vr
i =

1

|S2|

X

j2S2

⇥
rf

i
j(x

r
i )�rf

i
j(x

r�1
i )

⇤
+ vr�1

i , (11)

where q > 0 is the interval in which local full gradient will
be evaluated once.
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3) Track global gradients (y update): Each local node i

combines its previous local estimate yr�1
i with its local

neighbors yr�1
k , k 2 Ni, then makes a new estimation based

on the fresh information vr
i , i.e.,

yr
i =

X

k2Ni

Wiky
r�1
k + vr

i � vr�1
i . (12)

In the following table, we summarize the proposed algo-
rithm in a more compact form. Note that we use x 2 Rmd,
v 2 Rmd, y 2 Rmd, rf(x) 2 Rmd and rfj(x) 2 Rmd to
denote the concatenation of the xi 2 Rd, vi 2 Rd, yi 2 Rd,
rf

i(xi) 2 Rd and rf
i
j(xi) 2 Rd across all nodes.

Algorithm 1 D-GET Algorithm for finite sum problem (P1)
Input: x0

,↵, q, |S2|

v0 = rf(x0), y0 = rf(x0)
for r = 1, 2, . . . , T do
xr = Wxr�1

� ↵yr�1

if mod(r, q) = 0 then
Calculate the full gradient
vr = rf(xr)

else
Each node draws S2 samples from [n] with replace-
ment
vr = 1

|S2|
P

j2S2

⇥
rfj(xr)�rfj(xr�1)

⇤
+vr�1

end if
yr = Wyr�1 + vr

� vr�1

end for
Output: xR where R 2 [0, T ] is the uniformly dis-
tributed random variable.

Remark 1. This is a “double loop” algorithm, where each
outer iteration (i.e., mod (r, q) = 0) is followed by q � 1
inner iterations (i.e., mod (r, q) 6= 0). The inner loop es-
timates the local gradient via stochastic sampling at every
iteration r, while the outer loop aims to reduce the estima-
tion variance by recalculating the full batch gradient at every
q iterations. The local communication, update, and tracking
steps are performed at both inner and outer iterations.

Remark 2. In D-GET, the total communication rounds is in
the same order as the total number of iterations, since only
two rounds of communications are performed per iteration,
via broadcasting the local variable xr�1

i and yr�1
i to their

neighbors, and combining local xr�1
k and yr�1

k ’s, k 2 Ni.
On the other hand, the total number of samples used per
iteration is either m|S2| (where inner iterations are executed)
or mn (where outer iterations are executed).

Remark 3. Note that our x and y updates are reminiscent
of the classical gradient tracking methods (Di Lorenzo &
Scutari, 2016), and v update takes a similar form as the
SARAH/SPIDER estimator (Nguyen et al., 2017; Fang et al.,
2018). However, it is non-trivial to directly combine the
gradient tracking and the variance reduction together, as we

mentioned at the beginning of Section 2.1. The proposed
D-GET uses a number of design choices to address these
challenges. For example, two vectors v and y are used to
respectively estimate the local and global gradients, in a
way that the local gradient estimates do not depend on the
(potentially inaccurate) global tracked gradients; to reduce
the variance in y, we occasionally use the full local gradient
to perform tracking, etc. Nevertheless, the key challenge
in the analysis is to properly bound the accumulated errors
from the two estimates v and y.

2.2. Convergence Analysis
To facilitate our analysis, we first define the average iterates
x̄ and ȳ among all m nodes,

x̄r :=
1

m

X

i

xr
i , v̄r :=

1

m

X

i

vr
i , (13a)

ȳr :=
1

m

X

i

yr
i . (13b)

We use r to denote the overall iteration number. The total
number of outer iterations until iteration r as below:

nr := br/qc+ 1, such that (nr � 1)q  r  nrq � 1.

Next, we outline the proof steps of the convergence rate
analysis.

Step 1. We first show that the variance of our local and
global gradient estimators can be bounded via x and y iter-
ates. The bounds to be given below is tighter than the clas-
sical analysis of decentralized stochastic methods, which
assume the variance are bounded by some universal constant
(Tang et al., 2018; Lian et al., 2017; Jiang et al., 2017). This
is an important step to obtain lower sample/communication
complexity, since later we can show that the right-hand-side
(RHS) of our bound shrinks as the iteration progresses.

Lemma 1. (Bounded Variance) Under Assumption 1 - 2, the

sequence generated by the inner loop of Algorithm 1 satisfies

the following inequalities (for all (nr�1)q  r  nrq�1):

Ekȳr
�

1

m

mX

i=1

rf
i(xr

i )k
2 (14)


8L2

m|S2|

rX

t=(nr�1)q

Ekxt
� 1x̄t

k
2

+
4↵2

L
2

m|S2|

rX

t=(nr�1)q

Ekyt
� 1ȳt

k
2

+
4↵2

L
2

|S2|

rX

t=(nr�1)q

Ekȳt
k
2

+Ekȳ(nr�1)q
�

1

m

mX

i=1

rf
i(xi

(nr�1)q)k2.
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Ekvr
�rf(xr)k2 

L
2

|S2|

rX

t=(nr�1)q

Ekxt+1
� xt

k
2

+ Ekv(nr�1)q
�rf(x(nr�1)q)k2. (15)

Step 2. We then study the descent on E[f(x̄r)], which is the
expected value of the cost function evaluated on the average
iterates.
Lemma 2. (Descent Lemma) Suppose Assumptions 1 - 2

hold, and for any r � 0 satisfying mod(r, q) = 0, the

following holds for some ✏1 � 0:

E
"
kȳr

�
1

mn

mX

i=1

nX

k=1

rf
i
k(x

r
i )k

2

#
 ✏1. (16)

Algorithm 1 ensures the following relation for all r � 0,

E[f(x̄r+1)]  E[f(x̄0)] (17)

�

✓
↵

2
�

↵
2
L

2
�

4↵3
L
2
q

|S2|

◆ rX

t=0

Ekȳt
k
2

+

✓
↵L

2

m
+

8↵L2
q

m|S2|

◆ rX

t=0

Ekxt
� 1x̄t

k
2

+
4↵3

L
2
q

m|S2|

rX

t=0

Ekyt
� 1ȳt

k
2 + ↵(r + 1)✏1.

A key observation from Lemma 2 is that, in the RHS of (17),
besides the negative term in Ekȳk

k
2, we also have several

extra terms (such as Ekxk
�1x̄k

k
2 and Ekyk

�1ȳk
k
2) that

cannot be made negative. Therefore, we need to find some
potential function that is strictly descending per iteration.

Note that ✏1 in (16) comes from the variance of vr in es-
timating the full local gradient at each outer loop nr. For
Algorithm 1, where we calculate a full batch gradient per
outer loop in step (33), ✏1 = 0. However, we still would
like to include ✏1 in the above result because, later when we
analyze the online version (where such a variance will no
longer be zero), we can re-use the above result.

Step 3. Next, we introduce the contraction property, which
combined with E[f(x̄r)] will be used to construct the poten-
tial function.
Lemma 3. (Iterates Contraction) Using the Assumption 2

on W and applying Algorithm 1, we have the following

contraction property of the iterates:

Ekxr+1
� 1x̄r+1

k
2 (18)

(1 + �)⌘2Ekxr
� 1x̄r

k
2 + (1 +

1

�
)↵2Ekyr

� 1ȳr
k
2
,

Ekyr+1
� 1ȳr+1

k
2 (19)

(1 + �)⌘2Ekyr
� 1ȳr

k
2 + (1 +

1

�
)Ekvr+1

� vr
k
2
,

where � is some constant such that (1 + �)⌘2 < 1.

If we further assume for all r � 0 satisfying mod(r, q) = 0,

the following holds for some ✏2 � 0:

Ekvr
�rf(xr)k2  ✏2. (20)

Then we have the following bound:

rX

t=0

Ekvt+1
� vt

k
2
 48L2

rX

t=0

Ekxt
� 1x̄t

k
2

+ 24L2
↵
2

rX

t=0

Ekyt
� 1ȳt

k
2

+ 24L2
↵
2

rX

t=0

Ek1ȳt
k
2 + 6(r + 1)✏2, 8 r � 0. (21)

Again, ✏2 comes from the variance of the estimating the
local gradient in each outer loop, and we have ✏2 = 0 for
Algorithm 1. Note that (18) can also be written as following

Ekxr+1
� 1x̄r+1

k
2
� Ekxr

� 1x̄r
k
2


�
(1 + �)⌘2 � 1

�
Ekxr

� 1x̄r
k
2

+ (1 +
1

�
)↵2Ekyr

� 1ȳr
k
2
. (22)

One key observation here is that we have (1+�)⌘2�1 < 0
by properly choosing �. Therefore, the RHS of the above
equation can be made negative by properly selecting the
step-size ↵.

Step 4. This step combines the descent estimates obtained
in Step 2-3 to construct a potential function, by using a conic
combination of E[f(x̄r)], Ekxr

�1x̄r
k
2 and Ekyr

�1ȳr
k
2.

Lemma 4. (Potential Function) Constructing the following

potential function

H(xr) := E[f(x̄r)] +
1

m
Ekxr

� 1x̄r
k
2 +

↵

m
Ekyr

� 1ȳr
k
2
.

Under Assumption 1 - 2 and Algorithm 1, if we further pick

q = |S2| and define ✏1 and ✏2 as in (16) and (20), we have

H(xr+1)� H(x0)

� C1

rX

t=0

Ekȳt
k
2
� C2

rX

t=0

1

m
Ekxt

� 1x̄t
k
2

� C3

rX

t=0

1

m
Ekyt

� 1ȳt
k
2 + ✏3,
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where

C1 :=

✓
1

2
�

↵L

2
� 4↵2

L
2
� 24(1 +

1

�
)↵2

L
2

◆
↵,

(23a)

C2 :=

✓
1� (1 + �)⌘2 � 48↵(1 +

1

�
)L2

� 9↵L2

◆
,

(23b)

C3 :=↵� (1 + �)↵⌘2 � (1 +
1

�
)↵2

� 24(1 +
1

�
)↵3

L
2
� 4↵3

L
2
, (23c)

✏3 :=↵(r + 1)(✏1 + 6
1

m
(1 +

1

�
)✏2). (23d)

Step 5. We can then properly choose the step-size ↵, and
make C1, C2, C3 to be positive. Therefore, our solution
quality measure Ek 1

m

Pm
i=1 rf

i(xr
i )k

2+ 1
mEkxr

�1x̄r
k
2

can be expressed as the difference of the potential functions
and the proof is complete.
Theorem 1. Consider problem (P1) and under Assumption

1 - 2, if we pick ↵ = min{K1,K2,K3} and q = |S2| =
p
n,

then we have following results by applying Algorithm 1,

1

T

TX

t=0

Ek 1

m

mX

i=1

rf
i(xt

i)k
2 +

1

T

TX

t=0

1

m
Ekxt

� 1x̄t
k
2

C0 ·
Ef(x0)�

¯
f

T
,

where

¯
f denotes the lower bound of f , and the constants

are defined as following

K1 :=
�

L
2 +

q
(L2 )

2 + 48(1 + 1
� )L

2 + 8L2

48(1 + 1
� )L

2 + 8L2
,

K2 :=
1� (1 + �)⌘2

48(1 + 1
� )L

2 + 9L2
,

K3 :=
�(1 + 1

� )

48(1 + 1
� )L

2 + 8L2

+

q
(1 + 1

� )
2 + 4(1� (1 + �)⌘2)(24(1 + 1

� ) + 4L2)

48(1 + 1
� )L

2 + 8L2
,

C0 :=

✓
8↵2

L
2 + 2

C1
+

16L2 + 1

mC2
+

8↵2
L
2

mC3

◆
,

in which ⌘ denotes the second largest eigenvalue of the

mixing matrix from (7), � denotes a constant satisfying

1� (1 + �)⌘2 > 0, for example, � = (1� ⌘
2)/(2⌘2), and

C1, C2, C3 are defined in (23a)-(23c).

By directly applying the above result, we have the upper
bound on gradient and communication cost by properly
choosing T based on ✏.

Corollary 1. To achieve the following ✏ stationary solution

of problem (P1) by Algorithm 1,

1

T

TX

t=0

Ek 1

m

mX

i=1

rf
i(xt

i)k
2 +

1

T

TX

t=0

1

m
Ekxt

� 1x̄t
k
2
 ✏,

the total number of iterations T and communication rounds

required are both in the order of O(✏�1), and the total

number of samples evaluated across the network is in the

order of O(mn+mn
1/2

✏
�1).

Note that our metric is evaluated on individual variable xi

and our algorithm also output xi as each agent i’s final
solution. If we choose to use the average x̄ = 1

m

P
xi as

our final solution, one can show that the metric on average
iterates x̄ is also small through simple derivations.

Corollary 2. To achieve the following ✏ stationary solution

of problem (P1) by Algorithm 1,

1

T

TX

t=0

Ek 1

m

mX

i=1

rf
i(x̄t)k2 +

1

T

TX

t=0

1

m
Ekxt

� 1x̄t
k
2
 ✏,

the total number of iterations T and communication rounds

required are both in the order of O(✏�1), and the total

number of samples evaluated across the network is in the

order of O(mn+mn
1/2

✏
�1).

If we further take expectation over the iteration t, we can
have the convergence guarantee on our algorithm output
xR
i (or x̄R similarly), where R 2 [0, T ] is the uniformly

distributed random variable.

Corollary 3. To achieve the following ✏ stationary solution

of problem (P1) by Algorithm 1,

Ek 1

m

mX

i=1

rf
i(xR

i )k
2 +

1

m
EkxR

� 1x̄R
k
2
 ✏,

the total number of iterations T and communication rounds

required are both in the order of O(✏�1), and the total

number of samples evaluated across the network is in the

order of O(mn + mn
1/2

✏
�1). The expectation E here is

taken over the iteration R and the randomness from the

random sampling step (11).

3. The Online Setting
In this section, we discuss the online setting (3) for solving
problem (1), where the problem can either be expressed as
the following

min
x2Rmd

f(x) =
1

m

mX

i=1

E⇠⇠Di

⇥
f
i
⇠(xi)

⇤
, (P2)

s.t. xi = xj , 8(i, j) 2 E ,
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where ⇠ represents the data drawn from the data distribution
Di at the ith node, or in form (P1) such that the number
of samples n is too large to calculate the full batch even
occasionally. In either one of these scenarios, full batch
evaluations at the local nodes are no longer performed for
each outer iteration.

The above setting has been well-studied for the central-
ized problem (with large or even infinite number of sam-
ples). For example, in SCSG (Lei et al., 2017), a batch size
O(✏�1) is used when the sample size is large or the target
accuracy O(✏) is moderate, improving the rate to O(✏�5/3)
from O(✏�2) compared to the vanilla SGD (Ghadimi &
Lan, 2013). Recently, SPIDER (Fang et al., 2018) further
improves the results to O(✏�3/2), while the SpiderBoost
(Wang et al., 2019) uses a constant step-size and is amenable
to solve non-smooth problem at this rate.

3.1. The Proposed Algorithm
To begin with, we first introduce two additional commonly
used assumptions in the online learning setting, together
with our Assumption 1 and 2.
Assumption 3. At each iteration, samples are indepen-

dently collected, and the stochastic gradient is an unbiased

estimate of the true gradient:

E⇠[rf
i
⇠(xi)] = rf

i(xi), 8i. (24)

Assumption 4. The variance between the stochastic gradi-

ent and the true gradient is bounded:

E⇠[krf
i
⇠(xi)�rf

i(xi)k
2]  �

2
, 8i. (25)

To present our algorithms, note that compared to problem
(P1), the main difference of having the expectation in (P2)
is that the full batch gradient evaluation is no longer feasible.
Therefore, we need to slightly revise our algorithm in Sec-
tion 2 and redesign the local gradient estimation step (i.e.,
the v update). Specifically, different from (10) where we
sample the full batch, here we randomly draw S1 samples,
the size of which is inversely proportional to the desired
accuracy ✏. We have the following updates on v:

Depending on the iteration r, each local node i either esti-
mates its local gradient using |S1| random samples when
mod(r, q) = 0,

vr
i =

1

|S1|

X

⇠2S1

rf
i
⇠(x

r
i ), (26)

or uses |S2| random samples otherwise,

vr
i =

1

|S2|

X

⇠2S2

⇥
rf

i
⇠(x

r
i )�rf

i
⇠(x

r�1
i )

⇤
+ vr�1

i . (27)

It is easy to check that the following relation on average
iterates is obvious when mod(r, q) = 0 and ȳ0 = v̄0,

ȳr = v̄r =
1

m|S1|

mX

i=1

X

⇠2S1

rf
i
⇠(x

r
i ). (28)

The rest of the updates on x and y are same as the finite
sum setting; see Algorithm 2 below for details.

Algorithm 2 D-GET Algorithm (global view) (online)
Input: x0

,↵, q, |S1|, |S2|

Draw S1 samples with replacement
v0 = 1

|S1|
P

⇠2S1
rf⇠(x0), y0 = v0

for r = 1, 2, . . . do
xr = Wxr�1

� ↵yr�1

if mod(r, q) = 0 then
Draw S1 samples with replacement
vr = 1

|S1|
P

⇠2S1
rf⇠(xr)

else
Draw S2 samples with replacement
vr = 1

|S2|
P

⇠2S2

⇥
rf⇠(xr)�rf⇠(xr�1)

⇤
+vr�1

end if
yr = Wyr�1 + vr

� vr�1

end for
Output: xR where R 2 [0, T ] is the uniformly dis-
tributed random variable.

3.2. Convergence Analysis
The analysis follows the same steps as described in Section
2.2 and it is easy to verify that our Lemma 1 to Lemma 4
still hold true for Algorithm 2. However, for online setting
where we no longer sample a full batch, the variance ✏1 and
✏2 cannot be eliminated. The lemma given below provides
the bounds on ✏1 and ✏2.

Lemma 5. (Bounded Variance) Under Assumption 1 to

4, the sequence generated by the outer loop of Algorithm

2 satisfies the following relations (for all r such that

mod(r, q)=0)

Ekvr
�rf(xr)k2 

m�
2

|S1|
,

Ekȳr
�

1

m

mX

i=1

rf
i(xr

i )k
2


�
2

|S1|
.

By using the above lemma, we can then choose the sample
size inversely proportional to the targeted accuracy and
obtain our final results.

Theorem 2. Suppose Assumption 1 - 4 hold, and pick the

following parameters for problem (P2):

↵ = min{K1,K2,K3}, q = |S2| =
p
|S1|,

|S1| = (4C0↵(7 +
6

�
)�2 + 8�2)/✏.

Then we have the following result by applying Algorithm 2,

1

T

TX

t=0

Ek 1

m

mX

i=1
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i(xt

i)k
2 +

1

T

TX

t=0

1

m
Ekxt

� 1x̄t
k
2

 C0 ·
Ef(x0)�

¯
f

T
+

✏

2
.
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Figure 1. Logistic regression with non-convex regularizer

Corollary 4. By using Algorithm 2, to achieve the ✏ station-

ary solution of problem (1), i.e.,

1

T

TX

t=0

Ek 1

m

mX

i=1

rf
i(xt

i)k
2 +

1

T

TX

t=0

1

m
Ekxt

� 1x̄t
k
2
 ✏,

the total number of iterations T and communication rounds

required are both in the order of O(✏�1), and the total

sample complexity is in the order of O(m✏
�3/2).

4. Experimental Results
In this section, we demonstrate the performance of the pro-
posed algorithms on two classical smooth non-convex prob-
lems: a) decentralized logistic regression with non-convex
regularizer and b) non-convex robust linear regression, the
detailed objective functions are given in Appendix C.

We use the dataset a9a (n = 32561, d = 123) from the
LIBSVM (Chang & Lin, 2011), and we distribute the data
so each node contains 3256 data points with 123 features.
Then we compare the proposed D-GET with the NEXT (Sun
et al., 2019), PSGD (Lian et al., 2017) and GNSD (Lu et al.,
2019) over the path communication graph E .

Simulation results in terms of both sample complexity and
the communication complexity averaged over 10 realiza-
tions are shown in Fig. 1 and Fig. 2, where the x-axis
denotes total number of required (a) epochs and (b) commu-
nication rounds, and the y-axis denotes the quality measure
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Figure 2. Non-convex robust linear regression

(4). It can be observed that the proposed D-GET could
achieve much faster convergence in terms of sample com-
plexity, while matches the communication complexity as
the deterministic algorithms, as claimed in Theorem 1 and 2.
Additional simulations results on different datasets in terms
of both the optimality gap and loss functions are available
in Appendix C due to space limit.

5. Concluding Remarks
In this work, we proposed a joint gradient estimation and
tracking approach (D-GET) for fully decentralized non-
convex optimization problems. By utilizing modern vari-
ance reduction and gradient tracking techniques, the pro-
posed method improves the sample and/or communication
complexities compared with existing methods. In partic-
ular, for decentralized finite sum problems, the proposed
approach requires only O(mn

1/2
✏
�1) sample complexity

and O(✏�1) communication complexity to reach the ✏ sta-
tionary solution. For online problem, our approach achieves
an O(m✏

�3/2) sample and an O(✏�1) communication com-
plexity, which significantly improves upon the best existing
bounds of O(m✏

�2) and O(✏�2) as derived in (Tang et al.,
2018).
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