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Abstract

Modern machine learning systems are still lacking in the kind of general intelligence
and common sense reasoning found, not only in humans, but across the animal kingdom.
Many animals are capable of solving seemingly simple tasks such as inferring object lo-
cation through object persistence and spatial elimination, and navigating efficiently in
out-of-distribution novel environments. Such tasks are difficult for AI, but provide a natu-
ral stepping stone towards the goal of more complex human-like general intelligence. The
extensive literature on animal cognition provides methodology and experimental paradigms
for testing such abilities but, so far, these experiments have not been translated en masse
into an Al-friendly setting. We present a new testbed, Animal-AlI first released as part of
the Animal-AI Olympics competition at NeurIPS 2019, which is a comprehensive environ-
ment and testing paradigm for tasks inspired by animal cognition. In this paper we outline
the environment, the testbed, the results of the competition, and discuss the open chal-
lenges for building and testing artificial agents capable of the kind of nonverbal common
sense reasoning found in many non-human animals.

1. Introduction

We have recently seen a wide variety of challenging environments where Al now outperforms
humans such as Atari games (Bellemare et al., 2012; Mnih et al., 2013), Go (Silver et al.,
2016) and Starcraft 2 (Vinyals et al., 2017). Successes such as these have been driven by
the introduction of game environments and physics simulators as testing arenas (Todorov
et al., 2012), and have even resulted in the transfer of trained agents to the ‘real’ world for
robotic manipulations (OpenAl et al., 2018). While these results are impressive, they are
still limited in many ways (Geirhos et al., 2020) and are only a first step towards agents that
can robustly interact with their environments, apply common sense reasoning, and adapt
to truly novel situations.
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Meanwhile, over the last century, comparative psychologists have refined a multitude
of experimental paradigms through which to probe animals’ cognitive and behavioural ca-
pacities (Thorndike, 1911; Shettleworth, 2009). As a result, a wide range of standardised
tests now exist, designed to minimise confounding factors, noise, and other non-cognitive
elements that may interfere with identifying the targeted skill (Shaw and Schmelz, 2017).
Animals have been tested for a wide variety of abilities by exploiting their intrinsic motiva-
tion to retrieve food. The food is placed in cleverly designed apparatus (see Figure 1) such
that, as much as is possible, retrieval demonstrates the capability in question. Such abilities
include object permanence (tracking objects that go briefly out of sight) (Chiandetti and
Vallortigara, 2011), spatial memory (remembering previously taken paths) (Hughes and
Blight, 1999), and using simple objects as tools (Bluff et al., 2010). These tasks are made
especially hard because the inputs are low-level noisy sensory information and, whilst it has
been a dream of Al to recreate biological intelligence for decades, it is only with the recent
advances mentioned above that it is feasible to even consider testing agents on similar tasks
with pixel-based visual inputs.

In this paper we describe Animal-Al, a testbed inspired by the comparative cognition
paradigm. This includes a novel environment, a 3D-simulated arena using the Unity ML-
Agents framework (Juliani et al., 2018), with a simple simulated physics and a set of objects
that can be combined to build the kinds of environments and apparatus found in animal
experiments. The environment and objects are designed to be as simple as possible whilst
still maintaining the possibility to build a wide range of tasks. The testbed contains 12
different categories of tasks over a range of difficulties so that it can be used as both a
research path and a measure of Al progress. Easier tasks involve navigation towards food
in otherwise empty arenas and choosing between positive and negative rewards. Harder
tasks involve working out which of multiple objects can be used to retrieve the food from
an inaccessible area and then correctly manipulating them to do so. The benchmark was
used for the first Animal-AI Olympics competition, held in 2019, whose results are analysed
here, and is intended to be maintained and updated to continue to provide the next challenge
on the step towards robust agents with animal-like general intelligence.

We believe this testbed is an important stepping stone towards building agents that
can robustly interact with, not only predefined intellectual problems, but also the messy,
multifaceted challenges of the ‘real-world’. Animal cognition tasks are simplified, abstracted
variants of the natural challenges that biological entities evolved to overcome, and often
require the use of intuitive physics, accurate representation of the properties of food and
other objects, and predictions of the effects of causal interactions. In using these tasks,
Animal-Al tests for the basic cognitive abilities that form the foundation of our common
sense understanding of the everyday world, with the idea to first focus on the ‘simple’,
currently overlooked, problems and build up from there. To solve the tasks, we must develop
agents that can model noisy sensory data at an object level, predict the consequences of
their actions, and react appropriately in a wide range of novel situations. It turns out that
these ‘simple’ comprise a considerable challenge. There are many who have argued for a
similar shift in focus for AI (Lake et al., 2017; Pearl and Mackenzie, 2018; Chollet, 2019),
and we hope to have provided a useful resource for work in this area.
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2. Animal and AI testing paradigms

(a) 8-Arm Maze (b) Cylinder Test (¢) Animal-Al

Figure 1: Two different apparatus commonly used in comparative cognition alongside the
Animal-Al arena and its object building blocks. The objects in Animal-Al can be
combined and resized to easily build many different experiments (including the
two in the figure).

The study of animal behaviour includes areas such as ethology, behavioural ecology,
evolutionary psychology, comparative psychology and more recently, comparative cognition
(Wasserman and Zentall, 2006; Shettleworth, 2009). In many of these fields, particularly
the latter two, animals are evaluated in carefully designed and controlled conditions, using
standardised procedures. There are many issues caused by working with animals that make
it difficult to draw any concrete conclusions from experiments (Farrar and Ostojic, 2019).
Fortunately, the translation of the tasks to an Al setting mitigates many of these problems.

Experimental designs for animal cognition take a number of considerations into account.
All tasks involve some basic functions that are taken for granted; the ability to move, recog-
nise relevant environmental features (e.g., objects, substrates), the motivation to achieve
the designated reward (almost always food), and so on. Note that none of these A crucial
stipulation is that completing the task must demonstrate application of the cognitive skill
or capacity under investigation. First, it is important that the other skills brought to the
table cannot be used to solve the tasks by themselves. To facilitate this, cues that would
allow subjects to solve the task (e.g., odour-trails in a maze) without relying on the target
skill must be controlled for or eliminated. Second, the animal should not have learned or
been trained to follow a sequence of actions that happens to solve the task without the tar-
get ability. This issue can be controlled for by testing the animal on multiple experimental
setups that test the same skill, but involve different stimuli or action patterns (Herrmann
et al., 2007; Shaw and Schmelz, 2017). Another standard practice is to record results only
for an animal’s first experience of a new environment. Finally, other environmental or
personality factors that may affect behaviour (such as the behaviour of other individuals,
individual differences in reward motivation, fear of the testing environment or distraction
from irrelevant stimuli) must be minimised or taken into account in the statistical analysis
of the results (Shaw and Schmelz, 2017). Note that these principles (especially the prereq-
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uisites that can be assumed in animals but not artificial agents), make experimental tasks
used in comparative cognition very different from standard Al testbeds.

On the other side, the Al-evaluation landscape has many benefits over testing in animals.
It is much easier to test agents, reset and rerun experiments, and generate and store large
amounts of data. At the same time, AI has developed common paradigms that hold back
progress towards common sense intelligence. (1) Many challenges are based on existing
games or environments, not deliberately designed for testing specific abilities (e.g. chess,
Go, Atari Games, Dota, Starcraft) (Hernandez-Orallo, 2017). (2) To be considered a real
challenge, oversimplified tasks that look like toy problems, such as the cylinder task in
Figure 1(b), are generally avoided (even if AI cannot currently solve them). (3) When
many tasks are integrated into a benchmark, it is not always the same trained agent (but
the same algorithm) that is evaluated on them (fortunately exceptions to this are becoming
more common — see Section 6). (4) Many tests, especially those in a supervised or RL
setting, disclose lots of information about each task by giving the possibility of training on
several episodes of the same task (or slight variations of the task). This facilitates ‘shortcut’
solutions Geirhos et al. (2020). (5) Finally, the overriding metric for achievement is usually
a continuous performance score, with other measures such as training time, procedure, and
behavioural analysis often overlooked. Animal cognition commonly relies on other measures
which can be informative not just on what was done, but how, and with what proficiency,
it was achieved. The Animal-Al Testbed presents a new paradigm for Al that combines the
positive components of both animal and AI paradigms and runs contrary to (1-5).

3. The Animal-AI Environment

The Animal-AT environment contains two components: (i) a simulator built using the Unity
game engine and (i) a training API written in Python. The simulator comprises an arena
which is kept deliberately small and can contain a set of relatively simple objects with basic
textures so that we exclude as many confounding factors as possible (see Figure 1(c¢)). The
tiled floor and wooden walls are included to still give some (task independent) visual cues
to the agent. The simulated physics reproduces how objects behave in the real world (e.g.,
gravity, collisions, friction, etc.). The various experiments presented throughout this paper
and on our website are all defined using easy to write configuration files (YAML format).
Using these, the different object types can be placed in the arena and easily resized, rotated
and combined to build complex structures.

In order to train the agent in this arena, the Python API interfaces with the simulator.
This is done via a classic reinforcement learning loop where the agent receives pixel inputs,
is capable of taking simple actions (move forward/backward and turn left/right), and is
rewarded only for retrieving designated reward (food) objects. The framework allows for
large parallel training with inbuilt RL algorithms. The environment, along with the testbed,
documentation, and tutorials for getting started are available at https://github.com/
beyretb/AnimalAI-Olympics. The environment has both Gym (Brockman et al., 2016)
and ML-Agents APIs (Juliani et al., 2018). The Unity simulator is also available open
source https://github.com/beyretb/ml-agents. This allows researchers to modify the
environment as they wish, for example, to add commonly requested features such as extra
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cameras, raycasting, multiple agents, or new object types. For more information about the
environment see Beyret et al. (2019).

4. The Testbed

(b) Y-Maze-69 (¢) Detour Task-45 (d) Radial Maze-54

(f) Delayed-30 (g) Support-27 (h) Obj. Perm.-90

(4) Numerosity-90 (j) Tool Use-126 (k) Weak Gen.-90 (1) Internal Model-90

Figure 2: Example problems from each of the 12 task types. (a) contains familiarisation
tasks. (b-j) have direct links to animal tests. (k,l) are Al-specific. Number of
problems per category shown in captions (900 total).

The testbed is a set of 300 tasks, each with 3 minor variations (900 configurations in
total) split into 12 categories. Each configuration has a set of objects including at least one
positive reward item (food), a starting location for the agent, a time limit, and a reward
threshold. The agent passes the test if its cumulative reward at the end of the episode is
above the threshold. Thresholds are generally set so that if the agent retrieves the most
possible food items within the time limit it passes the task. More details can be found at
animalaiolympics.com where all tasks can be played online and it is also possible to view
all the agents’ solutions from the competition.

The tests follow certain conventions to make solving them easier. Objects of a particular
variety always appear in a particular colour. Immovable walls are grey, ramps are pink, and
all other objects use the same skins in Figure 1(c¢). There are no interventions that change
the layout or properties of the environment during a test, everything is set up in the initial
configuration file and plays out from there based on the physics and agent actions. This is
potentially limiting compared to animal cognition, where humans often intervene to change
elements of the environment mid-test or suspend tests early. One example intervention is
to set up a forced choice, whereby the experiment is stopped after an animal picks one
of multiple options. To replicate this in the environment we use walls as platforms. Blue
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platforms denote areas that can not be climbed - the agent can move off them, but not get
back up. Using such methods we can implement many standard animal experiments.

a: Introductory There are a large number of tasks in the testbed that are used to
assess interaction with each of the elements in the environment without interference from
other elements. Crucially, these tasks allow assessment of baseline behaviour for elements
required to interpret performance on more complicated tests.

b: Y-Mazes These are very simple mazes in the shape of the letter ‘Y’ which present
an animal with two simultaneously visible choices and are commonly used in animal studies
to assess preference (Pajor et al., 2003; Pollard et al., 1994).

c: Detour Tasks These include detour and cylinder tasks such as have been performed
in (Smith and Litchfield, 2010) and discussed in (MacLean et al., 2014). In detour tasks,
food is placed behind a barrier that the animal must detour around. In the cylinder task,
food is placed in a transparent cylinder orientated such that the entrances are perpendicular
to the animal. In both cases the animal must suppress the urge to move directly towards
the food, and instead take a longer route which involves moving away from the food in order
to eventually retrieve it.

d: Radial Mazes Radial mazes are commonly used in animal cognition as they can
easily be varied in dimensions such as number of arms and landmarks which can be used to
help guide navigation. In common setups the food at the end of each arm is hidden (and
masked from producing odors) so that memory is required to avoid revisiting previously
visited arms (Hughes and Blight, 1999).

e: Spatial Elimination In these tasks success requires the ability to reason about the
location of a reward based on eliminating possibilities where it cannot possibly be. For
example, if the reward is not visible, it cannot be in a location within the visual field.
Similar tasks were performed in the Primate Cognition Test Battery (PCTB) with food
items hidden (whilst out of sight) underneath cloth or boards such that the location is
visually apparent due to bumps or inclines caused by the food (Herrmann et al., 2007).

f: Delayed Gratification These tasks require the ability to forgo an immediate, less
preferred reward for a future, more preferred reward. This has been tested in a number
of species, including great apes (Beran, 2002), who have been shown to delay taking a
bowl of food whilst multiple items are slowly added. In the Animal-Al testbed we recreate
these experiments by combining green and yellow food. An easily accessible green food will
terminate the episode, but waiting for the yellow food, which is initially unaccessible but
rolling towards the agent down a rail setup (shown in Figure 2(f)) or ramp will increase
the overall reward achieved during the episode.

g: Support and Gravity These tasks involve objects affected by gravity. In a standard
paradigm used in animal cognition, subjects must predict the final location of food that is
seen falling. A common result is that animals will often attempt to retrieve food directly
below a location it is dropped from, ignoring intervening objects (such as an inclined pipe)
which lend the object horizontal velocity (Hauser et al., 2001).

h: Object Permanence This involves maintaining knowledge of the existence of ob-
jects when they go out of sight. Object permanence has been observed in many animals,
including few-days old chicks (Chiandetti and Vallortigara, 2011). Here, the reward object
(for chicks this is an object on which they are imprinted) is briefly moved out of sight, and
the behaviour of the animal is analysed under different settings to see if the they explore
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Introductory
a

Internal Models Y-Mazes

a b c d e f eak
Baseline (%) 56.7| 72.5| 0.0 | 7.4 | 0.0 | 32.1| °"n«

Max Score (%) | 75.6| 88.4| 31.1| 51.9| 25.9| 50.0

Mean Score (%) | 61.0| 76.3| 17.5| 30.5| 14.3| 29.0| Teovse s

g h i Jj k 1

Detour
¢ Tasks

4 Radial
Mazes

e Spatial

Baseline (%) | 40.7| 0.0 | 41.1| 0.8 | 26.7| 28.9|  tumeossy
Max Score (%) | 44.4| 25.6| 50.0| 9.5 | 54.4| 57.8
Mean Score (%) | 30.6| 8.0 | 40.7| 3.4 | 35.0| 40.5 POMIETES uppot 8 Gravty

(a) Table of results (tests passed by category) (b) Radar plot top 4

Figure 4: Left: Baseline compared to the maximum and mean scores for agents that sur-
passed it (total score) by the 12 categories introduced in section 4. Right: Radar
plot showing performance profiles of the top 4 entries compared to red baseline.

the environment to “search” for the object, and if so, whether they do so in a manner
that implies they understand where it must be. For example, their arena can include two
occluding objects, one of which is too small for the reward to fit behind.

i: Numerosity Many animals have been shown to differentiate between quantities. For
example, the PCTB contains tests in which a primate is offered multiple choices of plates
of food and is counted as successful if it chooses the one with more (Herrmann et al., 2007).
In our environment yellow food adds reward but does not terminate the episode so we can
set up forced choice platforms with different amounts of food on each side.

j: Tool Use Tool use has been found across multiple species. We focus on that which
is easily reproducible within our environment and by a simple non-embodied agent, and
adapt experiments from the string pulling paradigm (Jacobs and Osvath, 2015), versions of
the ‘box and banana’ test that utilise ramps and boxes (Kohler, 2018), the swing door task
from the PCTB (Herrmann et al., 2007), and trap tube tasks (Mulcahy and Call, 2006).

k: Weak Generalisation The final two categorise are more Al-inspired than animal
inspired. In weak generalisation we take versions of the previous experiments and change
the colours of the objects or present unexpected situations, such as a wall object that acts
as a roof over the arena.

I: Internal Models Internal Models tasks are also mainly variations of earlier experi-
ments, but here the ‘lights’ in the environment (the visual input) are set to go on and off
at regular intervals, or to go off after a certain period of time. These are designed to test
the capacity of agents to build accurate predictive models.

5. Results

The testbed was presented as a competition, The Animal-AI Olympics, where 60 teams
worked on training an agent over 4 months. The competition format ensured it was possible
to assess performance on completely hidden tasks (see Section 2 for why this is important).
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Participants were given full access to the environment, the ability to generate any configu-
rations they liked for training, and feedback in terms of number of tests passed only when
they submitted an agent to a private testing server. However, they were only given limited
information about the contents of the tasks. This was, of course, a very hard challenge,
with many of the tests designed to require long-term research. Nevertheless, we can draw
some important conclusions from the results.

The majority of the entries used Deep Reinforcement Learning in some form. The
winning entry (by Denys Makoviichuk) used an iterated process of building training en-
vironments, training an agent, and a validation step involving behavioural analysis. The
DRL algorithm used was PPO, with a CNN architecture feeding into an LSTM layer. The
training environments were hand-designed configurations that made use of the possibility
to specify certain values to be randomised. In the behavioural analysis step, the agent’s
performance on a custom-built test set was analysed and then the algorithm, training set,
and reward shaping were used to encourage more robust behaviour. For example, a small
positive reward was given for achieving vertical velocity which made the agent seek out
ramps - a useful skill in some of the problems.

Figure 4 (top table) shows the results of the baseline, a simple hand-coded agent that
moves towards positive rewards (food) and away from negative rewards, based on summing
pixel colours on the left and right sides of the visual input. As expected, its performance
is 0 on the detour task, which involves navigating around an object and not just moving
towards it. The table also shows the maximum and mean scores of the competitors that
are better than the baseline (in terms of tests passed for all categories). The competition
entries do significantly better here, but do not solve any of the more complex tasks. Figure
4 (left) shows a radar plot of the top four agents. The best agents did not show robust
solutions (solving all variations of a subtask) except in the Introductory category and Maze
variations. On tool use, where even the easiest tasks required some manipulation of objects,
even the best agents scored close to 0. Also of note is category (g) - support and gravity -
where mean score was below the baseline. Behavioural analysis showed that many agents
failed to recognise food that was in the top half of their field of vision, presumably because
primarily trained on configurations with food on the ground and had not learned to associate
food (no matter its location) with reward.

We provide further analysis of the results in the Appendix and more detailed competition
results (including the ability to watch the agents) can be found at animalaiolympics.
com. As the majority of tasks were intended as long-term challenges and unsolved in the
competition, a thorough analysis of agent performance will only be fruitful once further
progress has been made. In the meantime, we are looking at developing the testbed to allow
for better discrimination between existing algorithms and are also performing experiments
to compare directly between animal, agent, and human performance.

6. Related Benchmarks in Al

Progress in DRL in recent years has been fuelled by the use of games and game-inspired
simulated environments (Castelvecchi, 2016; Herndndez-Orallo et al., 2017). Some impor-
tant benchmarks are simply collections of existing games, such as the very popular Arcade
Learning Environment (ALE) (Bellemare et al., 2015; Machado et al., 2018), with dozens
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of (2D) Atari 2600 games. In a similar vein, OpenAl Gym (Brockman et al., 2016) provides
a common interface to a collection of RL tasks including both 2D and 3D games. There
has been a recent trend towards generalisation challenges in Al testing environments, where
some skill transfer between training and testing is necessary. CoinRun (Cobbe et al., 2018)
is a 2D arcade-style game with procedural generation for testing on unseen levels to quantify
overfitting. Another example, Obstacle Tower (Juliani et al., 2019) is a 3D game based on
Montezuma’s revenge, one of the harder (for AI) Atari games, whose stages are generated
in a procedural way to ensure that the agent is tested on unseen room and puzzle layouts.

Other platforms are designed, like ours, to be customisable. For instance, the video
game definition language (VGDL) has led to several General Video Game AI (GVGAI)
competitions, with new games for each edition (Pérez-Liébana et al., 2016). ViZDoom
(Kempka et al., 2016) is a research platform with customisable scenarios based on the
1993 first-person shooting video game Doom that has been used to make advancements in
model-based DRL (Ha and Schmidhuber, 2018). Microsoft’s Malmo (Johnson et al., 2016),
which is based on the block-based world of Minecraft, also makes it possible to create new
tasks, ranging from navigation and survival to collaboration and problem solving. Finally,
DeepMind Lab (Beattie et al., 2016) is an extensible 3D platform with simulated real-world
physics built upon id Software’s Quake III Arena. Each of these is useful for a different
type of tests, but none has everything we needed.

Notable ability-oriented approaches include bsuite, which presents a series of reinforce-
ment learning tasks designed to be easily scalable and to provide a measure for a number
of core capabilities (Osband et al., 2019). These tests are deliberately simple to allow for
a more accurate measure of the ability being tested. A key benchmark is ‘Abstraction and
Reasoning’ (Chollet, 2019), which, like us, aims at common sense reasoning with tasks easy
for humans to solve. This provides a concise and important version of the kinds of tasks we
ultimately want to be solvable in the Animal-Al environment. It differs from this work by
not using an agent situated and acting within an environment.

7. Conclusions

The Animal-Al testbed is a new Al experimentation and evaluation platform that imple-
ments ideas from animal cognition. It is designed to allow for cognitive testing built up from
perception and navigation. We start with simple, yet crucial, tasks that many animals are
able to solve, and also include more complex reasoning tasks. The testbed has highlighted
many open challenges for AI which will take new ideas in order to solve. The 900 tests are
now publicly available which means they lose the ‘hidden’ factor. We are therefore adding a
new set of hidden tasks that contain unseen variations and can be used to measure progress
and avoid some of the inevitable overfitting. We have seen incredible results in Al in recent
years. We hope this momentum can translate to begin to solve the kind of problems that
animals solve on a daily basis when navigating their environment or foraging for food and
that this will be an important milestone on the path towards general intelligence.
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Appendix (Further Results)
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Figure 5: Comparison of average results (except the category “Introductory”) and standard
deviation. Blue is the theoretical maximum given by a Bernoulli distribution.
More general agents appear below the diagonal.

We also performed a straightforward analysis of generality following (Martinez-Plumed
and Hernandez-Orallo, 2018), where a general agent is understood as one that gets similar
(good) scores for a wide range of categories, in front of more specialised agents that may do
very well on a few categories but very poorly on others. In particular, for the same overall
performance, a more general agent should have a lower variance over the category scores.
Accordingly, in figure 5 each grey circle represents a participant, with overall performance
shown on the z-axis and the standard deviation of the category means on the y-axis. A
maximally general agent would show at the bottom, with 0 standard deviation. The blue
solid curve is the standard deviation of a maximally specialised agent (being perfect on
some categories but totally failing on others, which corresponds to the standard deviation
of a Bernoulli distribution) and the green dashed diagonal shows the standard deviation
of a relatively general agent (with the standard deviation of a uniform distribution). Note
that the baseline agent (‘animalAl-challenge’, in red) falls very near to this diagonal. We
also observe that only two agents are on the general side of the diagonal. These are the
best two participants, ‘Trrrrr’ and ‘ironbar’.
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