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Abstract

A widely agreed upon definition of time series causality inference, established in the sem-
inal 1969 article of Clive Granger (1969), is based on the relative ability of the history
of one time series to predict the current state of another, conditional on all other past
information. While the Granger Causality (GC) principle remains uncontested, its literal
application is challenged by practical and physical limitations of the process of discretely
sampling continuous dynamic systems. Advances in methodology for time-series causality
subsequently evolved mainly in econometrics and brain imaging: while each domain has
specific data and noise characteristics the basic aims and challenges are similar. Dynamic
interactions may occur at higher temporal or spatial resolution than our ability to measure
them, which leads to the potentially false inference of causation where only correlation is
present. Causality assignment can be seen as the principled partition of spectral coherence
among interacting signals using both auto-regressive (AR) modeling and spectral decom-
position. While both approaches are theoretically equivalent, interchangeably describing
linear dynamic processes, the purely spectral approach currently differs in its somewhat
higher ability to accurately deal with mixed additive noise.
Two new methods are introduced 1) a purely auto-regressive method named Causal

Structural Information is introduced which unlike current AR-based methods is robust to
mixed additive noise and 2) a novel means of calculating multivariate spectra for unevenly
sampled data based on cardinal trigonometric functions is incorporated into the recently
introduced phase slope index (PSI) spectral causal inference method (Nolte et al., 2008).
In addition to these, PSI, partial coherence-based PSI and existing AR-based causality
measures were tested on a specially constructed data-set simulating possible confounding
effects of mixed noise and another additionally testing the influence of common, back-
ground driving signals. Tabulated statistics are provided in which true causality influence
is subjected to an acceptable level of false inference probability.

Keywords: Causality, spectral decomposition, cross-correlation, auto regressive models.

1. Introduction

Causality is the sine qua non of scientific inference methodology, allowing us, among other
things to advocate effective policy, diagnose and cure disease and explain brain function.
While it has recently attracted much interest within Machine Learning, it bears remind-
ing that a lot of this recent effort has been directed toward static data rather than time
series. The ‘classical’ statisticians of the early 20th century, such as Fisher, Gosset and
Karl Pearson, aimed at a rational and general recipe for causal inference and discovery
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(Gigerenzer et al., 1990) but the tools they developed applied to simple types of inference
which required the pres-selection, through consensus or by design, of a handful of candidate
causes (or ‘treatments’) and a handful of subsequently occurring candidate effects. Nu-
merical experiments yielded tables which were intended to serve as a technician’s almanac
(Pearson, 1930; Fisher, 1925), and are today an essential part of the vocabulary of scientific
discourse, although tables have been replaced by precise formulae and specialized software.
These methods rely on removing possible causal links at a certain ‘significance level’, on the
basic premise that a twin experiment on data of similar size generated by a hypothetical
non-causal mechanism would yield a result of similar strength only with a known (small)
probability. While it may have been hoped that a generalization of the statistical test of
difference among population means (e.g. the t-test) to the case of time series causal struc-
ture may be possible using a similar almanac or recipe book approach, in reality causality
has proven to be a much more contentious - and difficult - issue.
Time series theory and analysis immediately followed the development of classical statis-

tics (Yule, 1926; Wold, 1938) and was spurred thereafter by exigence (a severe economic
boom/bust cycle, an intense high-tech global conflict) as well as opportunity (the post-
war advent of a machine able to perform large linear algebra calculations). From a wide
historical perspective, Fisher’s ‘almanac’ has rendered the industrial age more orderly and
understandable. It can be argued, however, that the ‘scientific method’, at least in its ac-
counting/statistical aspects, has not kept up with the explosive growth of data tabulated
in history, geology, neuroscience, medicine, population dynamics, economics, finance and
other fields in which causal structure is at best partially known and understood, but is
needed in order to cure or to advocate policy. While it may have been hoped that the
advent of the computer might give rise to an automatic inference machine able to ‘sort
out’ the ever-expanding data sphere, the potential of a computer of any conceivable power
to condense the world to predictable patterns has long been proven to be shockingly lim-
ited by mathematicians such as Turing (Turing, 1936) and Kolmogorov (Kolmogorov and
Shiryayev, 1992) - even before the ENIAC was built. The basic problem reduces itself to
the curse of dimensionality: being forced to choose among combinations of members of
a large set of hypotheses (Lanterman, 2001). Scientists as a whole took a more positive
outlook, in line with post-war boom optimism, and focused on accessible automatic infer-
ence problems. One of these was scientists was Norbert Wiener, who, besides founding the
field of cybernetics (the precursor of ML), introduced some of the basic tools of modern
time-series analysis, a line of research he began during wartime and focused on feedback
control in ballistics. The time-series causality definition of Granger (1969) owes inspiration
to earlier discussion of causality by Wiener (1956). Granger’s approach blended spectral
analysis with vector auto-regression, which had long been basic tools of economics (Wold,
1938; Koopmans, 1950), and appeared nearly at the same time as similar work by Akaike
(1968) and Gersch and Goddard (1970).
It is useful to highlight the differences in methodological principle and in motivation for

static vs. time series data causality inference, starting with the former as it comprises a
large part of the pertinent corpus in Machine Learning and in data mining. Static causal
inference is important in the sense that any classification or regression presumes some kind
of causality, for the resulting relation to be useful in identifying elements or features of
the data which ‘cause’ or predict target labels or variables and are to be selected at the
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exclusion of other confounding ‘features’. In learning and generalization of static data,
sample ordering is either uninformative or unknown. Yet order is implicitly relevant to
learning both in the sense that some calculation occurs in the physical world in some
finite number of steps which transform independent inputs (stimuli) to dependent output
(responses), and in the sense that generalization should occur on expected future stimuli.
To ably generalize from a limited set of samples implies making accurate causal inference.
With this priority in mind prior NIPS workshops have concentrated on feature selection and
on graphical model-type causal inference (Guyon and Elisseeff, 2003; Guyon et al., 2008,
2010) inspired by the work of Pearl (2000) and Spirtes et al. (2000). The basic technique or
underlying principle of this type of inference is vanishing partial correlation or the inference
of static conditional independence among 3 or more random variables. While it may seem
limiting that no unambiguous, generally applicable causality assignment procedure exists
among single pairs of random variables, for large ensembles the ambiguity may be partially
resolved. Statistical tests exist which assign, with a controlled probability of false inference,
random variable X1 as dependent on X2 given no other information, but as independent on
X2 givenX3, a conceptual framework proposed for time-series causality soon after Granger’s
1969 paper using partial coherence rather than static correlation (Gersch and Goddard,
1970). Applied to an ensemble of observations X1..XN , efficient polynomial time algorithms
have been devised which combine information about pairs, triples and other sub-ensembles
of random variables into a complete dependency graph including, but not limited to, a
directed acyclical graph (DAG). Such inference algorithms operate in a nearly deductive
manner but are not guaranteed to have unique, optimal solution. Underlying predictive
models upon which this type of inference can operate includes linear regression (or structural
equation modeling) (Richardson and Spirtes, 1999; Lacerda et al., 2008; Pearl, 2000) and
Markov chain probabilistic models (Scheines et al., 1998; Spirtes et al., 2000). Importantly,
a previously unclear conceptual link between the notions of time series causality and static
causal inference has been formally described: see White and Lu (2010) in this volume.
Likewise, algorithmic and functional relation constraints, or at least likelihoods thereof,

have been proposed as to assign causality for co-observed random variable pairs (i.e. simply
by analyzing the scatter plot of X1 vs. X2) (Hoyer et al., 2009). In general terms, if we are
presented a scatter plot X1 vs. X2 which looks like a noisy sine wave, we may reasonably
infer that X2 causes X1, since a given value of X2 ‘determines’ X1 and not vice versa. We
may even make some mild assumptions about the noise process which superimposes on a
functional relation ( X2 = X1 + additive noise which is independent of X1) and by this
means turn our intuition into a proper asymmetric statistic, i.e. a controlled probability
that X1 does not determine X2, an approach that has proven remarkably successful in some
cases where the presence of a causal relation was known but the direction was not (Hoyer
et al., 2009). The challenge here is that, unlike in traditional statistics, there is not simply
the case of the null hypothesis and its converse, but one of 4 mutually exclusive cases. A) X1
is independent of X2 B) X1 causes X2 C) X2 causes X1 and D) X1 and X2 are observations
of dependent and non-causally related random variables (bidirectional information flow or
feedback). The appearance of a symmetric bijection (with additive noise) between X1 and
X2 does not mean absence of causal relation, as asymmetry in the apparent relations is
merely a clue and not a determinant of causality. Inference over static data is not without
ambiguities without additional assumptions and requires observations of interacting triples
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(or more) of variables as to allow somewhat reliable descriptions of causal relations or lack
thereof (see Guyon et al. (2010) for a more comprehensive overview). Statistical evaluation
requires estimation of relative likelihood of various candidate models or causal structures,
including a null hypothesis of non-causality. In the case of complex multidimensional data
theoretical derivation of such probabilities is quite difficult, since it is hard to analytically
describe the class of dynamic systems we may be expected to encounter. Instead, common
ML practice consists in running toy experiments in which the ‘ground truth’ (in our case,
causal structure) is only known to those who run the experiment, while other scientists aim
to test their discovery algorithms on such data, and methodological validity (including error
rate) of any candidate method rests on its ability to predict responses to a set of ‘stimuli’
(test data samples) available only to the scientists organizing the challenge. This is the
underlying paradigm of the Causality Workbench (Guyon, 2011). In time series causality,
we fortunately have far more information at our disposal relevant to causality than in the
static case. Any type of reasonable interpretation of causality implies a physical mechanism
which accepts a modifiable input and performs some operations in some finite time which
then produce an output and includes a source of randomness which gives it a stochastic
nature, be it inherent to the mechanism itself or in the observation process. Intuitively, the
structure or connectivity among input-output blocks that govern a data generating process
are related to causality no matter (within limits) what the exact input-output relationships
are: this is what we mean by structural causality. However, not all structures of data
generating processes are obviously causal, nor is it self evident how structure corresponds to
Granger (non) causality (GC), as shown in further detail by White and Lu (2010). Granger
causality is a measure of relative predictive information among variables and not evidence
of a direct physical mechanism linking the two processes: no amount of analysis can exclude
a latent unobserved cause. Strictly speaking the GC statistic is not a measure of causal
relation: it is the possible non-rejection of a null hypothesis of time-ordered independence.
Although time information helps solve many of the ambiguities of static data several prob-

lems, and despite the large body of literature on time-series modeling, several problems in
time-series causality remain vexing. Knowledge of the structure of the overall multivariate
data generating process is an indispensable aid to inferring causal relationships: but how to
infer the structure using weak a priori assumptions is an open research question. Sections
3, 4 and 5 will address this issue. Even in the simplest case (the bivariate case) the obser-
vation process can introduce errors in time-series causal inference by means of co-variate
observation noise (Nolte et al., 2010). The bivariate dataset NOISE in the Causality Work-
bench addresses this case, and is extended in this study to the evaluation datasets PAIRS
and TRIPLES. Two new methods are introduced: an autoregressive method named Causal
Structural Information (Section 7) and a method for estimating spectral coherence in the
case of unevenly sampled data (Section 8.1). A principled comparison of different meth-
ods as well as their performance in terms of type I, II and III errors is necessary, which
addresses both the presence/absence of causal interaction and directionality. In discussing
causal influence in real-world processes, we may reasonably expect that not inferring a po-
tentially weak causal link may be acceptable but positing one where none is missing may
be problematic. Sections 2, 6, 7 and 8 address robustness of bivariate causal inference,
introducing a pair of novel methods and evaluating them along with existing ones. Another
common source of argument in discussions of causal structure is the case of false inference
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by neglecting to condition the proposed causal information on other background variables
which may explain the proposed effect equally well. While the description of a general
deductive method of causal connectivity in multivariate time series is beyond the scope of
this article, Section 9 evaluates numerical and statistical performance in the tri-variate case,
using methods such as CSI and partial coherence based PSI which can apply to bivariate
interactions conditioned by an arbitrary number of background variables.

2. Causality statistic

Causality inference is subject to a wider class of errors than classical statistics, which tests
independence among variables. A general hypothesis evaluation framework can be:

Null Hypothesis = No causal interaction H0 = A ⊥C B |C

Hypothesis 1a = A drives B Ha = A→ B |C

Hypothesis 1b = B drives A Hb = B → A |C

Type I error prob. α = P
(
Ĥa or Ĥb| H0

)
(1)

Type II error prob. β = P
(
Ĥ0| Ha or Hb

)

Type III error prob. γ = P
(
Ĥa |Hb or Ĥb |Ha

)

The notation Ĥ means that our statistical estimate of the estimated likelihood of H
exceeds the threshold needed for our decision to confirm it. This formulation carries some
caveats the justification for which is pragmatic and will be expounded upon in later sections.
The main one is the use of the term ‘drives ’ in place of ‘causes ’. The null hypothesis can be
viewed as equivalent to strong Granger non-causality (as it will be argued is necessary), but
it does not mean that the signals A and B are independent: they may well be correlated
to one another. Furthermore, we cannot realistically aim at statistically supporting strict
Granger causality, i.e. strictly one-sided causal interaction, since asymmetry in bidirectional
interaction may be more likely in real-world observations and is equally meaningful. By
‘driving ’ we mean instead that the history of one time series element A is more useful
to predicting the current state of B than vice-versa, and not that the history of B is
irrelevant to predicting A. In the latter case we would specify ‘G-causes ’ instead of ‘drives ’
and for H0 we would employ non-parametric independence tests of Granger non causality
(GNC) which have already been developed as in Su and White (2008) and Moneta et al.
(2010). Note that the definition in (1) is different from that recently proposed in White
and Lu (2010), which goes further than GNC testing to make the point that structural
causality inference must also involve a further conditional independence test: Conditional
Exogeneity (CE). In simple terms, CE tests whether the innovations process of the potential
effect is conditionally independent of the cause (or, by practical consequence, whether the
innovations processes are uncorrelated). White and Lu argue that if both GNC and CE fail
we ought not make any decision regarding causality, and combine the power of both tests
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in a principled manner such that the probability of false causal inference, or non-decision,
is controlled. The difference in this study is that the concurrent failure of GNC and CE is
precisely the difficult situation requiring additional focus and it will be argued that methods
that can cope with this situation can also perform well for the case of CE, although they
require stronger assumptions. In effect, it is assumed that real-world signals feature a high
degree of non-causal correlation, due to aliasing effects as described in the following section,
and that strong evidence to the contrary is required, i.e. that non-decision is equivalent to
inference of non-causality. The precise meaning of ’driving’ will also be made explicit in
the description of Causal Structural Information, which is implicitly a proposed definition
of H0. Also different in Definition (1) than in White and Lu is the accounting of potential
error in causal direction assignment under a framework which forces the practitioner to
make such a choice if GNC is rejected.
One of the difficulties of causality inference methodology is that it is difficult to ascertain

what true causality in the real world (‘ground truth’) is for a sufficiently comprehensive
class of problems (such that we can reliably gage error probabilities): hence the need for
extensive simulation. A clear means of validating a causal hypothesis would be intervention
Pearl (2000), i.e. modification of the presumed cause, but in instances such as historic and
geological data this is not feasible. The basic approach will be to assume a non-informative
probability distribution of the degree degree of mixing, or non-causal dynamic interactions,
as well as over individual spectra and compile inference error probabilities over a wide class
of coupled dynamic systems. In constructing a ‘robust causality’ statistic there is more
than simply null-hypothesis rejection and accurate directionality to consider, however. In
scientific practice we are not only interested to know that A and B are causally related
or not, but which is the main driver in case of bidirectional coupling, and among a time
series vector A, B, C, D... it is important to determine which of these factors are the main
causes of the target variable, say A. The relative effect size and relative causal influence
strength, lest the analysis be misused (Ziliak and McCloskey, 2008). The rhetorical and
scientific value of effect size in no way devalues the underlying principle of robust statistics
and controlled inference error probabilities used to quantify it.

3. Auto-regression and aliasing

A simple multivariate time series model is the multivariate auto-regressive model (abbrevi-
ated as MVAR or VAR). It assumes that the data generating process (DGP) that created
the observations is a linear dynamic model and, as such, it contains poles only i.e. the
numerator of the transfer function between innovations process and observation is a scalar.
The more complex auto-regressive moving average model (ARMA) includes zeros as well.
Despite the rather stringent assumptions of VAR, a time-series extension of ordinary least
squares linear regression, it has been hugely successful in applications from neuroscience to
engineering to sociology and economics. Its familiar VAR (or VARX) formulation is:

yi =
K∑

k=1

Akyi−k +Bu+ wi (2)
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Where {yi,d=1..D} is a real valued vector of dimension D. Notice the absence of a sub-
script in the exogenous input term u. This is because a general treatment of exogenous
inputs requires a lagged sum, i.e.

∑K
k=1Bkui−k. Since exogenous inputs are not explicitly

addressed in the following derivations the general linear operator placeholder Bu is used
instead and can be re-substituted for subsequent use.
Granger non-causality for this system, expressed in terms of conditional independence,

would place a relation among elements of y subject to knowledge of u. If D = 2 , for all i

y1,i ⊥ y2,i−1..i−K | y1,i−1..i−K (3)

If the above is true, we would say that y2 does not finite-order G cause y1. If the
world was made exclusively of linear VARs, it would not be terribly difficult to devise a
reliable statistic for G causality. We would, given a sequence of N data points, identify the
maximum-likelihood parameters A and B via ordinary least squares (OLS) linear regression
after having, via some model selection criterion, determined the order K. Furthermore we
would choose another criterion (e.g. test and p-value) which tells us whether any particular
coefficient is likely to be statistically indistinguishable from 0, which would correspond to a
vanishing partial correlation. If all A’s are lower triangular G non-causality is satisfied (in
one direction but not the converse). It is however very rare that the physical mechanism we
are observing is indeed the embodiment of a VAR, and therefore even in the case in which
G non-causality can be safely rejected, it is not likely that the best VAR approximation of
the data observed is strictly lower/upper triangular. The necessity of a distinction between
strict causality, which has a structural interpretation, and a causality statistic, which does
not measure independence in the sense of Granger-non causality, but rather relative degree
of dependence in both directions among two signals (driving) is most evident in this case. If
the VAR in question had very small (and statistically observable) upper triangular elements
would a discussion of causality of the observed time series be rendered moot?
One of the most common physical mechanisms which is incompatible with VAR is alias-

ing, i.e. dynamics which are faster than the (shortest) sampling interval. The standard
interpretation of aliasing is the false representation of frequency components of a signal
due to sub-Nyquist frequency sampling: in the multivariate time-series case this can also
lead to spurious correlations in the observed innovations process (Phillips, 1973). Consider
a continuous bivariate VAR of order 1 with Gaussian innovations in which the sampling
frequency is several orders of magnitude smaller than the Nyquist frequency. In this case we
would observe a covariate time independent Gaussian process since for all practical purposes
the information travels ‘instantaneously’. In economics, this effect could be due to social
interactions or market reactions to news which happen faster than the sampling interval
(be it daily, hourly or monthly). In fMRI analysis sub- sampling interval brain dynamics
are observed over a relatively slow time convolution process of hemodynamic response of
neural activity (for a detailed exposition of causality inference in fMRI see Roebroeck et al.
(2011) in this volume). Although ‘aliasing’ normally refers to temporal aliasing, the same
process can occur spatially. In neuroscience and in economics the observed variables are
summations (dimensionality reductions) of a far larger set of interacting agents, be they
individuals or neurons. In electroencephalography (EEG) the propagation of electrical po-
tential from cortical axons arrives via multiple pathways to the same recording location on
the scalp: the summation of micrometer scale electric potentials on the scalp at centimeter
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scale. Once again there are spurious observable correlations: this is known as the mixing
problem. Such effects can be modeled, albeit with significant information loss, by the same
DGP class which is a superset of VAR and known in econometrics as SVAR (structural vec-
tor auto-regression, the time series equivalent of structural equation modeling (SEM), often
used in static causality inference (Pearl, 2000)). Another basic problem in dynamic system
identification is that we not only discard much information from the world in sampling it,
but that our observations are susceptible to additive noise, and that the randomness we
see in the data is not entirely the randomness of the mechanism we intend to study. One
of the most problematic of additive noise models is mixed colored noise, in which there
are structured correlations both in time and across elements of the time-series, but not in
any causal way: there is only a linear transformation of colored noise, sometimes called
mixing, due to spatial aliasing. Mixing may occur due to temporal aliasing in sampling a
coupled continuous-variable VAR system. In EEG analysis mixed colored noise models the
background electrical activity of the brain. In other domains such as economics, one can
imagine the influence of unpredictable events such as natural cataclysms or macroenomic
cycles which are not white noise and which are reflect nearly ‘instantaneously’ but to vary-
ing degree in all our measurements. In this case, since each additive noise component is
colored (it has temporal auto- correlation), its past helps predict its current value. Since the
observation is a linear mixture of noise components, all current observations are correlated,
and the past of any component can help predict the current state of any other. In this
case, the strict definition of Granger causality would not make practical sense, since this
cross-predictability is not meaningful.
It should be noted on this point that the literature contains (sometimes inconsistent)

sub-classifications of Granger Causality, such as weak and strong Granger causality. One
definition which is particularly pertinent to this work is that given in Caines (1976) and
Solo (2006) and is that strong Granger causality allows instantaneous dependence and that
weak Granger causality does not (i.e. it is strictly time ordered). We are aiming in this
work at strong Granger causality inference, i.e. one which is robust to aliasing effects such
as colored noise. While we should account for instantaneous interactions, we do not have
to assign causal interpretations to them, since they are symmetric (the cross-correlation of
independent mixed signals is symmetric).

4. Auto-regression, learning and Granger Causality

Learning is the process of discovering predictable patterns in the real world, where a ‘pat-
tern’ is described by an algorithm or an automaton. Besides the object of learning, i.e. the
algorithm which we infer and which maps stimuli to responses, we need to consider the al-
gorithm which performs the learning process and outputs the former. The third algorithm
we should consider is the algorithm embodied in the real world, which we do not know,
which generates the data we observe, and which we hope to be able to recover, or at least
approximate. How can we formally describe it? A Data Generating Process (DGP) can
be a machine or automaton: an algorithm that performs every operation deterministically
in a finite number of steps, but which contains an oracle that generates perfectly random
numbers. It is sufficient that this oracle generate 1’s and 0’s only: all other computable
probability distributions can be calculated from it. A DGP contains rational valued param-
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eters (rational as to comply with finite computability), in this case the integer K and all
elements of the matrices A. Last but not least a DGP specification may limit the set of ad-
missible parameter values and probability distributions of the oracle-generated values. The
set of all possible outputs of a DGP corresponds to the set of all probability distributions
generated by it over all admissible parameter values, which we shall call the DGP class.

Definition 1 Let i ∈ N and let sa, sw, pw be finite length prefix-free binary strings. Fur-
thermore let y and u be rational valued matrices of size N × i and M × i, and t be rational
valued vector with distinct elements, of length i. Let a also be a finite rational valued vector.
A Data Generating Process is a quintuple {sa,pw,Ta,Tw} where Ta, Tw are finite time Tur-
ing machines which perform the following operations: Given an input of the incompressible
string pw the machine Tw calculates a rational valued matrix w. The machine Ta when given
matrices y, a, u, t, w and a positive rational Δt outputs a vector yi+1 which is assigned for
future operations to the time ti+1 = max(t) + Δt

The definition is somewhat unusual in terms of the definition of stochastic systems as
embodiments of Turing machines, but it is quite standard in terms of defining an inno-
vations term w, a probability distribution thereof pw, a state y, a generating function pa
with parameters a and an exogenous input u. The motivation for using the terminology of
algorithmic information theory is to analyse causality assignment as a computational prob-
lem. For reasons of finite description and computability our variables are rational, rather
than real valued. Notice that there is no real restriction on how the time series is to be
generated, recursively or otherwise. The initial condition in case of recursion is implicit,
and time is specified as distinct and increasing but otherwise arbitrarily distributed - it does
not necessarily grow in constant increments (it is asynchronous). The slight paradox about
describing stochastic dynamical systems in algorithmic terms is the necessity of postulating
a random number generator (an oracle) which in some ways is our main tool for abstracting
the complexity of the real world, but yet is a physical impossibility (since such an oracle
would require infinite computational time see Li and Vitanyi (1997) for overview). Also, the
Turing machines we consider have finite memory and are time restricted (they implement
a predefined maximum number of operations before yielding a default output). Otherwise
the rules of algebra (since they perform algebraic operations) apply normally. The cover of
a DGP can be defined as:

Definition 2 The cover of a Data Generating Process (DGP) class is the cover of the set
of all outputs y that a DGP calculates for each member of the set of admissible parameters
a,u,t,w and for each initial condition y1. Two DGPs are stochastically equivalent if the
cover of the set of their possible outputs (for fixed parameters) is the same.

Let us now attempt to define a Granger Causality statistic in algorithmic terms. Allowing
for the notation j..k = {j − 1, j − 2.., k + 1, k} if j > k and in reverse order if j < k

1

i

i∑

j=1

K(y1,j | y1,j−1..1, uj−1..1)−K(y1,j | y2,j−1..1, y1,j−1..1, uj−1..1) (4)

This differs from Equation (3) in two elemental ways: it is not a statement of independence
but a number (statistic), namely the average difference (rate) of conditional (or prefix)
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Kolmogorov complexity of each point in the presumed effect vector when given both vector
histories or just one, and given the exogenous input history. It is a generalized conditional
entropy rate, and may be reasonably be normalized as such:

FK2→1|u =
1

i

i∑

j=1

(

1−
K(y1,j | y2,j−1..1, y1,j−1..1, uj−1..1)
K(y1,j | y1,j−1..1, uj−1..1)

)

(5)

which is a fraction ranging from 0 - meaning no influence of y1 by y2 - to 1, corresponding
to complete determination of y1 by y2 and can be transformed into a statistic comparing
different data sets and processes, and which gives probabilities of spurious results. Another
difference with Equation (3) is that we do not refer to finite-order G causality but simply
G causality (in the general case we do not know the maximum lag order but must infer
it). For a more in depth look at DGPs, structure and G-causality, see White and Lu
(2010). The larger the value FK2→1|u, the more likely that y2 G-causes y1. The definition
is one of conditional information and it is one of an averaged process rather than a single
instance (time point). However, Kolmogorov complexity is incomputable, and as such
Granger (non) causality must also be, in general, incomputable. A detailed look at this
issue is beyond the scope of this article, but in essence, we can never test all possible
models that could tell us wether the history of a time series helps or does not help predict
(compress) another, and the set of finite running time Turing machines is not enumerable.
We’ve partially circumvented the halting problem since we’ve specified finite-state, finite-
operation machines as the basis of DGPs but have not specified a search procedure over all
DGPs that enumerates them. Even if we limit ourselves to DGPs which are MVAR, the
necessary computational time to calculate the description length (instead of K(.)) is NP-
complete, i.e. it requires an enumeration of all possible parameters of a DGP class, barring
any special properties thereof: finding the optimal model order requires such a search (keep
in mind VAR estimation is convex only once we know the model order and AR structure).
In practice, we should limit the class of DGPs we consider within out statistic to one which

allows the possibility of polynomial time computation. Let us take Equation (2), and further
make the common assumption that the input vector w is an i.i.d. normally distributed
sequence independent along dimension d, we’ve specified the linear VAR Gaussian DGP
class (which we shall shorten as VAR class). This DGP class, again, has proven remarkably
useful in cases where nothing else except the time series vector y is known. Re-writing (2):

yi =
K∑

k=1

Akyi−k +D wi−1 ,Dii > 0,Dij = 0 (6)

The matrix D is a positive diagonal matrix containing the scaling, or effective standard
deviations of the innovation terms. The standard deviation of each element of the innova-
tions term w is assumed hereafter to be equal to 1.

5. Equivalence of auto-regressive data generation processes.

In econometrics the following formulation is familiar (SVAR):
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yi =
K∑

k=0

Akyi−k +Bu+Dwi (7)

The difference between this and Equation (6) is the presence of a 0-lag matrix A0 which,
for easy tractability has zero diagonal entries and is sometimes present on the LHS. This
0-lag matrix is meant to model the sub-sampling interval dynamic interactions among ob-
servations, which appear instantaneous, see Moneta et al. (2011) in this volume. Let us call
this form zero lag SVAR. In electric- and magneto- encephalography (EEG/MEG) we often
encounter the following form:

xi =
K∑

k=1

μAkxi−k +μ Bu+Dwi,

yi = Cxi (8)

Where C represents the observation matrix, or mixing matrix and is determined by the
conductivity/permeability of tissue, and accounts for the superposition of the electromag-
netic fields created by neural activity, which happens at nearly the speed of light and
therefore appears instantaneous. Let us call this mixed output SVAR. Finally, in certain
engineering applications we may see structured disturbances:

yi =
K∑

k=1

θAkyi−k +θ Bu+Dwwi (9)

Which we shall call covariate innovations SVAR (Dw is a general nonsingular matrix
unlike D which is diagonal). Another final SVAR form to consider would be one in which
the 0-lag matrix CA0 is strictly upper triangular (upper triangular zero lag SVAR):

yi =C A0yi +
K∑

k=1

Akyi−k +C Bu+Dwi (10)

Finally, we may consider a upper or lower triangular co-variate innovations SVAR:

yi =
K∑

k=0

Akyi−k +Bu+C Dwi (11)

Where CD is upper/lower triangular. The SVAR forms (6)-(10) may look different,
and in fact each of them may uniquely represent physical processes and allow for direct
interpretation of parameters. From a statistical point of view, however, all four SVAR
DGPs introduced above are equivalent since they have identical cover.

Lemma 3 The Gaussian covariate innovations SVAR DGP has the same cover as the
Gaussian mixed output SVAR DGP. Each of these sets has a redundancy of 2NN ! for
instances in which the matrices Dw is the product of and unitary and diagonal matrices,
the matrix C is a unitary matrix and the matrix A0 is a permutation of an upper triangular
matrix.
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Proof Staring with the definition of covariate innovations SVAR in Equation (9) we use
the variable transformation y = Dwx and obtain the mixed-output form (trivial). The set
of Guassian random variables is closed under scalar multiplication (and hence sign change)
and addition. This means that the variance if the innovations term in Equation (9) can be
written as:

Σw = D
T
wDw = D

T
wU
TUDw

Where U is a unitary (orthogonal, unit 2-norm) matrix. Since all innovations term elements
are zero mean, the covariance matrix is the sole descriptor of the Gaussian innovations term.
This in turn means that any other matrix D

′

w = D
T
wU
T substituted into the DGP described

in Equation (9) amounts to a stochastically equivalent DGP. The matrix D
′

w can belong to
a number of general sets of matrices, one of which is the set of nonsingular upper triangular
matrices (the transformation is achievable through the QR decomposition of Σw). Another
such set is lower triangular matrix set. Both are subsets of the set of matrices sometimes
named ‘psychologically upper triangular’, meaning a permutation of an upper triangular
matrix.
If we constrain Dw to be of the form Dw = UD, i.e. such that (by polar decompo-

sition) it is the product of a unitary and a diagonal positive definite matrix, the only
stochastically equivalent transformations of Dw are a symmetry preserving permutation of
its rows/columns and a sign change in one of the columns (this is a property of orthogonal
matrices such as U ). There are N ! such permutations and 2N possible sign changes. For the
general case, in which the input u has no special properties, there are no other redundancies
in the SVAR model (since changing any parameter in A and B will otherwise change the
output). Without loss of generality then, we can write the transformation from covariate
innovations to mixed output SVAR form as:

yi =
K∑

k=1

θAkyi−k +θ Bu+ UDwwi

xi =
K∑

k=1

UT (θAk)Uxi−k + U
T (θB)u+Dwwi

yi = U
Txi

Since the transformation U is one to one and invertible, and since this transformation is
what allows a (restricted) a covariate noise SVAR to map, one to one, onto a mixed output
SVAR, the cardinality of both covers is the same.
Now consider the zero-lag SVAR form:

yi =

K∑

k=0

Akyi−k +Bu+Dwi

D−1 (1−A0) yi =
K∑

k=1

D−1Akyi−k +D
−1Bu+ w
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Taking the singular value decomposition of the (nonsingular) matrix coefficient on the LHS:

U0SV
T
0 yi =

K∑

k=1

D−1Akyi−k +D
−1Bu+ wi

V T0 yi = S
−1UT0

K∑

k=1

D−1Akyi−k + S
−1UT0 D

−1Bu+ S−1UT0 wi

Using the coordinate transformation z = V T0 y. The unitary transformation U
T
0 can be

ignored due closure properties of the Gaussian. This leaves us with the mixed-output form:

zi =
K∑

k=1

S−1UT0 D
−1AkV0zi−k + S

−1UT0 D
−1Bu+ S−1w

′

i

y = V0z

So far we’ve shown that for every zero-lag SVAR there is at least one mixed-output VAR.
Let us for a moment consider the covariate noise SVAR (after pre-multiplication)

D−1w yi =
K∑

k=1

D−1w θAkyi−k +D
−1
w θBu+ wi

We can easily then write it in terms of zero lag:

yi =
(
I −D−1w

)
yi +

K∑

k=1

D−1w θAkyi−k +D
−1
w θBu+ wi

However, the entries of I−D−1w are not zero (as required by definition). This can be done
by scaling by the diagonal:

diag(D−1w )yi = (diag(D
−1
w )−D

−1
w )yi +

K∑

k=1

D−1w θAkyi−k +D
−1
w θBu+ wi

D0 , diag(D
−1
w )

yi = (I −D
−1
0 D

−1
w )yi +

K∑

k=1

D−10 D
−1
w θAkyi−k +D

−1
0 D

−1
w θBu+D

−1
0 wi

A0 = (I −D
−1
0 D

−1
w )

D−1w = diag(D
−1
w )(I −A0)

While the following constant relation preserves DGP equivalence:

(DTwDw)
−1 = Σ−1w = D

−1
w D

−T
w = D0(I −A0)(I −A0)

TD0
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A0 = (I −D
−1
0 D

−1
w )
T (I −D−10 D

−1
w )

The zero lag matrix is a function of D−1w , the inverse of which is an eigenvalue problem.
However, as long as the covariance matrix or its inverse is constant, the DGP is unchanged
and this allows N(N − 1)/2 degrees of freedom. Let us consider only mixed input systems
for which the innovations terms are of unit variance. There is no real loss of generality
since a simple row-division by each element of D0 normalized the covariate noise form (to
be regained by scaling the output). In this case the equivalence constraint on is one of in
which:

(I −C A0)
T (I −C A0) = (I −A0)

T (I −A0)

If (I − A0) is full rank, a strictly upper triangular matrix CA0 may be found that is
equivalent (this would be the Cholesky decomposition of the inverse covariance matrix
in reverse order). As D

W
is equivalent to a unitary transformation UD

W
this will include

permutations and orthogonal rotations. Any permutation of D
W
will imply a corresponding

permutation of A0, which (along with rotations) has 2
NN ! solutions.

The non-uniqueness of SVAR and the problematic interpretation of AR coefficients with
respect to variable permutation is a known problem Sims (1981), as is the fact that modeling
zero-lag matrices is equivalent to covariance estimation for the Gaussian case in the other
lag coefficients are zero. In fact, statistically vanishing elements of the covariance matrix are
used in Structural Equation Modeling and are given causality interpretations Pearl (2000).
It is not clear how robust such inferences are with respect to equivalent permutations. The
point of the lemma above is to illustrate the ambiguity of interpretation if the structure of
(sparse or full) AR systems in the case of covariate innovations, zero-lag, or mixed output,
which are equivalent to each other. In the case of SVAR, one approach is to perform
standard AR followed by a Cholesky decomposition of the covariance of the residuals and
then pre-multiplying. In Popescu (2008), the upper triangular SVAR estimation is done
directly by singular value decomposition after regression and the innovations covariance
estimated from the zero-lag matrix.
Granger, in his 1969 paper, suggests that ‘instantaneous’ (i.e. covariate) effects be ignored

and only the temporal structure be used. Whether or not we accept instantaneous causality
depends on prior knowledge: in the case of EEG, the mixing matrix cannot have any physical
‘causal’ explanation even if it is sparse. Without additional a priori assumptions, either
we infer causality on unseen and presumably interacting hidden variables (mixed output
form, the case of EEG/MEG) or we assume a a non-causal mixed innovations input. Note
also that the zero-lag system appears to be causal but can be written in a form which
suggest the opposite difference causal influence (hence it is sometimes termed ‘spurious
causality’). In short, since instantaneous interaction in the Gaussian case cannot be resolved
causally purely in terms of prediction and conditional information (as intended by Wiener
and Granger), it is proposed that such interactions be accounted for but not given causal
interpretation (as in ‘strong’ Granger non-causality) .
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Figure 1: SVAR causality and equivalence. Structural VAR equivalence and causality. A)
direct structural Granger causality (both directions shown). z stands for the delay
operator. B) equivalent covariate innovations (left) and mixed output systems.
Neither representation shows dynamic interaction C) sparse, one sided covariate
innovations DAG is non sparse in the mixed output case (and vice-versa). D) up-
per triangular structure of the zero-lag matrix is not informative in the 2 variable
Gaussian case, and is equivalent to a full mixed output system.
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There are at least four distinct overall approaches to dealing with aliasing effects in
time series causality. 1) is to make prior assumptions about covariance matrices and limit
inference to domain relevant and interpretable posteriors, as in Bernanke et al. (2005) in eco-
nomics and Valdes-Sosa et al. (2005) in neuroscience. 2) to allow for unconstrained graphical
causal model type inference among covariate innovations, by either assuming Gaussianity
or non-Gaussianity, the latter allowing for stronger causal inferences (see Moneta et al.
(2011) in this volume). One possible drawback of this approach is that DAG-type infer-
ence, at least in the Gaussian case in which there is so-called ’Markov equivalence’ among
candidate graphs, is non-unique. 3) a physically interpretable mixed output or co-variate
innovations is assumed and the inferred sparsity structure (or the intersection thereof over
the nonzero lag coefficient matrices) as the connection graph. Popescu (2008) implemented
such an approach by using the minimum description length principle to provide a universal
prior over rational-valued coefficients, and was able to recover structure in the majority of
simulated co-variate innovations processes of arbitrary sparsity. This approach is compu-
tationally laborious, as it is NP and non-convex, and moreover a system that is sparse in
one form (covariate innovations or mixed-ouput) is not necessarily sparse in another equiv-
alent SVAR form. Moreover completely dense SVAR systems may be non-causal (in the
strong GC sense). 4) Causality is not interpreted as a binary value, but rather direction
of interaction is determined as a continuous valued statistic, and one which is theoretically
robust to covariate innovations or mixtures. This is the principle of the recently introduced
phase slope index (PSI), which belongs to a class of methods based on spectral decompo-
sition and partition of coherency. Although auto-regressive, spectral and impulse response
convolution are theoretically equivalent representation of linear dynamics, they do differ
numerically and spectral representations afford direct access to phase estimates which are
crucial to the interpretation of lead and lag as it relates to causal influence. These methods
are reviewed in the next section.

6. Spectral methods and phase estimation

Cross- and auto spectral densities of a time series, assuming zero-mean or de-trended values,
are defined as:

ρLij(τ) = E (yi(t)yj(t− τ))

Sij (ω) = F(ρLij(τ)) (12)

Note that continuous, linear, raw correlation values are used in the above definition as
well as the continuous Fourier transform. Bivariate coherency is defined as:

Cij(ω) =
Sij (ω)√
Sii(ω)Sjj(ω)

(13)

Which consists of a complex numerator and a real-valued denominator. The coherence
is the squared magnitude of the coherency:

cij(ω) = Cij(ω)
∗Cij(ω) (14)

Besides various histogram and discrete (fast) Fourier transform methods available for
the computation of coherence, AR methods may be also used, since they are also linear
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transforms, the Fourier transform of the delay operator being simply zk = e−j2πωτS where
τS is the sampling time and k = ωτS . Plugging this into Equation (9) we obtain:

X(jω) =

(
K∑

k=1

Ake
−j2πωτSk

)

X(jω) +BU(jω) +D

Y (jω) = CX(jω) (15)

Y (jω) = C

(

I −
K∑

k=1

Ake
−j2πωτSk

)−1

(BU(jω) +DW (jω)) (16)

In terms of a SVAR therefore (as opposed to VAR) the mixing matrix C does not af-
fect stability, nor the dynamic response (i.e. the poles). The transfer functions from ith
innovations to j th output are entries of the following matrix of functions:

H(jω) = C

(

I −
K∑

k=1

Ake
−j2πωτSk

)−1

D (17)

The spectral matrix is simply (having already assumed independent unit Gaussian noise):

S(jω) = H(jω)∗H(jω) (18)

The coherency as the coherence following definitions above. The partial coherence con-
siders the pair (i, j) of signals conditioned on all other signals, the (ordered) set of which
we denote (i, j):

S
i,j|(i,j)(jω) = S(i,j),(i,j) + S(i,j),(i,j)S

−1
(i,j),(i,j)

S
(i,j),(i,j)

(19)

Where the subscripts refer to row/column subsets of the matrix S(jω). The partial
spectrum, substituted into Equation (13) gives us partial coherency C

i,j|(i,j)(jω) and cor-

respondingly, partial coherence c
i,j|(i,j)(jω) . These functions are symmetric and therefore

cannot indicate direction of interaction in the pair (i, j). Several alternatives have been
proposed to account for this limitation. Kaminski and Blinowska (1991); Blinowska et al.
(2004) proposed the following normalization of H(jω) which attempts to measure the rela-
tive magnitude of the transfer function from any innovations process to any output (which
is equivalent to measuring the normalized strength of Granger causality) and is called the
directed transfer function (DTF):

γij(jω) =
Hij(jω)√∑
k |Hik(jω)|

2

γ2ij(jω) =
|Hij(jω)|

2

∑
k |Hik(jω)|

2 (20)
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A similar measure is called directed coherence Baccalá et al. (Feb 1991), later elaborated
into a method complimentary to DTF, called partial directed coherence (PDC) Baccalá and
Sameshima (2001); Sameshima and Baccalá (1999), based on the inverse of H:

πij(jω) =
H−1ij (jω)√∑
k

∣
∣H−1ik (jω)

∣
∣2

The objective of these coherency-like measures is to place a measure of directionality on
the otherwise information-symmetric coherency. While SVAR is not generally used as a
basis of the autoregressive means of spectral and coherence estimation, or of DTF/PDC is
is done so in this paper for completeness (otherwise it is assumed C = I). Granger’s 1969
paper did consider a mixing matrix (indirectly, by adding non-diagonal terms to the zero-lag
matrix), and suggested ignoring the role of that part of coherency which depends on mixing
terms as non-informative ‘instantaneous causality’. Note that the ambiguity of the role and
identifiability of the full zero lag matrix, as described herein, was fully known at the time
and was one of the justifications given for separating sub-sampling time dynamics. Another
measure of directionality, proposed by Schreiber (2000) is a Shannon-entropy interpretation
of Granger Causality, and therefore will be referred to as GC herein. The Shannon entropy,
and conditional Shannon entropy of a random process is related to its spectrum. The
conditional entropy formulation of Granger Causality for AR models in the multivariate
case is (where (i) denotes, as above, all other elements of the vector except i ):

HGCj→i|u = H(yi,t+1|y:,t:t−K , u:,t:t−K)−H(yi,t+1|y(j),t:t−K , u:,t:t−K)

HGCj→i|u = logDi − logD
(j)
i (21)

The Shannon entropy of a Gaussian random variable is the logarithm of its standard
deviation plus a constant. Notice than in this paper the definition of Granger Causality is
slightly different than the literature in that it relates to the innovations process of a mixed

output SVAR system of closest rotation and not a regular MVAR. The second term D(j)i is
formed by computing a reduced SVAR system which omits the jth variable. Recently Bar-
rett et al. have proposed an extension of GC, based on prior work by Geweke (1982) from
interaction among pairs of variables to groups of variables, termed multivariate Granger
Causality (MVGC) Barrett et al. (2010). The above definition is straightforwardly extensi-
ble to the group case, where I ad J are subsets of 1..D, since total entropy of independent
variables is the sum of individual entropies.

HGCJ→I|u =
∑

i∈I

(
logDi − logD

(J)
i

)
(22)

The Granger entropy can be calculated directly from the transfer function, using the
Shannon-Hartley theorem:

HGCHj→i = −
∑

ω

Δω ln

(

1−
|Hij(ω)|

2

Sii(ω)

)

(23)
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Finally Nolte (Nolte et al., 2008) introduced a method called Phase Slope Index which
evaluates bilateral causal interaction and is robust to mixing effects (i.e. zero lag, observa-
tion or innovations covariance matrices that depart from MVAR):

PSIij = Im

(
∑

ω

C∗ij(ω) Cij(ω + dω)

)

(24)

PSI, as a method is based on the observation that pure mixing (that is to say, all effects
stochastically equivalent to output mixing as outlined above) does not affect the imaginary
part of the coherency Cij just as (equivalently) it does not affect the antisymmetric part of
the auto-correlation of a signal. It does not place a measure the phase relationship per se,
but rather the slope of the coherency phase weighted by the magnitude of the coherency.

7. Causal Structural Information

Currently, Granger causality estimation based on linear VAR modeling has been shown
to be susceptible to mixed noise, in the presence of which it may produce false causality
assignment Nolte et al. (2010). In order to allow for accurate causality assignment in the
presence of instantaneous interaction and aliasing the Causal Structural Information (CSI)
method and statistic for causality assignment is introduced below.
Consider the SVAR lower triangular form in (11) for a set of observations y. The infor-
mation transfer from i to j may be obtained by first defining the index re-orderings:

ij∗ , {i, j, ij}

i∗ , {i, ij}

This means that we reorder the (identified) mixed-innovations system by placing the
target time series first and the driver series second, followed by all the rest. The same
ordering, minus the driver is also useful. We define CSI as

CSI(j → i|ij) , log(Cij∗D11)− log(Ci∗D11) (25)

CSI(i, j|ij) , CSI(j → i|ij)− CSI(i→ j|ij) (26)

Where the D is upper-triangular form in each instance. This Granger Causality formula-
tion requires the identification of 3 different SVAR models, one for the entire time series
vector, and one each for all elements except i and all elements except j. Via Cholesky
decomposition, the logarithm of the top vertex of the triangle is proportional to the entropy
rate (conditional information) of the innovations process for the target series given all other
(past and present) information including the innovations process. While this definition is
clearly an interpretation of the core idea of Granger causality, it is, like DTF and PDC,
not an independence statistic but a measure of (causal) information flow among elements
of a time-series vector. Note the anti-symmetry (by definition) of this information measure
CSI(i, j|ij) = −CSI(j, i|ij) . Note also that CSI(j → i|ij) and CSI(i → j|ij) may very
conceivably have the same sign: the various triangular forms used to derive this measure
are purely for calculation purposes, and do not carry intrinsic meaning. As a matter of fact
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other re-orderings and SVAR forms may be employed for convenient calculation as well. In
order to improve the explanatory power of the CSI statistic the following normalization is
proposed, mirroring that defined in Equation (5) :

FCSI
j→i|ij ,

CSI(i, j|ij)
log(Ci∗D11) + log(Cj∗D11) + ζ

(27)

This normalization effectively measures the ratio of causal to non-causal information, where
ζ is a constant which depends on the number of dimensions and quantization width and is
necessary to transform continuous entropy to discrete entropy.

8. Estimation of multivariate spectra and causality assignment

In Section 6 and a series of causality assignment methods based on spectral decomposition
of a multivariate signal were described. In this section spectral decomposition itself will be
discussed, and a novel means of doing so for unevenly sampled data will be introduced and
evaluated along with the other methods for a bivariate benchmark data set.

8.1. The cardinal transform of the autocorrelation

Currently there are few commonly used methods for cross- power spectrum estimation (i.e.
multivariate spectral power estimation) as opposed to univariate power spectrum estima-
tion, and these methods average over repeated, or shifting, time windows and therefore
require a lot of data points. Furthermore all commonly used multivariate spectral power
estimation methods rely on synchronous, evenly spaced sampling, despite the fact that
much of available data is unevenly sampled, has missing values, and can be composed of
relatively short sequences. Therefore a novel method is presented below for multivariate
spectral power estimation which can be estimated on asynchronous data.
Returning to the definition of coherency as the Fourier transform of the auto-correlation,

which are both continuous transforms, we may extend the conceptual means of its estimation
in the discrete sense as a regression problem (as a discrete Fourier transform, DFT) in the
evenly sampled case as:

Ωn ,
n

2τ0(N − 1)
, n = −bN/2c...bN/2c (28)

Ĉij(ω)| ω=Ω = aij,n + jbij,n (29)

ρji(−kτ) = ρij(kτ) = E(xi(t)xj(t+ kτ)) (30)

ρij(kτ0) ∼=
1

N − k

∑

q=1:N−k

xi(q)xj(q + k) (31)

{aij , bij} = argmin
N/2∑

k=−N/2

(ρij(kτ0)− aij,ncos(2πΩnτ0k)− bij,nsin(2πΩnτ0k) )
2 (32)

49



Popescu

where τ0 is the sampling interval. Note that for an odd number of points the regression
above is actually a well determined set of equations, corresponding to the 2-sided DFT.
Note also that by replacing the expectation with the geometric mean, the above equation
can also be written (with a slight change in weighting at individual lags) as:

{aij , bij} = argmin
∑

p,q∈1..N

(xi,pxj,q − aij,ncos(2πΩk(ti,p − tj,q))− bij,nsin(2πΩn(ti,p − tj,q)) )
2

(33)
The above equation holds even for time series sampled at unequal (but overlapping) times

(xi, ti) and (xj , tj) as long as the frequency basis definition is adjusted (for example τ0 = 1).
It represents a discrete, finite approximation of the continuous, infinite auto-regression
function of an infinitely long random process. It is a regression on the outer product of
the vectors xi and xj . Since autocorrelations for finite memory systems tend to fall off to
zero with increasing lag magnitude, a novel coherency estimate is proposed based on the
cardinal sine and cosine functions, which also decay, as a compact basis:

Ĉij(ω) = aij,n
∑
C(Ωn) + j bij,nS(Ωn) (34)

{aij , bij} = argmin
∑

p,q∈1..N

(xi,pxj,q − aij,ncosc(2πΩk(ti,p − tj,q))− bij,nsinc(2πΩn(ti,p − tj,q)) )
2 (35)

Where the sine cardinal is defined as sinc(x) = sin(πx)/x, and its Fourier transform is
S(jω) = 1, |jω| < 1 and S(jω) = 0 otherwise. Also the Fourier transform of the cosine
cardinal can be written as C(jω) = jω S(jω). Although in principle we could choose any
complete basis as a means of Fourier transform estimation, the cardinal transform preserves
the odd-even function structure of the standard trigonometric pair. Computationally this
means that for autocorrelations, which are real valued and even, only sinc needs to be calcu-
lated and used, while for cross-correlation both functions are needed. As linear mixtures of
independent signals only have symmetric cross-correlations, any nonzero values of the cosc
coefficients would indicate the presence of dynamic interaction. Note that the Fast Fourier
Transform earns its moniker thanks to the orthogonality of sin and cos which allows us to
avoid a matrix inversion. However their orthogonality holds true only for infinite support,
and slight correlations are found for finite windows - in practice this effect requires further
computation (windowing) to counteract. The cardinal basis is not orthogonal, requires full
regression and may have demanding memory requirements. For moderate size data this not
problematic and implementation details will be discussed elsewhere.

8.2. Robustness evaluation based on the NOISE dataset

A dataset named NOISE, intended as a benchmark for the bivariate case, has been intro-
duced in the preceding NIPS workshop on causality Nolte et al. (2010) and can be found
online at www.causality.inf.ethz.ch/repository.php, along with the code that generated the
data. It was awarded best dataset prize in the previous NIPS causality workshop and
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challenge Guyon et al. (2010). For further discussion of Causality Workbench and current
dataset usage see Guyon (2011). NOISE is created by the summation of the output of a
strictly causal VAR DGP and a non-causal SVAR DGP which consists of mixed colored
noise:

yC,i =
K∑

k=1

[
a11 a12
0 a22

]

C,k

yC,i−k + wC,i (36)

xN,i =
K∑

k=1

[
a11 0
0 a22

]

N,k

xN,i−k + wN,i

yN,i = BxN,i (37)

y = (1− |β|)yN + |β|yC
‖yN‖F
‖yC‖F

(38)

The two sub-systems are pictured graphically as systems A and B in Figure 1. If β < 0
the AR matrices that create yC are transposed (meaning that y1C causes y2C instead of
the opposite). The coefficient β is represented in Nolte et al. (2010) by ’γ ’ where β =
sgn(γ)(1 − |γ |). All coefficients are generated as independent Gaussian random variables
of unit variance, and unstable systems are discarded. While both the causal and noise
generating systems have the same order, note that the system that would generate the
sum thereof requires an infinite order SVAR DGP to generate (it is not stochastically
equivalent to any SVAR DGP but instead is a SVARMA DGP, having both poles and
zeros). Nevertheless it is an interesting benchmark since the exact parameters are not fully
recoverable via the commonly used VAR modeling procedure and because the causality
interpretation is fairly clear: the sum of a strictly causal DGP and a stochastic noncausal
DGP should retain the causality of the former.
In this study, the same DGPs were used as in NOISE but as one of the current aims is

to study the influence of sample size on the reliability of causality assignment, signals of
100, 500, 1000 and 5000 points were generated (as opposed to the original 6000). This is
the dataset referred to as PAIRS below, which only differs in numbers of samples per time
series. For each evaluation 500 time series were simulated, with the order for each system
of being uniformly distributed from 1 to 10. The following methods were evaluated:

• PSI (Ψ) using Welch’s method, and segment and epoch lengths being equal and set

to
⌈√
N
⌉
and otherwise is the same as Nolte et al. (2010).

• Directed transfer function DTF. estimation using an automatic model order selection
criterion (BIC, Bayesian Information Criterion) using a maximum model order of 20.
DTF has been shown to be equivalent to GC for linear AR models (Kaminski, 2001)
and therefore GC itself is not shown . The covariance matrix of the residuals is also
included in the estimate of the transfer function. The same holds for all methods
described below.

• Partial directed coherence PDC. As described in the previous section, it is similar to
DTF except it operates on the signal-to-innovations (i.e. inverse) transfer function.
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• Causal Structural Information. As a described above this is based on the triangular
innovations equivalent to the estimated SVAR (of which there are 2 possible forms in
the bivariate case) and which takes into account instantaneous interaction / innova-
tions process covariance.

All methods were statistically evaluated for robustness and generality by performing a 5-
fold jackknife, which gave both a mean and standard deviation estimate for each method and
each simulation. All statistics reported below are mean normalized by standard deviation
(from jackknife). For all methods the final output could be -1, 0, or 1, corresponding to
causality assignment 1→2, no assignment, and causality 2 → 1. A true positive (TP) was
the rate of correct causality assignment, while a false positive (FP) was the rate of incorrect
causality assignment (type III error), such that TP+FP+NA=1, where NA stands for rate
of no assignment (or neutral assignment). The TP and FP rates are be co-modulated by
increasing/decreasing the threshold of the absolute value of the mean/std statistic, under
which no causality assignment is made:

STAT = rawSTAT/std(rawSTAT ), rawSTAT=PSI, DTF, PDC ..

c = sign (STAT ) if STAT > TRESH, 0 otherwise

In Table 1 we see results of overall accuracy and controlled True Positive rate for the
non-mixed colored noise case (meaning the matrix B above is diagonal). In Table 1 and
Table 2 methods are ordered according to the mean TP rate over time series length (highest
on top).

Table 1: Unmixed colored noise PAIRS

Max. Accuracy TP , FP < 0.10

100 500 1000 5000 100 500 1000 5000

Ψ 0.62 0.73 0.83 0.88 0.25 0.56 0.75 0.85

DTF 0.58 0.79 0.82 0.88 0.18 0.58 0.72 0.86

CSI 0.62 0.72 0.79 0.89 0.23 0.53 0.66 0.88

ΨC 0.57 0.68 0.81 0.88 0.19 0.29 0.70 0.87

PDC 0.64 0.67 0.75 0.78 0.23 0.33 0.48 0.57

In Table 2 we can see results for a PAIRS, in which the noise mixing matrix B is not
strictly diagonal.
As we can see in both Figure 2 and Table 1, all methods are almost equally robust to
unmixed colored additive noise (except PDC). However, while addition of mixed colored
noise induces a mild gap in maximum accuracy, it creates a large gap in terms of TP/FP
rates. Note the dramatic drop-off of the TP rate of VAR/SVAR based methods PDC and
DTF. Figure 3 shows this most clearly, by a wide scatter of STAT outputs for DTF around
β = 0 that is to say with no actual causality in the time series and a corresponding fall-off
of TP vs. FP rates. Note also that PSI methods still allow a fairly reasonable TP rate
determination at low FP rates of 10% even at 100 points per time-series, while the CSI
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(a) Unmixed colored noise

(b) Mixed colored noise

Figure 2: PSI vs. DTF Scatter plots of β vs. STAT (to the left of each panel), TP vs. FP
curves for different time series lengths (100, 500,1000 and 500) (right). a) colored
unmixed additive noise. b) colored mixed additive noise. DTF is equivalent
to Granger Causality for linear systems. All STAT values are jackknife mean
normalized by standard deviation.
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(a) Unmixed colored noise

(b) Mixed colored noise

Figure 3: PSI vs. CSI Scatter plots of β vs. STAT (to the left of each panel), TP vs. FP
curves for different time series lengths (right). a) unmixed additive noise. b)
mixed additive noise
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Table 2: Mixed colored noise PAIRS

Max. Accuracy TP , FP< 0.10

N=100 500 1000 5000 N=100 500 1000 5000

ΨC 0.64 0.74 0.81 0.83 0.31 0.49 0.64 0.73

Ψ 0.66 0.76 0.78 0.81 0.25 0.59 0.61 0.71

CSI 0.63 0.77 0.79 0.80 0.27 0.62 0.59 0.66

PDC 0.64 0.71 0.69 0.66 0.24 0.30 0.29 0.24

DTF 0.55 0.61 0.66 0.66 0.11 0.10 0.09 0.12

method was also robust to the addition of colored mixed noise, not showing any significant
difference with respect to PSI except a higher FP rate for longer time series (N=5000). The
advantage of PSIcardinal was near PSI in overall accuracy. In conclusion, DTF (or weak
Granger causality) and PDC are not robust with respect to additive mixed colored noise,
although they perform similarly to PSI and CSI for independent colored noise. 1

9. Conditional causality assignment

In multivariate time series analysis we are often concerned with inference of causal relation-
ship among more than 2 variables, in which the role of a potential common cause must be
accounted for, analogously to vanishing partial correlation in the static data case. For this
reason the PAIRS data set was extended into a set called TRIPLES in which the degree of
common driver influence versus direct coupling was controlled.
In effect, the TRIPLES DGP is similar to PAIRS, in that additive noise is mixed colored

noise (in 3 dimensions) but in this case another variable x3 may drive the pair x1, x2
independently of each other, also with random coefficients (but either one set to 1/10 of
the other randomly). That is to say, the signal is itself a mixture of one where there is
a direct one sided causal link among x1, x2 as in PAIRS and one where they are actually
independent but commonly driven, according to a parameter χ which at 0 is commonly
driven and at 1 is causal.

β < 0 yC,i =
K∑

k=1




a11 a12 0
0 a22 0
0 0 a33





C,k

yC,i−k + wC,i

1. Correlation and rank correlation analysis was performed (for N=5000) to shed light on the reason for the
discrepancy between PSI and CSI. The linear correlation between rawSTAT and STAT was .87 and .89 for
PSI and CSI. No influence of model order K of the simulated system was seen in the error of either PSI or
CSI, where error is estimated as the difference in rank of rankerr(STAT ) = |rank(β)− rank(STAT )|.
There were however significant correlations between rank(|β|) and rankerr(STAT ), -.13 for PSI and
-.27 for CSI. Note that as expected, standard Granger causality (GC) performed the same as DTF
(TP=0.116 for FP<.10). Using Akaike’s Information Criterion (AIC) instead of BIC for VAR model
order estimation did not significantly affect AR-based STAT values.
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Figure 4: Diagram of TRIPLES dataset with common driver

β > 0 yC,i =
K∑

k=1




a11 0 0
a12 a22 0
0 0 a33





C,k

yC,i−k + wC,i (39)

xN,i =
K∑

k=1




a11 0 0
0 a22 0
0 0 a22





N,k

xN,i−k + wN,i

yN,i = BxN,i (40)

xD,i =
K∑

k=1




a11 0 a13
0 a22 a23
0 0 a22





D,k

xD,i−k + wD,i

yMC = (1− |β|)yN + |β|yC
‖yN‖F
‖yC‖F

(41)

yDC = (1− χ )yMC + χ yD
‖yMC‖F
‖yD‖F

(42)

The Table 3, similar to the tables in the preceding section, shows results for all usual
methods, except for PSIpartial which is PSI calculated on the partial coherence as defined
above and calculated from Welch (cross-spectral) estimators in the case of mixed noise and
a common driver.
Notice that the TP rates are lower for all methods with respect to Table 2 which represents
the mixed noise situation without any common driver.
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Table 3: TRIPLES: Commonly driven, additive mixed colored noise

Max. Accuracy TP , FP< 0.10

100 500 1000 5000 100 500 1000 5000

Ψp 0.53 0.61 0.71 0.75 0.12 0.31 0.49 0.56

Ψ 0.54 0.60 0.70 0.72 0.10 0.25 0.40 0.52

CSI 0.51 0.60 0.69 0.76 0.09 0.27 0.38 0.45

PDC 0.55 0.54 0.60 0.58 0.13 0.12 0.16 0.13

DTF 0.51 0.56 0.59 0.61 0.12 0.09 0.09 0.11

10. Discussion

In a recent talk, Emanuel Parzen (Parzen, 2004) proposed, both in hindsight and for future
consideration, that aim of statistics consist in an ‘answer machine’, i.e. a more intelligent,
automatic and comprehensive version of Fisher’s almanac, which currently consists in a
plenitude of chapters and sections related to different types of hypotheses and assumption
sets meant to model, insofar as possible, the ever expanding variety of data available.
These categories and sub-categories are not always distinct, and furthermore there are
competing general approaches to the same problems (e.g. Bayesian vs. frequentist). Is an
‘answer machine’ realistic in terms of time-series causality, prerequisites for which are found
throughout this almanac, and which has developed in parallel in different disciplines?
This work began by discussing Granger causality in abstract terms, pointing out the

implausibility of finding a general method of causal discovery, since that depends on the
general learning and time-series prediction problem, which are incomputable. However, if
any consistent patterns that can be found mapping the history of one time series variable
to the current state of another (using non-parametric tests), there is sufficient evidence of
causal interaction and the null hypothesis is rejected. Such a determination still does not
address direction of interaction and relative strength of causal influence, which may require
a complete model of the DGP. This study - like many others - relied on the rather strong
assumption of stationary linear Gaussian DGPs but otherwise made weak assumptions on
model order, sampling and observation noise. Are there, instead, more general assump-
tions we can use? The following is a list of competing approaches in increasing order of
(subjectively judged) strength of underlying assumption(s):

• Non-parametric tests of conditional probability for Granger non-causality rejection.
These directly compare the probability distributions P (y1,j | y1,j−1..1, uj−1..1) P (y1,j |
y1,j−1..1, uj−1..1) to detect a possible statistically significant difference. Proposed ap-
proaches (see chapter in this volume by (Moneta et al., 2011) for a detailed overview
and tabulated robustness comparison) include product kernel density with kernel
smoothing (Chlaß and Moneta, 2010), made robust by bootstrapping and with den-
sity distances such as the Hellinger (Su and White, 2008), Euclidean (Szekely and
Rizzo, 2004), or completely nonparametric difference tests such Cramer-Von Mises or
Kolmogorov-Smirnov. A potential pitfall of nonparametric approaches is their loss
of power for higher dimensionality of the space over which the probabilities are esti-
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mated - aka the curse of dimensionality (Yatchew, 1998). This can occur if the lag
order K needed to be considered is high, if the system memory is long, or the num-
ber of other variables over which GC must be conditioned (uj−1..1 ) is high. In the
case of mixed noise, strong GC estimation would require accounting for all observed
variables (which in neuroscience can number in the hundreds). While non-parametric
non-causality rejection is a very useful tool (and could be valid even if the lag consid-
ered in analysis is much smaller than the true lag K ), in practice we would require
robust estimated of causal direction and relative strength of different factors, which
implies a complete accounting of all relevant factors. As was already discussed, in
many cases Granger non-causality is likely to be rejected in both directions: it is
useful to find the dominant one.

• General parametric or semi-parametric (black-box) predictive modeling subject to
GC interpretation which can provide directionality, factor analysis and interpretation
of information flow. A large body of literature exists on neural network time series
modeling (in this context see White (2006) ), complemented in recent years by sup-
port vector regression and Bayesian processes. The major concern with black-box
predictive approaches is model validation: does the fact that a given model features a
high cross-validation score automatically imply the implausibility of another predic-
tive model with equal CV-score that would lead to different conclusions about causal
structure? A reasonable compromise between nonlinearity and DGP class restriction
can be seen in (Chu and Glymour, 2008) and Ryali et al. (2010), in which the VAR
model is augmented by additive non-linear functions of the regressed variable and
exogenous input. Robustness to noise, sample size influence and accuracy of effect
strength and direction determination are open questions.

• Linear dynamic models which incorporate (and often require) non-Gaussianity in the
innovations process such as ICA and TDSEP (Ziehe and Mueller, 1998). See Moneta
et al. (2011) in this volume for a description of causality inference using ICA and
causal modeling of innovation processes (i.e. independent components). Robustness
under permutation is necessary for a principled accounting of dynamic interaction and
partition of innovations process entropy. Note that many ICA variants assume that at
most one of the innovations processes is Gaussian, a strong assumption which requires
a posteriori checks. To be elucidated is the robustness to filtering and additive noise.

• Non-stationary Gaussian linear models. In neuroscience non-stationarity is important
(the brain may change state abruptly, respond to stimuli, have transient pathological
episodes etc). Furthermore accounting for non-stochastic exogenous inputs needs fur-
ther consideration. Encouragingly, the current study shows that even in the presence
of complex confounders such as common driving signals and co-variate noise, segments
as small as 100 points can yield accurate causality estimation, such that changes in
longer time series can be adaptively tracked. Note that in establishing statistical sig-
nificance we must take into account signal bandwidth: up-sampling the same process
would arbitrarily increase the number of samples but not the information contained in
the signal. See Appendix A for a proposal on non-parametric bandwidth estimation.
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• Linear Gaussian dynamic models: in this work we have considered SVAR but not
wider classes of linear DGPs such as VARMA and heteroskedastic (GARCH) models.
In comparing PSI and CSI note that overall accuracy of directionality assignment
was virtually identical, but PSI correlated slightly better with effect size. While CSI
made slightly more errors at low strengths of ‘causality’, PSI made slightly more er-
rors at high strengths. Nevertheless, PSI was most robust to (colored, mixed) noise
and hidden driving/conditioning signal (tabulated significance results are provided in
Appendix A). Jackknifed, normalized estimates can help establish causality at low
strength levels, although a large raw PSI statistic value may also suffice. A poten-
tial problem with the jackknife (or bootstrap) procedure is the strong stationarity
assumption which allows segmentation and rearrangement of the data.

Although AR modeling was commonly used to model interaction in time series and
served as a basis for (linear) Granger causality modeling (Blinowska et al., 2004; Baccalá
and Sameshima, 2001), robustness to mixed noise remained a problem, which the spectral
method PSI was meant to resolve (Nolte et al., 2008). While ‘phase’, if structured, al-
ready implies prediction, precedence and mutual information among time series elements,
it was not clear how SVAR methods would reconcile with PSI performance, until now. This
prompted the introduction in this article of the causal AR method (CSI) which takes into
account ‘instantaneous’ causality . A prior study had shown that strong Granger causality
is preserved under addition of colored noise, as opposed to weak (i.e. strictly time ordered)
causality Solo (2006). This is consistent with the results obtained herein. The CSI method,
measuring strong Granger Causality, was in fact robust with respect to a type of noise not
studied in (Solo, 2006), which is mixed colored noise; other VAR based methods and (weak)
Granger causality measures were not. While and SVAR DGP observed under additive col-
ored noise is a VARMA process (the case of the PAIRS and TRIPLES datasets), SVAR
modeling did not result in a severe loss of accuracy. AR processes of longer lags can ap-
proximate VARMA processes by using higher orders and more parameters, even if doing so
increases exposure to over-fit and may have resulted in a small number of outliers. Future
work must be undertaken to ascertain what robustness and specificity advantages result from
VARMA modeling, and if it is worth doing so considering the increased computational over-
load. One of the common ‘defects’ of real-life data are missing/outlier samples, or uneven
sampling in time, or that the time stamps of two time series to be compared are unrelated
though overlapping: it is for these case that the method PSIcardinal was developed and
shown to be practically equal in numerical performance to the Welch estimate-based PSI
method (though it is slower computationally). Both PSI estimates were robust to common
driver influence even when not based on partial but direct coherency because it is the asym-
metry in influence of the driver on phase that is measured rather than its overall strength.
While 2-way interaction with conditioning was considered, future work must organize mul-
tivariate signals using directed graphs, as in DAG-type static causal inference. Although
only 1 conditioning signal was analysed in this paper, the methods apply to higher numbers
of background variables. Directed Transfer Function and Partial Directed Coherence did
not perform as well under additive colored noise, but their formulation does address a the-
oretically important question, namely the partition of strength of influence among various
candidate causes of an observation; CSI also proposes an index for this important purpose.
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Whether the assumptions about stationarity or any other data properties discussed are war-
ranted may be checked by performing appropriate a posteriori tests. If these tests justify
prior assumptions and a correspondingly significant causal effect is observed, we can assign
statistical confidence intervals to the causality structure of the system under study. The
‘almanac’ chapter on time series causality is rich and new alternatives are emerging. For
the entire corpus of time-series causality statistics to become an ‘answer machine’, however,
it is suggested that a principled bottom-up investigation be undertaken, beginning with the
simple SVAR form studied in this paper and all proposed criteria be quantified: type I, II
and III errors, accurate determination of causality strength and direction and robustness in
the presence of conditioning variables and colored mixed noise.
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Appendix A. Statistical significance tables for Type I and Type III errors

In order to assist practitioners in evaluating the statistical significance of bivariate causality
testing, tables were prepared for type I and type III error probabilities as defined in (1)
for different values of the base statistic. Below tables are provided for both the jacknifed
statistic Ψ/std(Ψ) and for the raw statistic Ψ, which is needed in case the number of points
is too low to allow a jackknife/cross-validation/bootstrap or computational speed is at a
premium. The spectral evaluation method is Welch’s method as described in Section 6.
There were 2000 simulations for each condition. The tables in this Appendix differ in one
important aspect with respect to those in the main text. In order to avoid non-informative
comparison of datasets which are, for example, analyses of the same physical process sam-
pled at different sampling rates, the number of points is scaled by the ‘effective’ number
of points which is essentially the number of samples relative to a simple estimate of the
observed signal bandwidth:

N∗ = NτS/B̂W

B̂W =
‖X‖F

‖ΔX/ΔT‖F

The values marked with an asterisk have values of both α and γ which are less than 5%.
Note also that Ψ is non-dimensional index.
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Table 4: α vs. Ψ/std(Ψ)

N∗ → 50 100 200 500 750 1000 1500 2000 5000

0.125 0.82 0.83 0.86 0.87 0.88 0.90 0.89 0.89 0.89

0.25 0.67 0.69 0.73 0.77 0.76 0.78 0.78 0.78 0.77

0.5 0.41 0.44 0.50 0.54 0.55 0.56 0.56 0.59 0.57

0.75 0.26 0.26 0.32 0.36 0.36 0.37 0.38 0.40 0.39

1 0.15 0.15 0.20 0.23 0.23 0.25 0.25 0.26 0.26

1.25 0.09 0.09 0.11 0.13 0.14 0.16 0.14 0.15 0.16

1.5 0.06 0.05 0.06 0.07 0.08 0.09 0.08 0.10 0.10

1.75 0.04 0.03 0.04 0.05 0.05 * 0.05 * 0.04 * 0.06 0.06

2 0.03 0.02 0.03 0.02 * 0.02 * 0.03 * 0.02 * 0.03 * 0.03 *

2.5 0.01 0.01 0.01 0.01 * 0.01 * 0.01 * 0.00 * 0.01 * 0.01 *

3 0.01 0.00 0.00 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

4 0.00 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

8 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

16 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

Table 5: γ vs. Ψ/std(Ψ)

N∗ → 50 100 200 500 750 1000 1500 2000 5000

0.125 0.46 0.41 0.35 0.26 0.23 0.21 0.19 0.18 0.16

0.25 0.46 0.39 0.33 0.24 0.21 0.19 0.18 0.16 0.14

0.5 0.44 0.36 0.29 0.21 0.18 0.15 0.14 0.13 0.12

0.75 0.43 0.35 0.28 0.17 0.14 0.12 0.11 0.10 0.09

1 0.43 0.31 0.23 0.13 0.12 0.09 0.08 0.07 0.06

1.25 0.42 0.31 0.20 0.09 0.08 0.06 0.05 0.05 0.04

1.5 0.40 0.26 0.20 0.06 0.05 0.04 0.04 0.04 0.02

1.75 0.42 0.26 0.16 0.05 0.04 * 0.02 * 0.02 * 0.03 0.01

2 0.41 0.23 0.11 0.03 * 0.03 * 0.02 * 0.02 * 0.02 * 0.01 *

2.5 0.41 0.20 0.06 0.02 * 0.02 * 0.01 * 0.01 * 0.01 * 0.01 *

3 0.33 0.09 0.06 0.03 * 0.01 * 0.00 * 0.00 * 0.00 * 0.00 *

4 0.33 0.00 * 0.00 * 0.02 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

8 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

16 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

65



Popescu

Table 6: α vs. Ψ

N∗ → 50 100 200 500 750 1000 1500 2000 5000

0.125 0.25 0.22 0.25 0.24 0.24 0.24 0.21 0.21 0.15

0.25 0.09 0.09 0.09 0.09 0.10 0.09 0.09 0.08 0.05 *

0.5 0.02 * 0.01 * 0.01 * 0.02 * 0.02 * 0.02 * 0.01 * 0.01 * 0.01 *

0.75 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

1 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

Table 7: γ vs. Ψ

N∗ → 50 100 200 500 750 1000 1500 2000 5000

0.125 0.21 0.17 0.14 0.10 0.08 0.07 0.06 0.05 0.03

0.25 0.11 0.08 0.06 0.04 0.03 0.03 0.02 0.02 0.01 *

0.5 0.03 * 0.01 * 0.01 * 0.01 * 0.01 * 0.00 * 0.00 * 0.01 * 0.00 *

0.75 0.02 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *

1 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 * 0.00 *
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