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Abstract

Magnetic Resonance Imaging (MRI) is a widely-accepted imaging technique for knee injury
analysis. Its advantage of capturing knee structure in three dimensions makes it the ideal
tool for radiologists to locate potential tears in the knee. In order to better confront the
ever growing workload of musculoskeletal (MSK) radiologists, automated tools for patients’
triage are becoming a real need, reducing delays in the reading of pathological cases. In this
work, we present the Efficiently-Layered Network (ELNet), a convolutional neural network
(CNN) architecture optimized for the task of initial knee MRI diagnosis for triage. Unlike
past approaches, we train ELNet from scratch instead of using a transfer-learning approach.
The proposed method is validated quantitatively and qualitatively, and compares favorably
against state-of-the-art MRNet while using a single imaging stack (axial or coronal) as
input. Additionally, we demonstrate our model’s capability to locate tears in the knee
despite the absence of localization information during training. Lastly, the proposed model
is extremely lightweight (< 1MB) and therefore easy to train and deploy in real clinical
settings.

Keywords: Knee Diagnosis, MRI, Deep Learning, ACL Tear, Meniscus Tear, Knee Injury,
Medical Triage

1. Introduction

Magnetic Resonance Imaging (MRI) has long been considered the most robust knee ex-
amination tool available (Saeed, 2018). Its widespread use is partly due to its capability
to capture detailed structures in the knee joint while remaining a non-invasive procedure
(Crues et al., 1987; Boeree et al., 1991). Given its profound capabilities to capture the knee
in three dimensions, MRI has become the tool-of-choice for radiologists in an extensive
range of examinations such as knee osteoarthritis and internal derangement of the knee.
(Hayashi et al., 2014; Arumugam et al., 2015). Considering the ever growing workload of
musculoskeletal (MSK) radiologists, automated tools for patients’ triage are needed, leading
to shorter delays in the reading of pathological cases. Several techniques have been proposed
for this purpose. Štajduhar et al. (2017) presented a semi-automated approach that used
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support vector machines (SVM) to diagnose anterior cruciate ligament (ACL) injuries in the
knee. In their work, an ROI is first manually extracted before being fed into the SVM for
prediction. Liu et al. (2018) introduced a fully-automated cartilage lesion detection system
by employing a CNN for segmentation followed by another CNN for patch classification.
Although their network is trained end-to-end, the amount of manual labeling required to
create the patch training set makes it an overwhelmingly cumbersome task. Bien et al.
(2018) proposed an architecture that consists of three individual MRNets whose output are
combined using logistic regression. An MRNet extracts a distinctive feature vector for each
slice of the scan, stacks the vectors into a 2D array, max-pools the array to obtain a single
vector, and performs classification by a fully connected layer with softmax activation. The
backbone of the feature extractor is a pre-trained AlexNet (Krizhevsky et al., 2012).

In this work, we present an Efficiently-Layered Network (ELNet) architecture optimized
for knee diagnosis using MRI. The main contribution of this work is a novel slice feature
extracting network that incorporates multi-slice normalization along with BlurPool down-
sampling. The proposed methods will be detailed in Section 2, followed by quantitative and
qualitative experimental results in Section 3. Conclusion and future work will be given in
Section 4.

2. Methods

The ELNet architecture is illustrated in Figure 1 and the details are listed in Table 1. The
backbone of ELNet’s design centers around Block modules. Inspired by ResNet (He et al.,
2016), we define a Block as a sequence of:

[2D Convolution → Multi-slice Normalization → ReLU activation]

Blocks are designed to allow for non-linearities in the network, and they may be repeated
while ensuring equal input and output dimensions. A skip connection is added between the
input and output, allowing better optimization of the network. The first two Blocks are
repeated twice with 4K and 8K channels, and the remaining Blocks are fixed with 16K
channels.

Each Block is followed by another 2D Convolution and ReLU activation, and they serve
to increase channel dimension. The spatial height and width are reduced using a BlurPool
layer. Eventually, in the final layer of the feature extractor, 2D max-pooling is applied to
obtain a 16K-dimensional feature vector for each MRI slice. Max-pooling is consecutively
applied to obtain a single 16K-dimension feature vector that combines feature information
across slices. Dropout is performed before feeding into a fully-connected layer with two
output logits, and the final probability p(y|x) is computed by softmax (Goodfellow et al.,
2016).

In the following two subsections, we detail two innovative features of ELNet: the use of
multi-slice normalization, and BlurPool.

Multi-Slice Normalization

We propose two possible variants of multi-slice normalization: a first one based on layer
normalization (Ba et al., 2016), and a second one based on contrast normalization (Ulyanov
et al., 2016). Let’s assume a feature representation x(i) ∈ RS×C×H×W from some layer i in
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Figure 1: ELNet Design

Output Size Layer Operation Trainable Parameters

s× 4K × 128× 128
7× 7 Conv, 4K 196K
Normalization 4K

s× 4K × 62× 62
ReLU → BlurPool

Block [5× 5]×2 800K2 + 16K

s× 8K × 62× 62 5×5 Conv, 8K 800K2

s× 8K × 29× 29
ReLU → BlurPool

Block [3× 3]×2 1152K2 + 32K

s× 16K × 29× 29 3×3 Conv, 16K 1152K2

s× 16K × 13× 13
ReLU → BlurPool

Block [3×3] 2304K2 + 32K
3×3 Conv, 16K 2304K2

s× 16K × 5× 5
ReLU → BlurPool

Block [3×3] 2304K2 + 32K
3×3 Conv, 16K 2304K2

s× 16K ReLU → BlurPool → 2D Max-Pool

16K 1D Max-Pool → Dropout

2 Fully Connected → Softmax 32K + 2

Total Trainable Parameters 13120K2 + 348K + 2

Table 1: ELNet architecture in detail

the network (usually a 2D-convolution), where S is the number of slices in the MRI sequence,
C is the number of channels in the representation, and H,W are the spatial height and width
of the representation. The network applies a normalization on x (omitting i for simplicity)
by computing the appropriate mean and variance.

In the layer normalization variant, the mean µs and variance σ2s are computed from x
for each slice s (1 ≤ s ≤ S). In contrast normalization, the mean µsc and variance σ2sc are
computed for each slice s and also for each channel c (1 ≤ c ≤ C) (Figure 2 a-c). Using the
computed mean and variance, x is standardized into x̂. An affine transform is applied to x̂
to obtain the normalized output y. The normalization process is expressed by Equation (1)
for layer normalization and Equation (2) for contrast normalization respectively:

x̂n =
xn − µn√
σ2n + ε

→ yn = γx̂n + β ∀n : 1→ N (1)

x̂nc =
xnc − µnc√
σ2nc + ε

→ ync = γx̂nc + β ∀n : 1→ N, c : 1→ C (2)

Parameters γ, β (C dimensional vectors) are learned independently for each normalization
layer. Typically, γ, β, ε are initialized to 1 , 0, and 1e-8 respectively.

BlurPool

In the work of Zhang (2019), a BlurPool operation was proposed to mitigate the shift-
variance phenomenon observed in modern CNN architectures where max-pooling is often
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Figure 2: (a) An MRI sequence fed as input to ELNet, and an illustration of an ELNet
Block. (b&c) Our proposed multi-slice normalization: Layer normalization and Contrast
normalization (multi-slice norm standardizes slice-wise unlike batch norm which standard-
izes channel-wise) (d) BlurPool example: Input X is convolved with binomial filter (kernel
B = 3) to obtain an anti-aliased representation Blur(X). Pooling is then applied to obtain
BlurPool(X).

utilized. BlurPool functions by first applying an anti-aliasing filter (binomial filter with
kernel size B and stride 1) to the input representation, then strided pooling is applied to
obtain the pooled feature map (see Figure 2d). The resulting representation is therefore a
pooled version of the blurred input representation, and a more detailed analysis is available
in the paper (Zhang, 2019).

2.1. Training Pipeline

As suggested by Nyúl and Udupa (1999), we perform histogram-based intensity standard-
ization according to the training set statistics, thus enabling similar-valued pixels to be
associated with the relevant tissue type. In addition, we perform randomized data augmen-
tations to each series which includes translation, horizontal flip, scaling, and minor rotations
up to ±10 degrees around the center of the volume. For volumes captured in the axial and
coronal orientations, we apply an additional random rotation of a multiple of 90 degrees to
the volume. Finally, all the images are resized to 256× 256 before entering the network.

Aside from data augmentation, we implement oversampling to compensate for dataset
imbalance. For each pathology, we select the minority class samples (allowing repeats)
from our training set and apply augmentations on them until the number of minority class
samples (along with their augmented copies) equals the number of majority samples.

We train ELNet using standard cross-entropy loss (Goodfellow et al., 2016). Optimiza-
tion can be done using a simple grid-search over relevant hyperparameters such as learning
rate, choice of multi-layer normalization, BlurPool kernel sizes, dropout rate, etc.
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3. Experiments

3.1. Datasets

MRNet Dataset. The MRNet Dataset contains 1,370 knee MRI examinations that were
carried out at the Stanford University Medical Center. Each case was labeled according to
the presence/absence of an anterior cruciate ligament (ACL) tear, a meniscus tear, or other
signs of abnormalities in the corresponding knee. Each exam was randomly assigned either
to the training, validation, or test set (Bien et al., 2018). It should be noted that each exam
may contain multiple labels (e.g. an exam labeled positive for abnormality and ACL tear
indicates other forms of abnormality in addition to an ACL tear).

The provided dataset includes, for each case, corresponding axial, coronal and sagittal
MRI acquisitions. As reported by Bien et al., a sagittal T2-weighted series, a coronal T1
weighted series, and an axial proton density weighted series were selected for this dataset.
Each image is of size 256 × 256 and the number of slices ranges between 17- 61 (mean 31
and standard deviation 7.97). The MRNet Dataset is currently the largest public labeled
knee MRI dataset.

KneeMRI. The KneeMRI dataset collected at the Clinical Hospital Centre Rijeka, Croatia
by Štajduhar et al consists of 917 exams labeled with ACL conditions in the corresponding
knee. For each exam, the ligament condition was classified as either healthy (690 exams,
75.2%), partially injured (172 exams, 18.8%), or completely ruptured (55 exams, 6%).
Each assessment corresponds to a T1-weighted sagittal MRI series, containing 320× 320 or
290× 300 images. The number of images in each series ranges between 21-45 (mean 31 and
standard deviation 2.27). The dataset was divided into 10 strata with similar distributions,
and we perform stratified sampling for evaluation.

3.2. Training

MRNet Dataset. In the MRNet dataset, we were provided with three imaging orienta-
tions per examination. For the three pathologies, we trained three separate ELNet’s with
K = 4, and the network weights were initialized uniformly by choosing the best random seed
between 0-4 (He et al., 2015). Based on experiments, we selected coronal images for detect-
ing meniscus tears, and axial images for detecting ACL tears and abnormalities. Contrast
normalization yielded the best results for detecting meniscus tears, and layer normalization
for detecting ACL tears and abnormalities (notice the correspondence between the selected
multi-slice normalization and image modality.) Each model was trained using Adam with a
learning rate between 1e-5 and 3e-5 for 200 epochs, taking roughly 1.5 hours (Kingma and
Ba, 2014).

KneeMRI Dataset With the KneeMRI dataset, we perform 5-fold cross validation using
eight out of the ten strata, and validation using the remaining two. Similar to the MRNet
Datset, we train an ELNet with K=2 using SGD+Momentum for 200 epochs and the train-
ing time is roughly an hour for each fold (Sutskever et al., 2013).
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Architecture Pathology Accuracy Sensitivity Specificity ROC-AUC MCC

Meniscus Tear 0.735 0.827 0.662 0.826 0.489
ACL Tear 0.9 0.907 0.894 0.956 0.769MRNet

Abnormality 0.883 0.947 0.64 0.936 0.628

Meniscus Tear 0.88 0.86 0.89 0.904 0.745
ACL Tear 0.904 0.923 0.891 0.960 0.815ELNet

Abnormality 0.917 0.968 0.72 0.941 0.736

Table 2: Evaluation Statistics between MRNet and ELNet on the MRNet validation set

By choosing K=2, and K=4 for the ELNet architectures, our trained model involves 53,178,
and 211,314 trainable parameters respectively. In relation to AlexNet (∼61M trainable pa-
rameters), ELNet (with K=4) contains 288× fewer parameters than AlexNet. In comparison
with MRNet, ELNet with K=4 contains 866× less parameters, and ELNet with K=2 con-
tains 1147× less parameters. Each trained model was saved using standard PyTorch format.
Model sizes are 850kB and 435kB for K=4 and K=2 respectively. Our experiments were
perfomed on an NVIDIA GTX 1070 8GB GPU.

3.3. Evaluation

MRNet Dataset. We evaluate ELNet’s performance using the validation set provided by
the MRNet dataset (since the test set is not publicly available), and we compare it with
the MRNet model proposed and trained by Bien et al. Although they evaluated their mod-
els primarily using the ROC-AUC, we perform a more thorough analysis by considering
additional metrics that are just as significant, such as Sensitivity and the Matthew Corre-
lation Coefficient (MCC). The evaluation results are presented in Table 2 and the ROC is
plotted in Figure 3 (a-c), where we can observe noticeably higher MCC of the ELNet model.

KneeMRI Dataset. We evaluate ELNet using a 5-fold cross-validation scheme in detect-
ing injuries in the ACL. The evaluation metrics following the 5-folds are shown on figure 3
(d-g); we highlight the lowest value in for each metric in red. In the original paper, Štajduhar
et al trained an SVM and reported an AUC of 0.894 using 10-fold cross-validation. Bien et
al reported an AUC of 0.911 on a particular train/valid/test set split using a pre-trained
MRNet. In our experiment, we obtain an average AUC of 0.913 from the 5-folds, with
three of the five folds exceeding 0.92 and the highest being 0.924. Moreover, we observe
just minor variations in multiple performance metrics across folds; this demonstrates our
model’s robustness despite limited data and a highly unbalanced distribution.

3.4. Ablation Studies

This section aims to compare ELNet performance when multi-slice normalization and Blur-
Pool are replaced with batch normalization (Ioffe and Szegedy, 2015) and max-pooling.
The objectives are the three pathologies presented in the MRNet dataset, and the best
results following the modified ELNet designs are listed in Table 3. Stemming from the fact
that batch normalization induces an undesired standardization for each channel of feature
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Figure 3: MRNet Dataset: (a-c) Comparision of ELNet and MRNet ROC KneeMRI
Dataset: (d) ELNet ROC’s obtained from 5-fold cross-validation (e) ELNet metrics fol-
lowing 5-fold cross-validation
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ELNet Configuration
(K=4)

Meniscus Tear ACL Tear Abnormalities
ROC-AUC MCC ROC-AUC MCC ROC-AUC MCC

Multi-Slice Norm + BlurPool 0.904 0.745 0.960 0.815 0.941 0.736
Batch Norm + BlurPool 0.751 0.391 0.871 0.530 0.841 0.440

Multi-Slice Norm + MaxPool 0.848 0.534 0.923 0.633 0.943 0.557
Batch Norm + MaxPool 0.7972 0.403 0.906 0.693 0.880 0.312

Table 3: Comparison of ELNet performance when multi-slice normalization and BlurPool
are replaced with batch normalization and max-pool. The ROC-AUC and MCC of the best
performing model (one for each pathology) of each ELNet configuration is reported.

representations across all slices, the feature extractor (designed to extract per-slice fea-
tures) would no longer process each slice independently, and degraded performance deems
reasonable. Following our experiments, it is evident that the use of batch normalization
aggravates ELNet performance. In practice, we observe network divergence during train-
ing after 10-15 epochs. To our surprise, ELNet with batch norm and max-pool delivered
slightly improved performance when compared with ELNet with batch norm and BlurPool,
but when BlurPool is paired with the intended multi-slice normalization, we observe an
overall improvement in performance compared to max-pooling.

3.5. Model Interpretation

To understand how ELNet identifies certain attributes for diagnosis, we compute the Full-
Gradient representation of ELNet using the FullGrad algorithm (Srinivas and Fleuret, 2019).
FullGrad generates a heat-map that corresponds to parts of the input that most influence
the output prediction. Conceptually, the generated heat-map should be “hotter” in areas
indicating an injury and “cold” elsewhere.

To verify that ELNet is indeed performing diagnosis based on features in the given
acquisition, we randomly selected one of the five cross validation splits and evaluated the
trained ELNet from that split. Samples from the validation set were randomly selected from
both classes, resulting in 9 cases containing ACL tear and 7 cases without. A board-certified
MSK radiologist with 17 years of experience was asked to identify the most informative slice
(slice containing the most area for which a tear resides) in a given series and furthermore
indicate the region in the (most informative) slice corresponding to an ACL injury. The
identical task was performed on the trained ELNet, and of the 9 cases that contain ACL
tear, the trained ELNet’s prediction of the most informative slice and tear region coincided
with the radiologist’s evaluation in 8 of the cases. Of the 7 cases where the ACL is intact,
our model’s prediction matched the radiologist’s assessment in all 7 cases. In Figure 4, we
present a few examples of the generated heat-maps.

4. Conclusion

In this work, we present ELNet, a unique CNN architecture optimized for knee injury
detection. The novel integration of multi-slice normalization and BlurPool operations al-
low ELNet models to remain lightweight (∼ 0.2M parameters, requiring single imaging
stack, trained from scratch) while performing favorably against MRNet models (∼ 183M
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Figure 4: Top: Sample MRI slices containing ACL tears. Bottom: Full-Grad visualization
computed using the above slices. “Hotter” areas indicate regions containing ACL tear.

parameters, requiring three imaging stacks, pretrained AlexNet) on the MRNet dataset.
Cross-validation on the KneeMRI dataset have demonstrated consistent improved perfor-
mance with ELNet models, proving the architecture to be robust regardless of a highly
unbalanced distribution. In a clinical setting, where large number of cases await evaluation,
our algorithm may be used for triage, improving workflow efficiency. In addition, by having
our algorithm locate regions containing tears, radiologists can benefit by having the most
significant slice presented first for each case.

Future work may include performance enhancement by incorporation of all three MRI
volumes, axial, coronal and sagittal, if available. Further research is also needed to facilitate
application of trained models on MRI data acquired using different scanners with various
intensity scales. With the promising findings thus far, we believe ELNet may serve as a
solid basis for future works involving knee injury triage.
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