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Abstract

Reconnaissance blind chess (RBC) is a chess variant in which a player cannot see her
opponent’s pieces but can learn about them through private, explicit sensing actions. The
game presents numerous research challenges, and was the focus of a competition held in con-
junction with of the 2019 Conference on Neural Information Processing Systems (NeurIPS).
The 22 bots that played in the tournament leveraged a diverse set of algorithms, includ-
ing variations of multi-state tracking, piece-wise probability estimation, Gibbs sampling,
bandit algorithms, tree search, counterfactual regret minimization (CFR), deep learning,
and others. None of the algorithms of which we are aware converges to an optimal strat-
egy. Top algorithms generally incorporated sensing strategies that successfully minimized
uncertainty (as measured in the number of possible opponent states). The top two ap-
proaches reduced this raw uncertainty metric less than some others. Successful strategies
sometimes defied conventional wisdom in chess, as evidenced by deviations between win
rate and aggregate move strength as assessed by the leading available chess engine.
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1. Introduction

Games can provide useful environments for advancing machine learning research when they
reflect essential challenges inherent in real-world applications. Even games with simple rules
can require advanced techniques to play effectively, and small changes in game mechanics can
yield distinctly different research challenges. Breakthroughs in classic games like checkers,
chess, and Go depended on planning algorithms such as minimax and Monte Carlo tree
search. Other games, such as poker, involved sophisticated approaches to decision making
under uncertainty. The combination of these two aspects is rare, as few games require long
term planning in the face of uncertainty.

For these reasons, researchers at the Johns Hopkins University Applied Physics Labora-
tory (JHU/APL) and other organizations proposed and hosted a competition as part of the
Conference on Neural Information Processing Systems (NeurIPS) 2019 on reconnaissance
blind chess (RBC) (Newman et al., 2016; Markowitz et al., 2018). RBC is like standard
chess except a player cannot see where her opponent’s pieces are a priori. Rather, she learns
partial information about them through private sensing actions and the results of moves.

This paper, compiled by several of the competition’s organizers and participants, sum-
marizes the outcomes of the competition, describing background, selected approaches,
and results. We offer several observations regarding performance, uncertainty manage-
ment (measured by counting the number of possible opponent states), and aggregate move
strength (as assessed by the leading available chess engine, Stockfish). Since the strongest
algorithms used a variety of heuristics and no employed approach of which we are aware
converges to an optimal solution, RBC remains a promising game for additional research.

2. The Game

RBC is a modification of chess. The essential differences are: A player cannot see where
her opponent’s pieces are a priori. Prior to each of her own moves, each player gets a sense
action where she selects a 3 × 3 square of the chess board, unrevealed to the opponent,
and is provided perfect information about the square (pieces and locations).1 A player also
learns when one of her pieces is captured or makes a capture, but she is not informed of the
type of the corresponding opponent piece. The game has no notion of check. One wins by
capturing the opponent’s king or when the opponent runs out of time.

We refer the reader to https://rbc.jhuapl.edu for the complete list of rules and to
get a hands-on feel by playing.

3. Research Challenges and Related Work

We outline research challenges of RBC briefly. A separate draft paper characterizes the
game’s complexity and challenges in more detail (Markowitz et al., 2018).

Approximating optimal actions in games of imperfect information is very different than
doing so in games of perfect information. For example, in general, an optimal strategy in an
imperfect information game is mixed (probabilistic) rather than pure (deterministic). In a

1. Many variants of RBC are possible including those with sensors of different sizes, limited sensing re-
sources, and even noisy sensors.
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game of imperfect information, one must consider the entire game tree (including states that
are unreachable from the current state of the game) when approximating an optimal action.
Approaches like Monte Carlo tree search (MCTS) (Browne et al., 2012), which was central to
AlphaZero (Silver et al., 2017), for example, are not directly applicable. A variant of MCTS
for situations with imperfect information, information set MCTS (ISMCTS) (Cowling et al.,
2012) has no optimality guarantees.

State of the art approaches to approximating optimal solutions in imperfect informa-
tion games like counterfactual regret minimization (CFR) (Zinkevich et al., 2008) are not
practical for games as large as RBC.

For poker, researchers significantly reduced the size of the game by creating abstrac-
tions (Brown and Sandholm, 2017a; Sandholm, 2010). For example, one could consider all
king-high flushes to be the same state and consider a bet of $1,004 to be equivalent to a bet
of $1,000. However, no similar abstractions that would not significantly reduce the fidelity
of the original game are are obvious for RBC.

Techniques have also been developed that enable sound decomposition of imperfect
information games into subgames (Burch et al., 2014; Brown and Sandholm, 2017b; Sustr
et al., 2018), which can drastically reduce the size of the game about which one must reason.
These were also central to famous superhuman poker systems (Brown and Sandholm, 2017a;
Moravč́ık et al., 2017). However, these techniques operate on the public game tree, i.e.,
where each state is indistinguishable given knowledge shared by all players. In RBC, a
player does not know where her opponent has sensed and thus has very little knowledge
about what her opponent knows. As a result, there is little notion of a public game and a
useful means of decomposing RBC is not obvious.

Other games share some properties of RBC. Kriegspiel is a blind chess variant (Favini,
2010; Ciancarini and Favini, 2007, 2010; Russell and Wolfe, 2005) where a player mostly
learns about her opponent’s positions through umpire feedback on move legality, captures,
and check. The ability to sense portions of the board in RBC gives players more ability to
manage uncertainty, which may make the game more realistic for many scenarios. Phantom
Go (Cazenave, 2006; Wang et al., 2018) is the Go equivalent of Kriegspiel for chess.

Dark chess is another blind chess variant where a player can see the squares to which
they can legally move. It may be among the most similar games to RBC, from a feel
and research-challenge perspective. Like Kriegspiel, it omits explicit sensing, potentially
resulting in less ability to manage one’s uncertainty and less uncertainty about what one’s
opponent knows, two key elements of RBC.

Banqi uses a different board and pieces than chess although it is sometimes called dark
chess, half chess, or blind chess. Banqi can be modeled as a game of perfect information
with a chance element since no player knows more than another at any point in the game.

4. Competition Structure

The NeurIPS RBC competition was open to anyone in the world who wanted to build a
bot.2 The competition consisted of a tournament with 12 rounds. Each round was a round-
robin where each bot played every other bot twice; once as white and once as black. In

2. Some potential competitors, such as those under the age of 18 or employees of Johns Hopkins University,
were not legally eligible for the cash prize.
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total, there were 5,544 games. Ranking was determined simply by the number of wins. 22
bots participated in total; 15 competitors and 7 baseline bots from JHU/APL.

Each player had a 15 minute time limit to make all their moves in a given game. The
organizers offered a (mostly symbolic) 1,000 USD cash prize to the first place winner.

5. Overview of Approaches

The algorithms used for RBC bots were diverse. We briefly outline the core approaches for
several select bots in Table 1. Although a few of these bots did not perform well due to
technical reasons, we include their descriptions because the approaches may prove valuable
in the future. Additionally, their performance for this competition illustrates some of the
practical challenges of fully executing such approaches in a relatively short time frame.

Table 1: Overview of algorithms used by select bots.

[Rank] Bot Brief Description

[18] penumbra Underperformed in the tournament due to hardware issues. Tracks all possible opponent
board states. Samples opponent states with Gibbs sampling and chooses move and sense
actions based on fixed-length playouts. Explores actions according to an upper confidence
bound (UCB) bandit algorithm. Evaluates states and chooses playout actions with a ten
block residual network which was trained on historical RBC games.

[15] random
(baseline)

Chooses moves and senses uniformly at random.

[12] trout
(baseline)

Maintains a single board-state estimate that is formed directly from the last observation
of each square. Chooses the move recommended by Stockfish for its board estimate. If
a piece was just captured or it thinks it will capture a piece next turn, it senses over the
capture square. Otherwise it chooses a random location to sense that does not contain
any of its own pieces.

[11] Bonum Underperformed in the tournament due to connection problems and Stockfish crashes.
Uses a rule-based algorithm to maintain a list of possible positions for each opponent
piece, inferring unknown probabilities from opponent-move-strength according to Stock-
fish. Uses a set of heuristics to choose sensing locations, attempting to minimize spread
of probable piece positions and gain strategic knowledge. Selects the move recommended
by Stockfish-combined-with-heuristics for the most probable piece configuration.

[6] Marmot
(baseline)

Tracks all possible opponent board states for the current time and past timesteps based
on current observations. Uses a modified Monte Carlo counterfactual regret minimization
(MC-CFR) algorithm for sensing and moving, leveraging online outcome sampling (Lisý
et al., 2015) to importance sample histories that are consistent with the current history
of the game. It uses a heuristic evaluation function based on determinized board position
and a tracked uncertainty measurement to evaluate the intermediate states reached from
action sequences sampled using MC-CFR as a surrogate for a rollout algorithm. Employs
a novel algorithm to take samples starting from a finite time horizon on the past, because
the game tree is too large for complete MC-CFR.

[5] wbernar5 Tracks up to 500 potential states chosen uniformly by advancing the prior turn’s tracked
states. Senses to maximize the number of states eliminated in the worst case. Chooses
the move with the best worst-Stockfish score across all tracked boards. If all tracked
states are eliminated as impossible, creates a new set of potential states by re-simulating
from a checkpoint.
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[Rank] Bot Brief Description
[4] genetic Tracks all possible opponent board states. Assumes the opponent can choose any

observation-consistent placement of its pieces at each decision point. Builds the ex-
tensive form game tree from the current possible states up to four levels (i.e. opponent
chooses initial placement, bot move, opponent sense, opponent move). (Usually 3 are
used for performance.) Evaluates leaves using a custom chess engine, plus a term for each
player’s uncertainty (how many board states are possible from the player’s viewpoint).
Approximately solves the partial game tree using CFR (Zinkevich et al., 2008). Chooses
actions using CFR results with the addition of heuristics. (E.g., moves that put the
opponent in check are artificially encouraged.)

[3] Oracle
(baseline)

Tracks all possible opponent board states. Nominally chooses the sensing action that
minimizes the expected number of possible board states assuming each has equal proba-
bility, with some heuristics to choose an alternative check-detecting sense if Oracle may
be in check. Chooses the move that is recommended by Stockfish most across all the
possible board states.

[2] LaSalle Bot Maintains 32 probability distributions, one for the location of each piece. Senses the
square with maximum “uncertainty score”, which is the square where a piece has the
probability of being in that square that is closest to 50%, but then adjusted by multiple
heuristics (e.g. ignore pieces that cannot attack, potential check is more important than
other squares, pawns are less important than the queen, etc.). Uses Stockfish to evaluate
moves on multiple generated boards and averages the results to choose a move. Described
in more detail in a separate paper (Highley et al., 2020).

[1] StrangeFish Tracks all possible board states. Evaluates players’ relative advantage on any board state
using Stockfish plus custom heuristics for RBC-unique game states. Uses the calculated
advantage scores (1) to estimate the probability of a hypothetical board being the true
state, (2) as a proxy for game rollouts when considering move choices, and (3) to assess
sensing importance by score disparity in move choices across the remaining hypothetical
board states. Chooses moves to maximize the change in position advantage averaged
across a random sample of possible board states. Chooses sense locations to maximize
expected influence on the following move decision.

6. Results and Observations

The competition results are summarized by the cross table in Figure 1. StrangeFish was
a clear winner with 20 more total wins than the second-place bot and a winning record
against every bot individually.

A Naive Separator: We observe two tiers of bot performance, with the baseline bot
trout separating the two tiers. Trout constitutes what might be considered a natural, first-
cut naive approach to a bot. It maintains a single, simple estimate of the board directly
derived from the most recent observation of each square and using moves recommended
by the strongest freely-available chess engine, Stockfish. The fact that trout (whose source
code is available with our development kit and is displayed on our documentation website)
formed a rough separator with many bots performing below it illustrates the difficulty of
improving upon naive approaches.

Managing Uncertainty: To provide some insight into the relationship between uncer-
tainty and bot success, we examined all the games from the NeurIPS competition and
computed the number of opponent states that were possible from each bot’s perspective
prior to making each move (i.e., after receiving the results of each sense action). This pro-
vides one intuitive measure of uncertainty, but is not a complete measure. We imposed a
maximum of 50,000 possible states and stopped tracking once the number of states exceeded
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Figure 1: Crosstable of wins each bot had against each other bot in the competition (24
total games per bot pair).

50,000 because the computation starts to become intractable at that point. After the num-
ber of states exceeded 50,000, we assumed it remained above 50,000 for the remainder of
the game. We computed the median number of possible opponent states across all turns
along with a bot rank in terms of this median value and present the results in Table 2.

Table 2: The median number of possible opponent states from each bot’s perspective prior
to making a move through the NeurIPS competition, along with a ranking of that median
compared to the bot’s ranking in the tournament.

Median # States Competition
Bot # States Rank Rank ∆ Rank

A Bot 12 1 7 +6

Oracle (baseline) 13 2 3 +1

MoreDeterminedBot (baseline) 13 3 19 +16

wbernar5 18 4 5 +1

LaSalle Bot 19 5 2 -3

StrangeFish 19 6 1 -5

Marmot (baseline) 24 7 6 -1

RonWeasley 25 8 17 +9

penumbra 48 9 18 +9

genetic 49 10 4 -6

Bonum 81 11 11 0

don quixote 358 12 10 -2

MBot 574 13 9 -4

Zugzwang (baseline) 14,435 14 8 -6

Chessnut 50k+ 15 13 -2

trout (baseline) 50k+ 16 12 -4

TOEFL 50k+ 17 20 +3
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Figure 2: The shortest games in the NeurIPS competition.

Median # States Competition
Bot # States Rank Rank ∆ Rank
DotModus Chris 50k+ 18 21 +3

attacker (baseline) 50k+ 19 16 -3

kiejthetetlen pazmany 50k+ 20 14 -6

random (baseline) 50k+ 21 15 -6

One can see that bot rank tends to improve with the ability to reduce the number of
possible opponent states. At the same time, these data also indicate that one’s sensing
strategy must go beyond minimizing the number of possible opponent states. StrangeFish,
for example, was ranked number 6 by this metric. It had a median number of states 58%
higher than A bot’s and 46% higher than Oracle’s but outperformed both of them.

Move Strength in Chess: Chess engines like Stockfish provide a quick way to evaluate
move selection. At the same time, “classic” chess moves are not necessarily good RBC
moves. Figure 2 illustrates an example of the shortest type of game that occurred in the
competition. It also illustrates the discrepancy between move strength in classic chess and
in RBC. Advancing the queen pawn, as done by black, is typically considered a reasonable
early move in classic chess. Advancing the bishop, as done by white, is considered a weak
move in classic chess because of the simple defense by black.

We examined move strength in competition games as measured by Stockfish compared
to competition success. For the 5,544 games of the tournament, we queried Stockfish with
the full state of the player’s pieces prior to each move. We identified how each bot’s moves
ranked in Stockfish’s recommendations. We refer to that rank of each move as the move
score. Table 3 provides the mean move score for each bot, and, like Table 2, ranks each
player according to that mean score and also provides the difference in that rank compared
to the bot’s rank in the competition.

Table 3: The mean move score of each bot’s moves through the NeurIPS competition as the
moves ranked according to the Stockfish chess engine, along with a ranking of that mean
compared to the bot’s ranking in the tournament.

Mean Move Move Competition
Bot Score Rank Rank ∆ Rank

LaSalle Bot 4.47 1 2 +1
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Mean Move Move Competition
Bot Score Rank Rank ∆ Rank
Oracle (baseline) 4.59 2 3 +1

StrangeFish 4.67 3 1 -2

A Bot 4.82 4 7 +3

don quixote 6.23 5 10 +5

wbernar5 6.25 6 5 -1

MBot 6.34 7 9 +2

trout (baseline) 6.35 8 12 -4

RonWeasley 7.43 9 17 +8

Bonum 7.68 10 11 +1

genetic 7.74 11 4 -7

Zugzwang (baseline) 8.15 12 8 -4

kiejthetetlen pazmany 8.36 13 14 +1

Marmot (baseline) 9.82 14 6 -8

DotModus Chris 11.58 15 21 +6

penumbra 11.97 16 18 +2

MoreDeterminedBot (baseline) 12.56 17 19 +2

attacker (baseline) 13.85 18 16 -2

random (baseline) 14.98 19 15 -4

Chessnut 15.15 20 13 -7

TOEFL 16.29 21 20 -1

We see a strong correlation between move rank and competition rank. However, there
are significant outliers. The most notable outliers who outperformed their competition rank
in the tournament are Marmot, genetic, and Chessnut. Marmot and genetic used modified
counterfactual regret minimization approaches, which are intended to approximate optimal
probabilities of actions accounting for the opponent’s probabilistic knowledge. These out-
liers suggest that these bots’ reasoning over probability may have provided some strength
that was lost by a less-thorough analysis of potential long-term move impacts.

Nature of the Approaches: Another observation is that the strongest performing bots
from this competition used effective heuristics to minimize some measurement of uncer-
tainty. They also heavily leveraged chess engines, which assumes a determinization of the
game. Determinization is known the have significant theoretic problems (Koller and Pfeffer,
1994). The fact that the strongest algorithms were based on these heuristics with known
problems indicates that much research lies ahead with respect to RBC.

7. Conclusions

RBC provides an accessible testbed for AI research that captures two essential aspects of
real-world problems - uncertainty and sensing. The RBC NeurIPS competition provided
new insights into the strengths and limitations of many popular AI techniques in addressing
challenges in decision-making under uncertainty.

The many open research challenges encourage us to continue to promote research in
RBC through various forums.3 We also hope to facilitate study of variants of the game that
could draw focus to different decision making aspects and algorithmic strengths. These

3. At the time of writing, we have a dynamic online leaderboard with a cash prize offered to the top-ranked
bots at the end of August 2020.
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include variants where the pieces do not start in a known state, where there is noise in the
received information (Newman et al., 2016), and where a player is notified if an opponent
intentionally or unintentionally makes a pass move. It is our hope that continued research
into RBC and other imperfect information games will continue to advance the state of the
art in this critical research area.4
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