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Abstract

Contrastive representation learning has been out-

standingly successful in practice. In this work,

we identify two key properties related to the con-

trastive loss: (1) alignment (closeness) of features

from positive pairs, and (2) uniformity of the in-

duced distribution of the (normalized) features on

the hypersphere. We prove that, asymptotically,

the contrastive loss optimizes these properties,

and analyze their positive effects on downstream

tasks. Empirically, we introduce an optimizable

metric to quantify each property. Extensive exper-

iments on standard vision and language datasets

confirm the strong agreement between both met-

rics and downstream task performance. Directly

optimizing for these two metrics leads to repre-

sentations with comparable or better performance

at downstream tasks than contrastive learning.

Project Page: ssnl.github.io/hypersphere.

Code: github.com/SsnL/align uniform.

1. Introduction

A vast number of recent empirical works learn representa-

tions with a unit ℓ2 norm constraint, effectively restricting

the output space to the unit hypersphere (Parkhi et al., 2015;

Schroff et al., 2015; Liu et al., 2017; Hasnat et al., 2017;

Wang et al., 2017; Bojanowski & Joulin, 2017; Mettes et al.,

2019; Hou et al., 2019; Davidson et al., 2018; Xu & Dur-

rett, 2018), including many recent unsupervised contrastive

representation learning methods (Wu et al., 2018; Bachman

et al., 2019; Tian et al., 2019; He et al., 2019; Chen et al.,

2020).

Intuitively, having the features live on the unit hypersphere

leads to several desirable traits. Fixed-norm vectors are

known to improve training stability in modern machine
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Alignment: Similar samples have similar features.
(Figure inspired by Tian et al. (2019).)

Feature Density

Uniformity: Preserve maximal informationUniformity: Preserve maximal information.

Figure 1: Illustration of alignment and uniformity of fea-

ture distributions on the output unit hypersphere. STL-10

(Coates et al., 2011) images are used for demonstration.

learning where dot products are ubiquitous (Xu & Durrett,

2018; Wang et al., 2017). Moreover, if features of a class are

sufficiently well clustered, they are linearly separable with

the rest of feature space (see Figure 2), a common criterion

used to evaluate representation quality.

While the unit hypersphere is a popular choice of feature

space, not all encoders that map onto it are created equal.

Recent works argue that representations should addition-

ally be invariant to unnecessary details, and preserve as

much information as possible (Oord et al., 2018; Tian et al.,

2019; Hjelm et al., 2018; Bachman et al., 2019). Let us

call these two properties alignment and uniformity (see

https://ssnl.github.io/hypersphere
https://github.com/SsnL/align_uniform
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Hypersphere: Clustered sets are linearly separable

    Linear
    classifier

Figure 2: Hypersphere: When classes are well-clustered

(forming spherical caps), they are linearly separable. The

same does not hold for Euclidean spaces.

Figure 1). Alignment favors encoders that assign similar

features to similar samples. Uniformity prefers a feature

distribution that preserves maximal information, i.e., the

uniform distribution on the unit hypersphere.

In this work, we analyze the alignment and uniformity prop-

erties. We show that a currently popular form of contrastive

representation learning in fact directly optimizes for these

two properties in the limit of infinite negative samples. We

propose theoretically-motivated metrics for alignment and

uniformity, and observe strong agreement between them

and downstream task performance. Remarkably, directly

optimizing for these two metrics leads to comparable or

better performance than contrastive learning.

Our main contributions are:

• We propose quantifiable metrics for alignment and

uniformity as two measures of representation quality,

with theoretical motivations.

• We prove that the contrastive loss optimizes for align-

ment and uniformity asymptotically.

• Empirically, we find strong agreement between both

metrics and downstream task performance.

• Despite being simple in form, our proposed metrics,

when directly optimized with no other loss, empirically

lead to comparable or better performance at down-

stream tasks than contrastive learning.

2. Related Work

Unsupervised Contrastive Representation Learning

has seen remarkable success in learning representations

for image and sequential data (Logeswaran & Lee, 2018;

Wu et al., 2018; Oord et al., 2018; Hénaff et al., 2019; Tian

et al., 2019; Hjelm et al., 2018; Bachman et al., 2019; Tian

et al., 2019; He et al., 2019; Chen et al., 2020). The com-

mon motivation behind these work is the InfoMax principle

(Linsker, 1988), which we here instantiate as maximizing

the mutual information (MI) between two views (Tian et al.,

2019; Bachman et al., 2019; Wu et al., 2020). However, this

interpretation is known to be inconsistent with the actual

behavior in practice, e.g., optimizing a tighter bound on MI

can lead to worse representations (Tschannen et al., 2019).

What the contrastive loss exactly does remains largely a

mystery. Analysis based on the assumption of latent classes

provides nice theoretical insights (Saunshi et al., 2019), but

unfortunately has a rather large gap with empirical practices:

the result that representation quality suffers with a large

number of negatives is inconsistent with empirical obser-

vations (Wu et al., 2018; Tian et al., 2019; He et al., 2019;

Chen et al., 2020). In this paper, we analyze and characterize

the behavior of contrastive learning from the perspective of

alignment and uniformity properties, and empirically verify

our claims with standard representation learning tasks.

Representation learning on the unit hypersphere. Out-

side contrastive learning, many other representation learning

approaches also normalize their features to be on the unit hy-

persphere. In variational autoencoders, the hyperspherical

latent space has been shown to perform better than the Eu-

clidean space (Xu & Durrett, 2018; Davidson et al., 2018).

Directly matching uniformly sampled points on the unit

hypersphere is known to provide good representations (Bo-

janowski & Joulin, 2017), agreeing with our intuition that

uniformity is a desirable property. Mettes et al. (2019) opti-

mizes prototype representations on the unit hypersphere for

classification. Hyperspherical face embeddings greatly out-

perform the unnormalized counterparts (Parkhi et al., 2015;

Liu et al., 2017; Wang et al., 2017; Schroff et al., 2015).

Its empirical success suggests that the unit hypersphere is

indeed a nice feature space. In this work, we formally inves-

tigate the interplay between the hypersphere geometry and

the popular contrastive representation learning.

Distributing points on the unit hypersphere. The prob-

lem of uniformly distributing points on the unit hypersphere

is a well-studied one. It is often defined as minimizing

the total pairwise potential w.r.t. a certain kernel function

(Borodachov et al., 2019; Landkof, 1972), e.g., the Thomson

problem of finding the minimal electrostatic potential energy

configuration of electrons (Thomson, 1904), and minimiza-

tion of the Riesz s-potential (Götz & Saff, 2001; Hardin &

Saff, 2005; Liu et al., 2018). The uniformity metric we pro-

pose is based on the Gaussian potential, which can be used

to represent a very general class of kernels and is closely

related to the universally optimal point configurations (Boro-

dachov et al., 2019; Cohn & Kumar, 2007). Additionally,

the best-packing problem on hyperspheres (often called the

Tammes problem) is also well studied (Tammes, 1930).
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3. Preliminaries on Unsupervised Contrastive

Representation Learning

The popular unsupervised contrastive representation learn-

ing method (often referred to as contrastive learning in this

paper) learns representations from unlabeled data. It as-

sumes a way to sample positive pairs, representing similar

samples that should have similar representations. Empir-

ically, the positive pairs are often obtained by taking two

independently randomly augmented versions of the same

sample, e.g. two crops of the same image (Wu et al., 2018;

Hjelm et al., 2018; Bachman et al., 2019; He et al., 2019;

Chen et al., 2020).

Let pdata(·) be the data distribution over Rn and ppos(·, ·)
the distribution of positive pairs over Rn × R

n. Based on

empirical practices, we assume the following property.

Assumption. Distributions pdata and ppos should satisfy

• Symmetry: ∀x, y, ppos(x, y) = ppos(y, x).

• Matching marginal: ∀x,
∫

ppos(x, y) dy = pdata(x).

We consider the following specific and widely popular form

of contrastive loss for training an encoder f : Rn → Sm−1,

mapping data to ℓ2 normalized feature vectors of dimension

m. This loss has been shown effective by many recent

representation learning methods (Logeswaran & Lee, 2018;

Wu et al., 2018; Tian et al., 2019; He et al., 2019; Hjelm

et al., 2018; Bachman et al., 2019; Chen et al., 2020).

Lcontrastive(f ; τ,M) ,

E
(x,y)∼ppos

{x−

i
}M
i=1

i.i.d.
∼ pdata

[

− log
ef(x)

Tf(y)/τ

ef(x)Tf(y)/τ +
∑

i e
f(x−

i
)Tf(y)/τ

]

,

(1)

where τ > 0 is a scalar temperature hyperparameter, and

M ∈ Z+ is a fixed number of negative samples.

The term contrastive loss has also been generally used to

refer to various objectives based on positive and negative

samples, e.g., in Siamese networks (Chopra et al., 2005;

Hadsell et al., 2006). In this work, we focus on the spe-

cific form in Equation (1) that is widely used in modern

unsupervised contrastive representation learning literature.

Necessity of normalization. Without the norm constraint,

the softmax distribution can be made arbitrarily sharp by

simply scaling all the features. Wang et al. (2017) provided

an analysis on this effect and argued for the necessity of

normalization when using feature vector dot products in a

cross entropy loss, as is in Eqn. (1). Experimentally, Chen

et al. (2020) also showed that normalizing outputs leads to

superior representations.

The InfoMax principle. Many empirical works are moti-

vated by the InfoMax principle of maximizing I(f(x); f(y))
for (x, y) ∼ ppos (Tian et al., 2019; Bachman et al., 2019;

Wu et al., 2020). Usually they interpret Lcontrastive in

Eqn. (1) as a lower bound of I(f(x); f(y)) (Oord et al.,

2018; Hjelm et al., 2018; Bachman et al., 2019; Tian et al.,

2019). However, this interpretation is known to have issues

in practice, e.g., maximizing a tighter bound often leads

to worse downstream task performance (Tschannen et al.,

2019). Therefore, instead of viewing it as a bound, we inves-

tigate the exact behavior of directly optimizing Lcontrastive

in the following sections.

4. Feature Distribution on the Hypersphere

The contrastive loss encourages learned feature representa-

tion for positive pairs to be similar, while pushing features

from the randomly sampled negative pairs apart. Conven-

tional wisdom says that representations should extract the

most shared information between positive pairs and remain

invariant to other noise factors (Linsker, 1988; Tian et al.,

2019; Wu et al., 2020; Bachman et al., 2019). Therefore,

the loss should prefer two following properties:

• Alignment: two samples forming a positive pair should

be mapped to nearby features, and thus be (mostly)

invariant to unneeded noise factors.

• Uniformity: feature vectors should be roughly uni-

formly distributed on the unit hypersphere Sm−1, pre-

serving as much information of the data as possible.

To empirically verify this, we visualize CIFAR-10 (Tor-

ralba et al., 2008; Krizhevsky et al., 2009) representations

on S1 (m = 2) obtained via three different methods:

• Random initialization.

• Supervised predictive learning: An encoder and a lin-

ear classifier are jointly trained from scratch with cross

entropy loss on supervised labels.

• Unsupervised contrastive learning: An encoder is

trained w.r.t. Lcontrastive with τ = 0.5 and M = 256.

All three encoders share the same AlexNet based archi-

tecture (Krizhevsky et al., 2012), modified to map input

images to 2-dimensional vectors in S1. Both predictive

and contrastive learning use standard data augmentations to

augment the dataset and sample positive pairs.

Figure 3 summarizes the resulting distributions of validation

set features. Indeed, features from unsupervised contrastive

learning (bottom in Figure 3) exhibit the most uniform dis-

tribution, and are closely clustered for positive pairs.

The form of the contrastive loss in Eqn. (1) also suggests

this. We present informal arguments below, followed by

more formal treatment in Section 4.2. From the symmetry
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(a) Random Initialization. Linear classification validation accuracy: 12.71%.
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(b) Supervised Predictive Learning. Linear classification validation accuracy: 57.19%.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
ℓ2 Distances

0

1000

2000

3000

4000

5000

Co
un

ts

Alignment
Positive Pair Feature Distances

Mean

−1 0 1
Features

−1.0

−0.5

0.0

0.5

1.0

Uniformity
Feature Distribution

−2 0 2
Angles

0

1000

Co
un

ts

−1 0 1
Features

−1.0

−0.5

0.0

0.5

1.0

Class 0

−2 0 2
Angles

0

100
−1 0 1

Features

−1.0

−0.5

0.0

0.5

1.0

Class 3

−2 0 2
Angles

0

100
−1 0 1

Features

−1.0

−0.5

0.0

0.5

1.0

Class 6

−2 0 2
Angles

0

100
−1 0 1

Features

−1.0

−0.5

0.0

0.5

1.0

Class 9

−2 0 2
Angles

0

100

(c) Unsupervised Contrastive Learning. Linear classification validation accuracy: 28.60%.

Figure 3: Representations of CIFAR-10 validation set on S1. Alignment analysis: We show distribution of distance

between features of positive pairs (two random augmentations). Uniformity analysis: We plot feature distributions with

Gaussian kernel density estimation (KDE) in R
2 and von Mises-Fisher (vMF) KDE on angles (i.e., arctan2(y, x) for each

point (x, y) ∈ S1). Four rightmost plots visualize feature distributions of selected specific classes. Representation from

contrastive learning is both aligned (having low positive pair feature distances) and uniform (evenly distributed on S1).

of p, we can derive

Lcontrastive(f ; τ,M) = E
(x,y)∼ppos

[

−f(x)Tf(y)/τ
]

+ E
(x,y)∼ppos

{x−

i
}M
i=1

i.i.d.
∼ pdata

[

log

(

ef(x)
Tf(y)/τ +

∑

i

ef(x
−

i
)Tf(x)/τ

)]

.

Because the
∑

i e
f(x−

i
)Tf(x)/τ term is always positive and

bounded below, the loss favors smaller E
[

−f(x)Tf(y)/τ
]

,

i.e., having more aligned positive pair features. Suppose the

encoder is perfectly aligned, i.e., P [f(x) = f(y)] = 1, then

minimizing the loss is equivalent to optimizing

E
x∼pdata

{x−

i
}M
i=1

i.i.d.
∼ pdata

[

log

(

e1/τ +
∑

i

ef(x
−

i
)Tf(x)/τ

)]

,

which is akin to maximizing pairwise distances with a

LogSumExp transformation. Intuitively, pushing all fea-

tures away from each other should indeed cause them to be

roughly uniformly distributed.

4.1. Quantifying Alignment and Uniformity

For further analysis, we need a way to measure alignment

and uniformity. We propose the following two metrics

(losses).

4.1.1. ALIGNMENT

The alignment loss is straightforwardly defined with the

expected distance between positive pairs:

Lalign(f ;α) , − E
(x,y)∼ppos

[‖f(x)− f(y)‖
α
2 ] , α > 0.
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Figure 4: Average pairwise G2 potential as a measure of uniformity. Each plot shows 10000 points distributed on S1,

obtained via either applying an encoder on CIFAR-10 validation set (same as those in Figure 3) or sampling from a

distribution on S1, as described in plot titles. We show the points with Gaussian KDE and the angles with vMF KDE.

4.1.2. UNIFORMITY

We want the uniformity metric to be both asymptotically

correct (i.e., the distribution optimizing this metric should

converge to uniform distribution) and empirically reasonable

with finite number of points. To this end, we consider the

Gaussian potential kernel (also known as the Radial Basis

Function (RBF) kernel) Gt : S
d × Sd → R+ (Cohn &

Kumar, 2007; Borodachov et al., 2019):

Gt(u, v) , e−t‖u−v‖2

2 = e2t·u
Tv−2t, t > 0,

and define the uniformity loss as the logarithm of the average

pairwise Gaussian potential:

Luniform(f ; t) , log E

x,y
i.i.d.
∼ pdata

[Gt(u, v)] , t > 0,

where t is a fixed parameter.

The average pairwise Gaussian potential is nicely tied with

the uniform distribution on the unit hypersphere.

Definition (Uniform distribution on Sd). σd denotes the

normalized surface area measure on Sd.

First, we show that the uniform distribution is the unique

distribution that minimize the expected pairwise potential.

Proposition 1. For M(Sd) the set of Borel probability

measures on Sd, σd is the unique solution of

min
µ∈M(Sd)

∫

u

∫

v

Gt(u, v) dµ dµ.

Proof. See supplementary material.

In addition, as number of points goes to infinity, distribu-

tions of points minimizing the average pairwise potential

converge weak∗ to the uniform distribution. Recall the defi-

nition of the weak∗ convergence of measures.

Definition (Weak∗ convergence of measures). A sequence

of Borel measures {µn}
∞
n=1 in R

p converges weak∗ to a

Borel measure µ if for all continuous function f : Rp → R,

we have

lim
n→∞

∫

f(x) dµn(x) =

∫

f(x) dµ(x).

Proposition 2. For each N > 0, the N point minimizer of

the average pairwise potential is

u
∗
N = argmin

u1,u2,...,uN∈Sd

∑

1≤i<j≤N

Gt(ui, uj).

The normalized counting measures associated with the

{u∗
N}∞N=1 sequence converge weak∗ to σd.

Proof. See supplementary material.

Designing an objective minimized by the uniform distribu-

tion is in fact nontrivial. For instance, average pairwise dot

products or Euclidean distances is simply optimized by any

distribution that has zero mean. Among kernels that achieve

uniformity at optima, the Gaussian kernel is special in that

it is closely related to the universally optimal point config-

urations and can also be used to represent a general class

of other kernels, including the Riesz s-potentials. We refer

readers to Borodachov et al. (2019) and Cohn & Kumar

(2007) for in-depths discussion on these topics. Moreover,

as we show below, Luniform, defined with the Gaussian ker-

nel, has close connections with Lcontrastive.

Empirically, we evaluate the average pairwise potential of

various finite point collections on S1 in Figure 4. The values

nicely align with our intuitive understanding of uniformity.

4.2. Limiting Behavior of Contrastive Learning

In this section, we formalize the intuition that contrastive

learning optimizes alignment and uniformity, and charac-

terize its asymptotic behavior. We consider optimization

problems over all measurable encoder functions from the

pdata measure in R
n to the Borel space Sm−1.

We first define the notion of optimality for these metrics.

Definition (Perfect Alignment). We say an encoder f is

perfectly aligned if f(x) = f(y) a.s. over (x, y) ∼ ppos.

Definition (Perfect Uniformity). We say an encoder f is

perfectly uniform if the distribution of f(x) for x ∼ pdata is

the uniform distribution σm−1 on Sm−1.
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Realizability of perfect uniformity. We note that it is not

always possible to achieve perfect uniformity, e.g., when the

data manifold in R
n is lower dimensional than the feature

space Sm−1. Moreover, in the case that pdata and ppos are

formed from sampling augmented samples from a finite

dataset, there cannot be an encoder that is both perfectly

aligned and perfectly uniform, because perfect alignment

implies that all augmentations from a single element have

the same feature vector. Nonetheless, perfectly uniform

encoder functions do exist under the conditions that n ≥
m− 1 and pdata has bounded density.

We analyze the asymptotics with infinite negative samples.

Existing empirical work has established that larger number

of negative samples consistently leads to better downstream

task performances (Wu et al., 2018; Tian et al., 2019; He

et al., 2019; Chen et al., 2020), and often uses very large

values (e.g., M = 65536 in He et al. (2019)). The following

theorem nicely confirms that optimizing w.r.t. the limiting

loss indeed requires both alignment and uniformity.

Theorem 1 (Asymptotics of Lcontrastive). For fixed τ > 0,

as the number of negative samples M → ∞, the (normal-

ized) contrastive loss converges to

lim
M→∞

Lcontrastive(f ; τ,M)− logM =

−
1

τ
E

(x,y)∼ppos

[

f(x)Tf(y)
]

+ E
x∼pdata

[

log E
x−∼pdata

[

ef(x
−)Tf(x)/τ

]

]

.

(2)

We have the following results:

1. The first term is minimized iff f is perfectly aligned.

2. If perfectly uniform encoders exist, they form the exact

minimizers of the second term.

3. For the convergence in Equation (2), the absolute devi-

ation from the limit decays in O(M−2/3).

Proof. See supplementary material.

Relation with Luniform. The proof of Theorem 1 in the

supplementary material connects the asymptotic Lcontrastive

form with minimizing average pairwise Gaussian poten-

tial, i.e., minimizing Luniform. Compared with the second

term of Equation (2), Luniform essentially pushes the log out-

side the outer expectation, without changing the minimizer

(perfectly uniform encoders). However, due to its pair-

wise nature, Luniform is much simpler in form and avoids the

computationally expensive softmax operation in Lcontrastive

(Goodman, 2001; Bengio et al.; Gutmann & Hyvärinen,

2010; Grave et al., 2017; Chen et al., 2018).

Relation with feature distribution entropy estimation.

When pdata is uniform over finite samples {x1, x2, . . . , xN}

(e.g., a collected dataset), the second term in Equation (2)

can be alternatively viewed as a resubstitution entropy esti-

mator of f(x) (Ahmad & Lin, 1976), where x follows the

underlying distribution pnature that generates {xi}
N
i=1, via a

von Mises-Fisher (vMF) kernel density estimation (KDE):

E
x∼pdata

[

log E
x−∼pdata

[

ef(x
−)Tf(x)/τ

]

]

=
1

N

N
∑

i=1

log





1

N

N
∑

j=1

ef(xi)
Tf(xj)/τ





=
1

N

N
∑

i=1

log p̂vMF-KDE(f(xi)) + logZvMF

, −Ĥ(f(x)) + logZvMF, x ∼ pnature

, −Î(x; f(x)) + logZvMF, x ∼ pnature,

where

• p̂vMF-KDE is the KDE based on samples {f(xj)}
N
j=1

using a vMF kernel with κ = τ−1,

• ZvMF is the vMF normalization constant for κ = τ−1,

• Ĥ denotes the resubstitution entropy estimator,

• Î denotes the mutual information estimator based on

Ĥ , since f is a deterministic function.

Relation with the InfoMax principle. Many empirical

works are motivated by the InfoMax principle, i.e., maxi-

mizing I(f(x); f(y)) for (x, y) ∼ ppos. However, the inter-

pretation of Lcontrastive as a lower bound of I(f(x); f(y)) is

known to be inconsistent with its actual behavior in prac-

tice (Tschannen et al., 2019). Our results instead analyze

the properties of Lcontrastive itself. Considering the identity

I(f(x); f(y)) = H(f(x)) −H(f(x) | f(y)), we can see

that while uniformity indeed favors large H(f(x)), align-

ment is stronger than merely desiring small H(f(x) | f(y)).
Instead, our above analysis suggests that Lcontrastive opti-

mizes for aligned and information-preserving encoders.

Finally, even for the case where only a single negative sam-

ple is used (i.e., M = 1), we can still prove a weaker result,

which we describe in details in the supplementary material.

5. Experiments

In this section, we empirically verify the hypothesis that

alignment and uniformity are desired properties for repre-

sentations. Recall that our two metrics are

Lalign(f ;α) , E(x,y)∼ppos
[‖f(x)− f(y)‖

α
2 ]

Luniform(f ; t) , log E
x,y

i.i.d.
∼ pdata

[

e−t‖f(x)−f(y)‖2

2

]

.

We conduct extensive experiments with convolutional neural

network (CNN) and recurrent neural network (RNN) based
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# bsz : batch size (number of positive pairs)

# d : latent dim

# x : Tensor, shape=[bsz, d]

# latents for one side of positive pairs

# y : Tensor, shape=[bsz, d]

# latents for the other side of positive pairs

# lam : hyperparameter balancing the two losses

def lalign(x, y, alpha=2):

return (x - y).norm(dim=1).pow(alpha).mean()

def lunif(x, t=2):

sq_pdist = torch.pdist(x, p=2).pow(2)

return sq_pdist.mul(-t).exp().mean().log()

loss = lalign(x, y) + lam * (lunif(x) + lunif(y)) / 2

Figure 5: PyTorch implementation of Lalign and Luniform.

encoders on four popular representation learning bench-

marks with distinct types of downstream tasks:

• STL-10 (Coates et al., 2011) classification on AlexNet-

based encoder outputs or intermediate activations with

a linear or k-nearest neighbor (k-NN) classifier.

• NYU-DEPTH-V2 (Nathan Silberman & Fergus, 2012)

depth prediction on CNN encoder intermediate activa-

tions after convolution layers.

• IMAGENET-100 (100 randomly selected classes from

IMAGENET) classification on CNN encoder penulti-

mate layer activations with a linear classifier.

• BOOKCORPUS (Zhu et al., 2015) RNN sentence en-

coder outputs used for Moview Review Sentence Po-

larity (MR) (Pang & Lee, 2005) and Customer Product

Review Sentiment (CR) (Wang & Manning, 2012) bi-

nary classification tasks with logisitc classifiers.

For image datasets, we follow the standard practice and

choose positive pairs as two independent augmentations

of the same image. For BOOKCORPUS, positive pairs are

chosen as neighboring sentences, following Quick-Thought

Vectors (Logeswaran & Lee, 2018).

We perform majority of our analysis on STL-10 and NYU-

DEPTH-V2 encoders, where we calculate Lcontrastive with

negatives being other samples within the minibatch follow-

ing the standard practice (Hjelm et al., 2018; Bachman et al.,

2019; Tian et al., 2019; Chen et al., 2020), and Luniform as

the logarithm of average pairwise feature potentials also

within the minibatch. Due to their simple forms, these two

losses can be implemented in PyTorch (Paszke et al., 2019)

with less than 10 lines of code, as shown in Figure 5.

To investigate alignment and uniformity properties on re-

cent contrastive representation learning variants and larger

datasets, we also analyze IMAGENET-100 encoders trained

with Momentum Contrast (MoCo) (He et al., 2019) and

BOOKCORPUS encoders trained with Quick-Thought Vec-

tors (Logeswaran & Lee, 2018), with these methods modi-

fied to also allow Lalign and Luniform.

We optimize a total of 306 STL-10 encoders, 64 NYU-

DEPTH-V2 encoders, 45 IMAGENET-100 encoders, and

108 BOOKCORPUS encoders without supervision. The

encoders are optimized w.r.t. weighted combinations of

Lcontrastive, Lalign, and/or Luniform, with varying

• (possibly zero) weights on the three losses,

• loss hyperparameters: τ for Lcontrastive, α for Lalign,

and t for Luniform,

• batch size (affecting the number of (negative) pairs for

Lcontrastive and Luniform),

• embedding dimension,

• number of training epochs and learning rate,

• initialization (from scratch vs. a pretrained encoder).

See the supplementary material for more experiment details

and the exact configurations used.

Both Lalign and Luniform strongly agree with downstream

task performance. For each encoder, we measure the

downstream task performance, and the Lalign, Luniform met-

rics on the validation set. Figure 6 visualizes the trends

between both metrics and representation quality. We ob-

serve that the two metrics strongly agrees the representation

quality overall. In particular, the best performing encoders

are exactly the ones with low Lalign and Luniform, i.e., the

lower left corners in Figure 6. In the supplementary mate-

rial, we observe that as long as the ratio between weights on

Lalign and Luniform is not too large (e.g., < 4), the represen-

tation quality remains relatively good and insensitive to the

exact weight choices.

Directly optimizing only Lalign and Luniform can lead to

better representations. As shown in Table 1, encoders

trained with only Lalign and Luniform consistently outper-

form their Lcontrastive-trained counterparts, for both tasks.

Theoretically, Theorem 1 showed that Lcontrastive optimizes

alignment and uniformity asymptotically with infinite neg-

ative samples. This empirical performance gap suggests

that directly optimizing these properties can be superior in

practice, when we can only have finite negatives.

Lalign and Luniform causally affect downstream task per-

formance. We take an encoder trained with Lcontrastive

using a suboptimal temperature τ = 2.5, and finetune it

according to Lalign and/or Luniform. Figure 7 visualizes the

finetuning trajectories. When only one of alignment and

uniformity is optimized, the corresponding metric improves,

but both the other metric and performance degrade. How-

ever, when both properties are optimized, the representation

quality steadily increases. These trends confirm the causal

effect of alignment and uniformity on the representation

quality, and suggest that directly optimizing them can be a

reasonable choice.



Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere

−4 −3 −2 −1 0
uniform(t= 2)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00


al

ig
n(
α

=
2)

Linear Classification on Outputs
contrastive only
align, uniform only
All three mixed

50

55

60

65

70

75

80

85

Va
l A

cc
ur

ac
y

−4 −3 −2 −1 0
uniform(t= 2)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00


al

ig
n(
α

=
2)

5-NN Classification on fc7
contrastive only
align, uniform only
All three mixed

50

55

60

65

70

75

80

85

Va
l A

cc
ur

ac
y

(a) 306 STL-10 encoders are evaluated with linear classification on output features and
5-nearest neighbor (5-NN) on fc7 activations. Higher accuracy (blue color) is better.
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(b) 64 NYU-DEPTH-V2 encoders are eval-
uated with CNN depth regressors on conv5
activations. Lower MSE (blue color) is better.

Figure 6: Metrics and performance of STL-10 and NYU-DEPTH-V2 experiments. Each point represents a trained encoder,

with its x- and y-coordinates showing Lalign and Luniform metrics and color showing the performance on validation set. Blue

is better for both tasks. Encoders with low Lalign and Luniform are consistently the better performing ones (lower left corners).

STL-10 Validation Set Accuracy ↑ NYU-DEPTH-V2 Validation Set MSE ↓

Output + Linear Output + 5-NN fc7 + Linear fc7 + 5-NN conv5 conv4

Best Lcontrastive only 80.46% 78.75% 83.89% 76.33% 0.7024 0.7575

Best Lalign and Luniform only 81.15% 78.89% 84.43% 76.78% 0.7014 0.7592

Table 1: Encoder evaluations. STL-10: Numbers show linear and 5-nearest neighbor (5-NN) classification accuracies. The

best result is picked by encoder outputs linear classifier accuracy from a 5-fold training set cross validation, among all 150
encoders trained from scratch with 128-dimensional output and 768 batch size. NYU-DEPTH-V2: Numbers show depth

prediction mean squared error (MSE). The best result is picked based on conv5 layer MSE from a 5-fold training set cross

validation, among all 64 encoders trained from scratch with 128-dimensional output and 128 batch size.
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Figure 7: Finetuning trajectories from a STL-10 encoder trained with Lcontrastive using a suboptimal temperature τ = 2.5.

Finetuning objectives are weighted combinations of Lalign(α=2) and Luniform(t=2). For each intermediate checkpoint, we

measure Lalign and Luniform metrics, as well as validation accuracy of a linear classifier trained from scratch on the encoder

outputs. Luniform is exponentiated for plotting purpose. Left and middle: Performance degrades if only one of alignment

and uniformity is optimized. Right: Performance improves when both are optimized.

Alignment and uniformity also matter in other con-

trastive representation learning variants. MoCo (He

et al., 2019) and Quick-Thought Vectors (Logeswaran &

Lee, 2018) are contrastive representation learning variants

that have nontrivial differences with directly optimizing

Lcontrastive in Equation (1). MoCo introduces a memory

queue and a momentum encoder. Quick-Thought Vectors

uses two different encoders to encode each sentence in a

positive pair, only normalizes encoder outputs during eval-

uation, and does not use random sampling to obtain mini-

batches. After modifying them to also allow Lalign and

Luniform, we train these methods on IMAGENET-100 and

BOOKCORPUS, respectively. Figure 8 shows that Lalign and

Luniform metrics are still correlated with the downstream

task performances. Table 2 shows that directly optimizing

them also leads to comparable or better representation qual-

ity. These results suggest that alignment and uniformity

are indeed desirable properties for representations, for both

image and text modalities, and are likely connected with

general contrastive representation learning methods.
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(a) 45 IMAGENET-100 encoders are trained
with MoCo-based methods, and evaluated
with linear classification.
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(b) 108 BOOKCORPUS encoders are trained with Quick-Thought-Vectors-based methods,
and evaluated with logistic binary classification on Movie Review Sentence Polarity (MR)
and Customer Product Review Sentiment (CR) tasks.

Figure 8: Metrics and performance of IMAGENET-100 and BOOKCORPUS experiments. Each point represents a trained

encoder, with its x- and y-coordinates showing Lalign and Luniform metrics and color showing the validation accuracy. Blue is

better. Encoders with low Lalign and Luniform consistently perform well (lower left corners), even though the training methods

(based on MoCo and Quick-Thought Vectors) are different from directly optimizing the contrastive loss in Equation (1).

IMAGENET-100 MoCo-based Encoders BOOKCORPUS Quick-Though-Vectors-based Encoders

top1 Val. Accuracy ↑ top5 Val. Accuracy ↑ MR Val. Accuracy ↑ CR Val. Accuracy ↑

Best Lcontrastive only 72.80% 91.64% 77.51% 83.86%

Best Lalign and Luniform only 74.60% 92.74% 73.76% 80.95%

Table 2: Encoder evaluations. IMAGENET-100: Numbers show linear classifier accuracies on encoder penultimate layer

activations.The best result is picked based on top1 accuracy from a 3-fold training set cross validation, among all 45 encoders

trained from scratch with 128-dimensional output and 128 batch size. BOOKCORPUS: Numbers show Movie Review

Sentence Polarity (MR) and Customer Product Sentiment (CR) classification accuracies of logistic classifiers fit on encoder

outputs. The best result is picked based on accuracy from a 5-fold training set cross validation, individually for MR and CR,

among all 108 encoders trained from scratch with 1200-dimensional output and 400 batch size.

6. Discussion

Alignment and uniformity are often alluded to as motivations

for representation learning methods (see Figure 1). However,

a thorough understanding of these properties is lacking in

the literature.

Are they in fact related to the representation learning meth-

ods? Do they actually agree with the representation quality

(measured by downstream task performance)?

In this work, we have presented a detailed investigation

on the relation between these properties and the popular

paradigm of contrastive representation learning. Through

theoretical analysis and extensive experiments, we are able

to relate the contrastive loss with the alignment and unifor-

mity properties, and confirm their strong connection with

downstream task performances. Remarkably, we have re-

vealed that directly optimizing our proposed metrics often

leads to representations of better quality.

Below we summarize several suggestions for future work.

Niceness of the unit hypersphere. Our analysis was

based on the empirical observation that representations are

often ℓ2 normalized. Existing works have motivated this

choice from a manifold mapping perspective (Liu et al.,

2017; Davidson et al., 2018) and computation stability (Xu

& Durrett, 2018; Wang et al., 2017). However, to our best

knowledge, the question of why the unit hypersphere is a

nice feature space is not yet rigorously answered. One pos-

sible direction is to formalize the intuition that connected

sets with smooth boundaries are nearly linearly separable

in the hyperspherical geometry (see Figure 2), since lin-

ear separability is one of the most widely used criteria for

representation quality and is related to the notion of disen-

tanglement (Higgins et al., 2018).

Beyond contrastive learning. Our analysis focused on

the relationship between contrastive learning and the align-

ment and uniformity properties on the unit hypersphere.

However, the ubiquitous presence of ℓ2 normalization in the

representation learning literature suggests that the connec-

tion may be more general. In fact, several existing empirical

methods are directly related to uniformity on the hyper-

sphere (Bojanowski & Joulin, 2017; Davidson et al., 2018;

Xu & Durrett, 2018). We believe that relating a broader

class of representations to uniformity and/or alignment on

the hypersphere will provide novel insights and lead to better

empirical algorithms.
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