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Abstract

Incorporating distance transform maps of ground truth into segmentation CNNs has been
an interesting new trend in the last year. Despite many great works leading to improvements
on a variety of segmentation tasks, the comparison among these methods has not been well
studied. In this paper, our first contribution is to summarize the latest developments of
these methods in the 3D medical segmentation field. The second contribution is that we
systematically evaluated five benchmark methods on two representative public datasets.
These experiments highlight that all the five benchmark methods can bring performance
gains to baseline V-Net. However, the implementation details have a noticeable impact on
the performance, and not all the methods hold the benefits on different datasets. Finally, we
suggest the best practices and indicate unsolved problems for incorporating distance trans-
form maps into CNNs, which we hope would be useful for the community. The codes and
trained models are publicly available at https://github.com/JunMa11/SegWithDistMap.
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CNNs with Distance Transform Maps

1. Introduction

Convolutional neural networks (CNNs)1 have been widely used on a variety of medical
image segmentation tasks, and achieved great success, such as liver segmentation (Bilic
et al., 2019), heart segmentation (Bernard et al., 2018), brain segmentation (Wang et al.,
2019b) and so on. Recently, a new segmentation methodology is emerging where the distance
transform maps are incorporated into existing CNNs (Kervadec et al., 2019; Karimi and
Salcudean, 2019; Xue et al., 2020; Navarro et al., 2019; Dangi et al., 2019) to obtain further
improvements.

Most existing CNNs use binary or multi-label mask as ground truth. Distance transform
maps (DTM) offer an alternative to classical ground truth. For example, a binary mask can
be transformed to a graylevel image, termed as distance transform map, where the intensities
of pixels in the foreground are changed according to the distance to the closest boundary.
One can also compute the signed distance function (SDF) of the ground truth, which embeds
object contours in a higher dimensional space. In general, the signed distance function takes
negative values inside the object and positive values outside the object. The absolute value
is defined by the distance between the point of interest and the closest boundary point. In
a word, distance transform map or signed distance function is an implicit representation of
ground truth, and there exists a rigorous mapping between them.

In the past year, incorporating the distance transform maps of image segmentation labels
into CNNs pipelines has received significant attention. These methods can be classified
into two classes (Figure 1) in terms of the usage of distance transform maps: (1) new loss
functions (Kervadec et al., 2019; Karimi and Salcudean, 2019; Xue et al., 2020): use distance
transform maps to design new loss functions; and (2) adding auxiliary tasks (Navarro et al.,
2019; Dangi et al., 2019): generating the segmentation probabilistic map and regressing the
distance transform maps at the same time.

All these methods argue that using distance transform maps can boost existing baseline
CNNs, such as U-Net and V-Net. However, these methods are tested on different datasets,
and there is no shared experimental protocol followed by all. Thus, we do not know which
method should be chosen to improve performance in practice.

This paper aims to experimentally answer the question:

How can distance transform maps boost segmentation CNNs?

Our contributions are summarized as follows:

• summarizing the latest developments about incorporating distance transform maps
into CNN-based 3D medical image segmentation.

• benchmarking five methods on two representative datasets by extensive experiments.

The rest of the paper is organized as follows. A brief review of the recent2 DTM-related
CNNs in 3D medical image segmentation is given in Section 2. We present the experimental
settings in Section 3 and the corresponding results in Section 4. Finally, we conclude this
paper in Section 5.

1. In this paper, CNNs refers specifically to the networks for medical image segmentation.
2. Here, “recent” means after 2019 in this paper.
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Figure 1: Overview of the two categories of recent distance transform maps-related CNNs
in medical image segmentation.

2. CNNs with Distance Transform Maps

In this section, we present an overview of five benchmark methods that are selected based
on two criteria: (1) the method is general and can be applied to many 3D segmentation
tasks; (2) The method is published in 2019-2020. Several related methods also use distance
transform maps, but they are designed for specific tasks such as tubular segmentation
(Wang et al., 2019a) and lesion detection (van Wijnen et al., 2019). Evaluating these
tailored methods is beyond the scope of this paper.

2.1. Basic Notation

Let Ω denote the grid on which the image I is defined, and G,S denote the corresponding
ground truth and segmentation, respectively. Sθ denotes the softmax outputs of CNNs
where θ is the parameters. Formally, we define the distance transform map (DTM) of
ground truth G by

GDTM =

 inf
y∈∂G

||x− y||2, x ∈ Gin

0, others
(1)
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where ||x−y||2 is the Euclidian distance between voxels x and y, and Gin denotes the inside
of the object. The signed distance function (SDF) of ground truth G is defined by

GSDF =


− inf
y∈∂G

||x− y||2, x ∈ Gin

0, x ∈ ∂G
inf
y∈∂G

||x− y||2, x ∈ Gout
(2)

where Gout and ∂G denote the outside and boundary of the object, respectively. The main
difference between distance transform map GDTM and signed distance function GSDF is
that the GSDF considers the distance transformation information of both foreground and
background, while GDTM only computes the distance transformation of the foreground.

In the following two subsections, we give a brief review of five methods that will be eval-
uated in Section 3. As shown in Figure 1, we divided the five methods into two categories,
new loss functions and adding auxiliary tasks, based on their main contributions (the usage
of distance transform maps).

2.2. New Loss Functions

Kervadec et al. (Kervadec et al., 2019) proposed boundary loss (BD) to mitigate unbalanced
segmentation problems. The key idea is to use an integral approach for computing boundary
variations between segmentation and ground truth, which avoids complex local differential
computations. Specifically, the loss is defined by:

LBD =
1

|Ω|
∑

Ω

GSDF ◦ Sθ (3)

where GSDF denotes the signed distance function of ground truth G, and ◦ is the Hadamard
(i.e. voxel-wise) product.

To reduce the Hausdorff distance (HD) during training CNNs, Karimi et al. (Karimi
and Salcudean, 2019) proposed Hausdorff distance loss for direct minimization of HD. The
loss function is defined by

LHD =
1

|Ω|
∑

Ω

[(Sθ −G)2 ◦ (G2
DTM + S2

DTM )] (4)

where GDTM and SDTM denote the distance transform maps of ground truth G and pre-
dicted segmentation S, respectively.

Recently, Yuan et al. (Xue et al., 2020) proposed using CNNs to directly regress the
signed distance function (SDF) of ground truth rather than to generate softmax outputs,
because there is rigorous mapping between the ground truth and the SDF. The signed
distance function regression loss is defined by

LSDF = −
∑

Ω

GSDF ◦ SSDF
G2
SDF + S2

SDF +GSDF ◦ SSDF
(5)

where GSDF and SSDF denote the ground truth and the predicted signed distance functions,
respectively. The SDF loss aims to penalize the output SDF with wrong sign.
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In summary, the distance transform map (DTM) of ground truth was incorporated in
all the three loss functions. Boundary loss (Kervadec et al., 2019) assigned weights to the
softmax probability outputs based on the ground truth SDF, while Hausdorff distance loss
(Karimi and Salcudean, 2019) introduced not only the ground truth DTM but also the
predicted segmentation DTM to weight the softmax probability outputs. SDF loss (Xue
et al., 2020) employed the product of predicted SDF and ground truth SDF to guide the
SDF regression network during training.

In practice, it should be noted that the three loss functions should be coupled with Dice
loss so as to stabilize training process, especially at the beginning of training, otherwise
training may not converge. More details about the usage of the loss functions are presented
in Section 3.2.

2.3. Auxiliary Tasks

Distance transform maps can also be used to augment CNNs by adding auxiliary tasks.
Usually, the auxiliary task is a regression task, and we found two different ways to regress
the DTM from recent publications. First, a new head sharing the same backbone network
can be added to the end of the CNNs (Figure 1, top right), for the purpose of learning
shape information of chest organs (Navarro et al., 2019) or tubular structure reconstruction
(Wang et al., 2019c). The other way is to add a reconstruction branch for learning robust
global features by regressing pixel-wise distance map (Figure 1, bottom left) (Dangi et al.,
2019).

In summary, both multi-heads and reconstruction-branch CNNs aim at regressing the
DTM of ground truth. The main difference is that the multi-heads CNN shares the backbone
network while the reconstruction-branch CNN only shares the encoder network. In addition,
we observed that these methods only consider the DTM of foreground, but not the SDF of
ground truth which consists of the DTMs of both foreground and background. To the best
of our knowledge, regressing the SDF of ground truth has not been explored in existing
studies.

3. Experiments

In this section we describe the datasets, the backbone CNN, quantitative segmentation
metrics and experimental design.

3.1. Dataset, network backbone, and metrics

We use two representative datasets to evaluate the above five benchmark methods. One
dataset is the left atrial (LA) MRI, which is an organ segmentation task3. The other dataset
is the liver tumor CT (LiTS) ,which is a popular tumor segmentation task4. LA includes
100 3D gadolinium-enhanced MR training cases. We randomly selected 16 cases for training
and 20 cases for testing to create a typical small sample learning setting. LiTS includes 118
CT training cases. We split them into 90 for training and 28 for testing. All the cases were
cropped centering at the heart or liver region for better comparison of the segmentation

3. MICCAI 2018 left atrial segmentation: http://atriaseg2018.cardiacatlas.org/.
4. MICCAI 2017 liver tumor segmentation: https://competitions.codalab.org/competitions/17094
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performance of different methods, and normalized by subtracting the mean and divided
by standard deviation. We chose these two datasets because we want to involve typical
modalities (CT and MR), tasks (organ and tumor) and challenges (small sample learning
and small objects segmentation) in 3D medical image segmentation tasks.

We employ V-Net (Milletari et al., 2016) as the network backbone. It has five stage
convolutional blocks in different resolutions. The base convolution block (1st stage) has 16
feature maps, and the number of feature maps is doubled every next stage. During training,
we used the Adam optimizer for all experiments and searched the best leaning rate in the
set {0.01, 0.001, 0.0001}. To make the experiments reproducible, we set the random seed as
2019. We also added two dropout layers after the L − 5th and R − 1st stage layers5 with
dropout rate 0.5. For left atrial MRI dataset, dropout was turned on during training, but
turned off during inference. Using dropout could bring performance gains on left atrial MRI
dataset. However, we fould that using dropout hurts the performance on liver tumor CT
dataset based on our experiments. Hence, we turned off dropout in all experiments for liver
CT tumor segmentation. All the networks and loss functions are implemented in PyTorch,
and run in Linux.

Four complementary segmentation metrics are introduced to quantitatively evaluate the
segmentation results. Dice and Jaccard, two region-based metrics, are used to measure the
region mismatch. Average surface distance (ASD) and 95% Hausdorff Distance (95HD), two
boundary-based metrics, are used to evaluate the boundary errors between the segmentation
results and the ground truth.

3.2. Experimental design

We evaluated the five benchmark methods on the two representative datasets with the above
training protocol. For boundary loss and Hausdorff distance loss, the final loss function is
defined by

L = αLDice + (1− α)L(·) (6)

where α ∈ [0, 1] is the weight parameter, and L(·) denotes boundary loss and Hausdorff
distance loss, respectively. In practice, α is set to 1 at the start of the training and decreased
by 0.001 after each epoch until it reaches 0.01, which is suggested in (Kervadec et al., 2019;
Karimi and Salcudean, 2019). For signed distance function loss, the final loss is defined by

L = LDice + 10(L1 + LSDF )

as suggested in (Xue et al., 2020). In addition, For multi-heads and reconstruction-branch
CNNs, directly regressing the signed distance function is still undeveloped as we mentioned
in Section 2.3. Thus, we also evaluated several combinations among different network
architectures (multi-heads versus reconstruction-branch CNNs), different regression tasks
(DTM versus SDF), and different loss functions (L1, L2 or L1 + L2).

4. Results and Discussion

In this section, we present the quantitative results of the five benchmark methods on the
two datasets.

5. L and R denote the left encode path and right decode path in V-Net.
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Table 1: Quantitative results with average (standard deviation) on left atrial MRI segmen-
tation. FG, DTM and SDF denote the foreground distance transform map and the
signed distance function, respectively. Rec-Branch denotes the the network with
reconstruction branch, and L1/L2 denotes . The arrows indicate which direction
is better.

Methods Dice (%) ↑ Jaccard (%) ↑ 95HD ↓ ASD ↓
V-Net baseline 84.4 (5.70) 73.6 (7.00) 20.1 (13.8) 5.29 (3.43)

Boundary loss 85.0 (5.64) 74.2 (7.87) 20.8 (15.0) 5.43 (3.43)
Hausdorff distance loss 85.5 (4.96) 75.0 (7.30) 15.9 (13.3) 4.46 (3.68)
Signed distance function loss 84.2 (8.48) 73.5 (11.0) 13.5 (11.2) 3.24 (3.10)

Multi-heads: FG DTM-L1 83.7 (6.33) 72.5 (8.97) 24.7 (12.8) 6.62 (3.32)
Multi-heads: FG DTM-L2 82.6 (6.87) 71.0 (9.65) 15.5 (11.5) 4.10 (3.12)
Multi-heads: FG DTM-L1+L2 83.3 (10.7) 72.6 (12.6) 17.5 (12.1) 4.87 (3.12)
Multi-heads: SDF-L1 85.5 (7.82) 75.3 (10.2) 11.8 (8.86) 2.65 (2.11)
Multi-heads: SDF-L2 87.0 (3.49) 77.2 (5.49) 16.1 (13.5) 3.97 (3.14)
Multi-heads: SDF-L1+L2 84.5 (4.38) 73.5 (6.49) 24.7 (15.0) 6.09 (3.71)

Rec-Branch: FG DTM-L1 83.5 (5.91) 72.2 (8.30) 23.6 (14.8) 5.45 (3.57)
Rec-Branch: FG DTM-L2 81.5 (8.40) 69.5 (10.9) 19.5 (16.9) 4.49 (4.76)
Rec-Branch: FG DTM-L1+L2 83.8 (4.57) 72.3 (6.78) 28.5 (14.1) 7.47 (3.40)
Rec-Branch: SDF-L1 82.5 (9.05) 73.6 (10.9) 12.0 (4.61) 2.73 (1.38)
Rec-Branch: SDF-L2 86.9 (4.43) 77.1 (7.92) 10.2 (6.03) 2.71 (1.68)
Rec-Branch: SDF-L1+L2 85.1 (67.5) 74.6 (9.24) 16.7 (13.1) 4.00 (3.19)

4.1. Dataset 1: Left atrial MRI

Table 1 presents the quantitative results for left atrial MRI segmentation. Compared with
the naive V-Net baseline, the two types of methods (New loss functions and adding auxil-
iary tasks) can obtain performance gains. Specifically, Hausdorff distance loss, multi-heads
CNN and Rec-Branch CNN improved the baseline by 1.1%, 2.6%, and 2.5% in terms of
Dice, respectively. SDF loss improved 95HD by 6.6, Multi-heads CNN and Rec-Branch
CNN also improved 95HD by 8.3 and 9.9, respectively. Multi-heads CNN achieved the best
Dice, Jaccard and ASD, and Rec-Branch CNN achieved the best 95HD with approximate
50% reduction. Paired T-test shows that the improvements are statistically significant at
p < 0.01. We also found the regression branch and loss functions have significant impact
on the performance. In particular, adding SDF regression task can provide better perfor-
mance compared with adding the foreground DTM regression. It can be found that adding
foreground distance map regression as an auxiliary task even degrades the performance
compared with baseline in both multi-heads and Rec-Branch CNNs. Moreover, using L2
loss is better than using L1 loss or their sum.
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4.2. Dataset 2: Liver tumor CT

Table 2 shows the quantitative results on liver tumor CT dataset of the “winner” meth-
ods6 in left atrial segmentation. Boundary loss and Hausdorff distance loss achieved minor
improvements that are statistically significant at p < 0.05. It can be found that SDF loss,
multi-heads and Rec-Branch CNNs didn’t improve network performance. The potential
reason may be that liver tumor segmentation is much more challenging than left atrial
segmentation. For example, tumor has various location, shape and size, while these char-
acteristics are relatively fixed for left atrial segmentation. It is non-trivial to regress the
DTM or SDF of liver tumor.

Table 2: Quantitative results with average (standard deviation) on liver tumor CT dataset.
The arrows indicate which direction is better.

Methods Dice ↑ Jaccard ↑ 95HD ↓ ASD ↓
V-Net baseline 51.0 (28.8) 39.8 (21.6) 43.6 (45.2) 14.9 (22.3)

Boundary loss 52.5 (24.1) 41.0 (21.1) 26.3 (33.7) 7.70 (21.9)
Hausdorff distance loss 52.0 (25.4) 40.9 (22.6) 28.8 (34.3) 7.56 (19.4)
Signed distance function loss 47.6 (29.8) 37.5 (26.9) 31.1 (48.7) 11.2 (23.8)

Multi-heads: SDF-L1 48.1 (27.6) 38.2 (24.4) 31.5 (40.6) 8.11 (15.4)
Multi-heads: SDF-L2 47.1 (28.0) 37.0 (25.3) 25.5 (34.1) 8.82 (22.3)

Rec-Branch: SDF-L1 48.4 (27.7) 37.9 (25.3) 32.2 (48.6) 11.8 (31.1)
Rec-Branch: SDF-L2 48.6 (27.3) 38.5 (25.0) 31.0 (48.0) 7.52 (21.8)

5. Conclusion

For the question “how can distance transform maps boost segmentation CNNs”, our answer
is that all the benchmark methods have the potential to improve the performance of baseline
CNNs based on the experimental results. However, the performance gains are not consistent
in different datasets. In particular, implementation details have remarkable effects on the
final performance, for example learning rates, regression tasks, loss functions and so on. In
practice, we would recommend multi-heads and Rec-Branch CNNs for the first try in organ
segmentation tasks. On the other hand, boundary loss and Hausdorff distance loss would
be suggested for the first try in tumor segmentation tasks. Importantly, how should we use
the distance transform maps to boost existing CNNs and obtain robust performance gains
is still an open question.

We can not claim we have completely reproduced the five benchmark methods, because
most of them are not open-source except boundary loss7. However, we tried our best
to tune each method to achieve the best performance. For example, we tried different
learning rates for each experiments. We also tried different α decay rates for boundary
loss and Hausdorff distance loss. More than 70 experiments were run to ensure a fair

6. “Winner” methods: the methods that achieve performance improvements.
7. https://github.com/LIVIAETS/surface-loss
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comparison of these methods as shown in Appendix. Another limitation is that we used
V-Net as backbone without justification. In future work, we will evaluate these methods
with recent network architectures on more segmentation datasets, for example the Medical
Segmentation Decathlon (Simpson et al., 2019). Furthermore, exploring the combination
of the two different kinds of methods is also a promising extension. Our codes and trained
models are publicly available at https://github.com/JunMa11/SegWithDistMap, which
we hope would be useful for the community.
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Appendix A. Hyper-parameters trials for boundary loss

Table 3 and Table 4 present the hyper-parameters experiments of boundary loss.

Table 3: Boundary loss (BD) with different learning rates (LR), α decay rates and signed
distance functions (non-normalized or normalized to [−1, 1]) on left atrial MRI
dataset. Failed means the training does not converge.

Methods LR α decay Dice Jaccard ASD 95HD

BD 0.001 0.01 0.766 0.643 15.758 3.884
BD 0.001 0.001 0.801 0.677 30.219 8.980
BD 0.0001 0.01 0.246 0.166 35.736 7.086
BD 0.0001 0.001 0.625 0.509 25.370 5.026

BD Norm. SDF 0.001 0.01 0.659 0.515 30.551 9.804
BD Norm. SDF 0.001 0.001 0.777 0.647 28.666 8.756
BD Norm. SDF 0.0001 0.01 Failed
BD Norm. SDF 0.0001 0.001 0.460 0.338 31.945 9.350
BD Norm. SDF 0.01 0.001 0.850 0.742 20.823 5.435

Table 4: Boundary loss (BD) with different learning rates (LR), α decay rates and signed
distance functions (non-normalized or normalized to [−1, 1]) on liver tumor CT
dataset. Failed means the training does not converge.

Methods LR α decay Dice Jaccard ASD 95HD

BD 0.001 0.01 36.470 27.130 30.770 3.860
BD 0.001 0.001 0.511 0.398 29.351 8.316
BD 0.0001 0.01

Failed
BD 0.0001 0.001

BD Norm. SDF 0.001 0.01 0.4877 0.3784 38.460 16.036
BD Norm. SDF 0.001 0.001 0.525 0.410 26.317 7.698
BD Norm. SDF 0.0001 0.01

Failed
BD Norm. SDF 0.0001 0.001

Appendix B. Hyper-parameters trials for Hausdorff distance loss

Table 5 and Table 6 present the hyper-parameters experiments of Hausdorff distance loss.

Appendix C. Hyper-parameters trials for signed distance function loss

Table 7 presents the hyper-parameters experimental results of signed distance function loss.
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Table 5: Hausdorff distance loss (HD) with different learning rates (LR), α decay rates and
distance transform map (non-normalized DTM or normalized DTM to [0, 1]) on
left atrial MRI dataset.

Methods LR α decay Dice Jaccard ASD 95HD

HD 0.001 0.01 0.656 0.503 40.770 14.810
HD 0.001 0.001 0.757 0.623 27.640 7.625
HD 0.0001 0.01 0.723 0.578 37.630 12.600
HD 0.0001 0.001 0.640 0.485 40.050 14.360

HD Norm. DTM 0.001 0.01 0.474 0.335 40.940 14.080
HD Norm. DTM 0.001 0.001 0.773 0.641 31.020 9.765
HD Norm. DTM 0.0001 0.01 0.252 0.157 47.670 19.940
HD Norm. DTM 0.0001 0.001 0.400 0.276 38.860 14.140
HD Norm. DTM 0.01 0.001 0.855 0.750 15.921 4.461

Table 6: Hausdorff distance loss (HD) with different learning rates (LR), α decay rates and
distance transform map (non-normalized DTM or normalized DTM to [0, 1]) on
liver tumor CT dataset. Failed means the training does not converge.

Methods LR α decay Dice Jaccard ASD 95HD

HD 0.001 0.01 0.292 0.196 76.793 39.510
HD 0.001 0.001 0.519 0.405 34.884 11.152
HD 0.0001 0.01 Failed
HD 0.0001 0.001 0.294 0.211 53.763 25.509

HD Norm. DTM 0.001 0.01 0.478 0.370 43.546 19.233
HD Norm. DTM 0.001 0.001 0.520 0.409 28.820 7.562
HD Norm. DTM 0.0001 0.01

Failed
HD Norm. DTM 0.0001 0.001

Table 7: Signed distance function (SDF) loss ablation study results with different learning
rates (LR) on left atrial dataset.

Methods LR Dice Jaccard ASD 95HD

Dice loss+L1 0.01 0.847 0.739 23.260 6.572
Dice loss+L1 0.001 0.771 0.658 19.750 5.490

Dice loss+L1+SDF loss 0.01 0.813 0.704 16.090 4.044
Dice loss+L1+SDF loss 0.001 0.842 0.735 13.540 3.243

Appendix D. Hyper-parameters trials for multi-heads V-Net

Table 8 and 9 present the hyper-parameters experimental results of multi-heads V-Net.
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Table 8: Multi-heads V-Net with different regression tasks, loss functions and learning rates
on left atrial dataset.

Multi-heads LR Dice Jaccard ASD 95HD

FG DTM regression-L1 0.01 0.837 0.725 24.676 6.622
FG DTM regression-L1 0.001 0.837 0.725 23.712 6.226
FG DTM regression-L2 0.01 0.798 0.671 14.504 3.076
FG DTM regression-L2 0.001 0.826 0.709 15.564 4.101
FG DTM regression-L1+L2 0.01 0.814 0.695 19.087 4.919
FG DTM regression-L1+L2 0.001 0.833 0.726 17.452 4.867

SDF regression-L1 0.01 0.855 0.753 11.823 2.646
SDF regression-L1 0.001 0.817 0.703 17.632 4.044
SDF regression-L2 0.01 0.870 0.772 16.119 3.970
SDF regression-L2 0.001 0.772 0.657 28.987 6.609
SDF regression-L1+L2 0.01 0.845 0.734 24.713 6.093
SDF regression-L1+L2 0.001 0.796 0.691 17.217 4.315

Table 9: Multi-heads V-Net (signed distance function regression) with different loss func-
tions and learning rates (LR) on liver tumor CT dataset.

Multi-heads LR Dice Jaccard ASD 95HD

SDF regression-L1 0.01 0.4841 0.3819 31.5352 8.1127
SDF regression-L1 0.001 0.4705 0.3718 31.6681 8.4459

SDF regression-L2 0.01 0.4672 0.3649 30.7485 9.8766
SDF regression-L2 0.001 0.471 0.3704 25.4891 8.8161
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Appendix E. Hyper-parameters trials for reconstruction-branch V-Net

Table 10 and 11 present the hyper-parameters experimental results of reconstruction-branch
V-Net.

Table 10: Reconstruction-branch V-Net with different regression tasks, loss functions and
learning rates on left atrial dataset.

Rec-Branch LR Dice Jaccard ASD 95HD

FG DTM regression-L1 0.01 0.835 0.722 23.552 5.450
FG DTM regression-L1 0.001 0.830 0.715 26.234 6.997
FG DTM regression-L2 0.01 0.798 0.672 24.431 6.932
FG DTM regression-L2 0.001 0.815 0.695 19.484 4.488
FG DTM regression-L1 + L2 0.01 0.774 0.638 23.541 6.531
FG DTM regression-L1 + L2 0.001 0.838 0.723 28.466 7.466

SDF regression-L1 0.01 0.843 0.737 12.007 2.734
SDF regression-L1 0.001 0.811 0.694 18.274 4.508
SDF regression-L2 0.01 0.869 0.771 10.234 2.714
SDF regression-L2 0.001 0.800 0.686 19.129 4.830
SDF regression-L1 + L2 0.01 0.851 0.746 16.672 4.003
SDF regression-L1 + L2 0.001 0.820 0.704 15.254 3.284

Table 11: Multi-Head V-Net (signed distance function regression) with different loss func-
tions and learning rates (LR) on liver tumor CT dataset.

Rec-Branch LR Dice Jaccard ASD 95HD

SDF regression-L1 0.01 0.484 0.379 32.249 11.786
SDF regression-L1 0.001 0.467 0.366 32.844 6.687

SDF regression-L2 0.01 0.447 0.343 42.535 15.428
SDF regression-L2 0.001 0.486 0.385 30.996 7.550

SDF regression-L1+L2 0.01 0.429 0.333 42.095 14.791
SDF regression-L1+L2 0.001 0.456 0.353 34.837 8.522
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