
Fundamental Tradeoffs between Invariance and Sensitivity to Adversarial Perturbations

A. Details about Model-agnostic
Invariance-based Attacks

Here, we give details about our model-agnostic invariance-
based adversarial attacks on MNIST.

Generating `0-invariant adversarial examples. As-
sume we are given a training set X consisting of labeled
example pairs (x̂, ŷ). As input our algorithm accepts an
example x with oracle label O(x) = y. Image x with label
y = 8 is given in Figure 4 (a).

Define S = {x̂ : (x̂, ŷ) 2 X , x̂ 6= y}, the set of training
examples with a different label. Now we define T to be the
set of transformations that we allow: rotations by up to 20
degrees, horizontal or vertical shifts by up to 6 pixels (out
of 28), shears by up to 20%, and re-sizing by up to 50%.

We generate a new augmented training set X ⇤ = {t(x̂) :
t 2 T , x̂ 2 S}. By assumption, each of these examples
is labeled correctly by the oracle. In our experiments, we
verify the validity of this assumption through a human study
and omit any candidate adversarial example that violates
this assumption. Finally, we search for

x
⇤ = arg min

x⇤2X⇤
kx

⇤
� x̂k0.

By construction, we know that x and x
⇤ are similar in pixel

space but have a different label. Figure 4 (b-c) show this
step of the process. Next, we introduce a number of refine-
ments to make x

⇤ be “more similar” to x. This reduces
the `0 distortion introduced to create an invariance-based
adversarial example—compared to directly returning x

⇤ as
the adversarial example.

First, we define � = |x � x
⇤
| > 1/2 where the absolute

value and comparison operator are taken element-wise. In-
tuitively, � represents the pixels that substantially change
between x

⇤ and x. We choose 1/2 as an arbitrary threshold
representing how much a pixel changes before we consider
the change “important”. This step is shown in Figure 4
(d). Along with � containing the useful changes that are
responsible for changing the oracle class label of x, it also
contains irrelevant changes that are superficial and do not
contribute to changing the oracle class label. For example,
in Figure 4 (d) notice that the green cluster is the only se-
mantically important change; both the red and blue changes
are not necessary.

To identify and remove the superficial changes, we perform
spectral clustering on �. We compute �i by enumerating
all possible subsets of clusters of pixel regions. This gives us
many possible potential adversarial examples x⇤

i = x+�i.
Notice these are only potential because we may not actually
have applied the necessary change that actually modifies the
class label.

We show three of the eight possible candidates in Figure 4.
In order to alleviate the need for human inspection of each
candidate x

⇤
i to determine which of these potential adver-

sarial examples is actually misclassified, we follow an ap-
proach from Defense-GAN (Samangouei et al., 2018) and
the Robust Manifold Defense (Ilyas et al., 2017): we take
the generator from a GAN and use it to assign a likelihood
score to the image. We make one small refinement, and use
an AC-GAN (Mirza & Osindero, 2014) and compute the
class-conditional likelihood of this image occurring. This
process reduces `0 distortion by 50% on average.

As a small refinement, we find that initially filtering X

by removing the 20% least-canonical examples makes the
attack succeed more often.

Generating `1-invariant adversarial examples. Our
approach for generating `1-invariant examples follows sim-
ilar ideas as for the `0 case, but is conceptually simpler as
the perturbation budget can be applied independently for
each pixel (our `1 attack is however less effective than the
`0 one, so further optimizations may prove useful).

We build an augmented training set X ⇤ as in the `0 case.
Instead of looking for the closest nearest neighbor for some
example x with label O(x) = y, we restrict our search to ex-
amples x⇤

2 X
⇤ with specific target labels y⇤, which we’ve

empirically found to produce more convincing examples
(e.g., we always match digits representing a 1, with a target
digit representing either a 7 or a 4). We then simply apply
an `1-bounded perturbation to x by interpolating with x

⇤,
so as to minimize the distance between x and the chosen
target example x

⇤.
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B. Complete Set of 100 Invariance
Adversarial Examples

Below we give the 100 randomly-selected test images along
with the invariance adversarial examples that were shown
during the human study.

B.1. Original Images

B.2. `0 Invariance Adversarial Examples

B.3. `1 Invariance Adversarial Examples (" = 0.3)

B.4. `1 Invariance Adversarial Examples (" = 0.4)
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Agreement between model and the original MNIST label, for sensitivity-based adversarial examples

Model: Undefended `0 Sparse Binary-ABS ABS `1 PGD (✏ = 0.3) `2 PGD (✏ = 2)

`0 Attack (✏ = 25) 0% 45% 63% 43% 0% 40%

`1 Attack (✏ = 0.3) 0% 8% 77% 8% 92% 1%
`1 Attack (✏ = 0.4) 0% 0% 60% 0% 7% 0%

Table 3: Robust model accuracy with respect to the original MNIST labels under different threat models. For `1 attacks, we
use PGD (Madry et al., 2017). For `0 attacks, we use the PointwiseAttack of (Schott et al., 2019).

C. Details on Trained Models
In Section 4, we evaluate multiple models against invariance
adversarial examples. Table 2 gives results for models taken
from prior work. We refer the reader to these works for
details. The undefended model is a ResNet-18.

Table 3 reports the standard test accuracy of these models
against sensitivity-based adversarial examples. That is, the
model is considered correct if it classifiers the adversarial
example with the original test-set label of the unperturbed
input. To measure `0 robustness, we use the PointwiseAt-
tack of (Schott et al., 2019) repeated 10 times, with ✏ = 25.
For `1 robustness, we use PGD with 100 iterations for
✏ = 0.3 and ✏ = 0.4. For the ABS and Binary-ABS models,
we report the number from (Schott et al., 2019), for PGD
combined with stochastic gradient estimation.

Trading Perturbation-Robustness and Invariance Ro-
bustness. The adversarially-trained models in Figure 6
use the same architecture as (Madry et al., 2017). We train
each model for 10 epochs with Adam and a learning rate of
10�3 reduced to 10�4 after 5 epochs (with a batch size of
100). To accelerate convergence, we train against a weaker
adversary in the first epoch (with 1/3 of the perturbation
budget). For training, we use PGD with 40 iterations for
`1 and 100 iterations for `1. For `1-PGD, we choose a
step-size of 2.5 · "/k, where k is the number of attack it-
erations. For the models trained with `1-PGD, we use the
Sparse `1-Descent Attack of Tramèr & Boneh (2019), with
a sparsity fraction of 99%.

Below, we report the robust accuracy of these models against
sensitivity-based adversarial examples, in the sense of equa-
tion 1.

✏ for `1-PGD training

Attack 0.1 0.2 0.3 0.4

PGD ✏ = 0.3 0% 6% 92% 93%
PGD ✏ = 0.4 0% 0% 7% 90%

Table 4: Robust model accuracy with respect to the original
MNIST label for models trained against `1 attacks.

✏ for `1-PGD training

Attack 5 10 15

`0-PointwiseAttack (✏ = 25) 41% 59% 65%

Table 5: Robust model accuracy with respect to the original
MNIST label for models trained against `1 attacks, and
evaluated against `0 attacks.

The Role of Data Augmentation. The models in Figure 7
and Figure 8 are trained against an adversary that first ro-
tates and translates an input (using the default parameters
from (Engstrom et al., 2019b)) and then adds noise of `1-
norm bounded by " to the transformed input. For training,
we sample 10 spatial transformations at random for each
input, apply 40 steps of `1-PGD to each transformed input,
and retain the strongest adversarial example. At test time,
we enumerate all possible spatial transformations for each
input, and apply 100 steps of PGD to each.

When training against an adversary with " � 0.25, a warm-
start phase is required to ensure training converges. That is,
we first trained a model against an " = 0.2 adversary, and
then successively increases " by 0.05 every 5 epochs.

D. Proof of Lemma 4
We recall and prove Lemma 4 from Section 3:

Lemma. Constructing an oracle-aligned distance function
that satisfies Definition 3 is as hard as constructing a func-
tion f so that f(x) = O(x), i.e., f perfectly solves the
oracle’s classification task.

Proof. We first show that if we have a distance function
dist that satisfies Definition 3, then the classification task
can be perfectly solved.

Let x be an input from class y so that O(x) = y. Let
{xi} be any (possibly infinite) sequence of inputs so that
dist(x, xi) < dist(x, xi+1) but so that O(xi) = y for
all xi. Define lx = limi!1 dist(x, xi) as the distance to
the furthest input from this class along the path xi.

Assume that O is not degenerate and there exists at least
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one input z so that O(z) 6= y. If the problem is degener-
ate then it is uninteresting: every function dist satisfies
Definition 3.

Now let {zi} be any (possibly infinite) sequence of inputs so
that dist(x, zi) > dist(x, zi+1) and so that O(zi) 6= y.
Define lz = limi!1 dist(x, zi) as the distance to the
closest input along z. But by Definition 3 we are guaranteed
that lz > lx, otherwise there would exist an index I such that
dist(x, xI) � dist(x, zI) but so that O(x) = O(xI)
and O(x) 6= O(zI), contradicting Definition 3. Therefore
for any example x, all examples xi that share the same class
label are closer than any other input z that has a different
class label.

From here it is easy to see that the task can be solved trivially
by a 1-nearest neighbor classifier using this function dist.
Let S = {(↵i, yi)}Ci=1 contain exactly one pair (z, y) for
every class. Given an arbitrary query point x, we can there-
fore compute the class label as arg min dist(x,↵i), which
must be the correct label, because of the above argument:
the closest example from any (incorrect) class is different
than the furthest example from the correct class, and so in
particular, the closest input from S must be the correct label.

For the reverse direction, assume we have a classifier f(x)
that solves the task perfectly, i.e., f(x) = O(x) for any
x 2 Rd. Then the distance function defined as

dist(x, x0) =

(
0 if f(x) = f(x0)

1 otherwise

is aligned with the oracle.

E. Proofs for the Overly-Robust Features
Model

We recall the binary classification task from Section 5. Unla-
beled inputs x 2 Rd+2 are sampled from some distribution
D

⇤
k parametrized by k > 1 as follows:

z
u.a.r
⇠ {�1, 1}, x1 = z/2

x2 =

(
+z w.p. 1+1/k

2

�z w.p. 1�1/k
2

, x3, . . . , xd+2
i.i.d
⇠ N (

z
p
d
, k) .

The oracle label for an input x is y = O(x) = sign(x1).
Note that for k � 1, features x2, . . . , xd+2 are only weakly
correlated with the label y. The oracle labels are robust to
`1-perturbations bounded by " = 1/2:

Claim 5. For any x ⇠ D
⇤ and � 2 Rd+2 with k�k1 <

1/2, we have O(x) = O(x+�).

Recall that we consider that a model is trained and evaluated
on sanitized and labeled data from this distribution. In this
data, the “noise” features x2, . . . , xd+2 are more strongly

correlated with the oracle labels y, and there is a small
amount of label noise attributed to mistakes in the data
labeling process. Specifically, we let ↵ > 0 and � > 0 be
small constants, and define D as the following distribution:

x ⇠ D
⇤
1+↵, y =

(
+O(x) w.p. 1� �

�O(x) w.p. �
.

We first show that this sanitization introduces spurious
weakly robust features. Standard models trained on D are
thus vulnerable to sensitivity-based adversarial examples.

Lemma 6. Let f(x) be the Bayes optimal classifier on
D. Then f agrees with the oracle O with probability at
least 1� � over D but with 0% probability against an `1-
adversary bounded by some " = O(d�1/2).

Proof. The first part of the lemma, namely that f agrees
with the oracle O with probability at least 1 � � follows
from the fact that for (x, y) ⇠ D, sign(x1) = y with
probability 1 � �, and O(x) = sign(x1). So a classifier
that only relies on feature x1 achieves 1 � � accuracy. To
show that the Bayes optimal classifier for D has adversarial
examples, note that this classifier is of the form

f(x) = sign(wT
x+ C)

= sign(w1 · x1 + w2 · x2 +
d+2X

i=3

wi · xi + C) ,

where w1, w2, C are constants, and wi = O(1/
p
d) for i �

3. Thus, a perturbation of size O(1/
p
d) applied to features

x3, . . . , xd+2 results in a change of size O(1) in w
T
x+ C,

which can be made large enough to change the output of f
with arbitrarily large probability. As perturbations of size
O(1/

p
d) cannot change the oracle’s label, they can reduce

the agreement between the classifier and oracle to 0%.

Finally, we show that there exists an overly-robust classifier
on D that is vulnerable to invariance adversarial examples:

Lemma 7. Let f(x) = sign(x2). This classifier has ac-
curacy above 1� ↵/2 on D, even against an `1 adversary
bounded by " = 0.99. Under such large perturbations, f
agrees with the oracle with probability 0%.

Proof. The robust accuracy of f follows from the fact that
f(x) cannot be changed by any perturbation of `1 norm
strictly below 1, and that for (x, y) ⇠ D, we have x2 = y

with probability 1+1/(1+↵)
2 � 1�↵/2. For any (x, y) ⇠ D,

note that a perturbation of `1-norm above 1/2 can always
flip the oracle’s label. So we can always find a perturbation
� such that k�k1  0.99 and f(x+�) 6= O(x+�).


