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Abstract

A system is presented that visualizes and sonifies the inner workings of a sound processing
neural network in real-time. The models that are employed have been trained on music
datasets in a self-supervised way using contrastive predictive coding. An optimization
procedure generates sounds that activate certain regions in the network. That way it can
be rendered audible how music sounds to this artificial ear. In addition, the activations of
the neurons at each point in time are visualized. For this, a force graph layout technique
is used to create a vivid and dynamic representation of the neural network in action.
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1. Introduction

Although neural networks are often described as black boxes, there exist methods to make
us see and hear what is going on inside a neural network. A well-known example of this
is the DeepDream technique (Mordvintsev et al., 2015) that generates bizarre psychedelic
but strangely familiar pictures. We follow a related approach to make audible the innards
of sound processing neural nets.

The first thing we need is a model we want to examine. We train it on musical data
using a self-supervised training algorithm, namely mutual information maximazation using
contrastive predictive coding (Hjelm et al., 2018; Oord et al., 2018).

Then the basic idea is the following: We start with an arbitrary sound clip (e.g. a drum
loop). This clip will be modified by an optimization procedure in a way that stimulates a
certain region in the neural net. The changed clip can then be used as a basis for a new
optimization, potentially with a different target region. This way you obtain sounds that
are generated by the neural network in a freely associative way.

One of the most important properties of neural networks is that they process information
on different, progressing levels of abstraction (LeCun et al., 2015). This has been shown
for image processing networks using algorithmic methods (Kozma et al., 2018), as well as
feature visualizations (Olah et al., 2017). If we try to transfer the concept of hierarchical
abstractions to the musical domain, it is reasonable to expect some regions of the net being
associated with, for example, short and simple sounds or noises, and other regions with
more complex musical phenomena, such as rhythm or harmony. For what exactly a neural
networks listens depends of course on the data it was trained on, as well as on the task it
is specialized to accomplish. This work allows discovering both visually and auditory the
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features a particular model relies on. For that, a is setup developed that allows — not unlike
a DJ mixing console — the generation, visualization and control of sound in real-time.

The contributions presented here are the following:

• The application and evaluation of contrastive predictive coding (Oord et al., 2018) for
self-supervised representation learning on spectral representations of music. For this,
fully convolutional architectures for both encoder and autoregressive model are used.

• A method of finding a clear visual representation of the neural activity in a deep learn-
ing model using the multilevel force graph layout technique and visualizing activations
of all neurons in real-time.

• Transfer of the principles of feature visualization (Erhan et al., 2009; Mordvintsev
et al., 2015; Olah et al., 2017) to the sound domain, enabling the sonification of
features a model relies on.

• Development of a system that allows the real-time control and exploration of the sonic
feature space.

Audio and video examples, as well as further resources, are available online1.

2. Model

2.1. Contrastive Predictive Coding

In the centre of this project stands an “artificial ear”, meaning a sound processing neural
network. It has been shown that analogies exist between convolutional neural networks
(ConvNets) and the human auditory cortex (Kell et al., 2018). Of course, the human
auditory system is not a classification network, like the one used in Kell et al. (2018), we
usually do not learn with the help of explicit labels. The question of the actual learning
mechanisms in the brain is highly contested, but a promising candidate, especially for
perceptual learning, might be predictive coding (Rao and Ballard, 1999; Friston, 2005).
Here future neural responses to stimuli are predicted and then compared to the actually
occurred responses. The learning entails reducing the discrepancy between prediction and
reality.

One method of using the idea of predictive coding for self-supervised learning in artificial
neural networks is presented in Oord et al. (2018) and Ozair et al. (2019). For this so-called
contrastive predictive coding, you need two models: The encoder model builds a compressed
encoding zt of the signal for each time step t. The autoregressive model summarizes multiple
sequential encodings into a vector c. The encoding k time steps in the future, zk, is predicted
by a different learnt linear transformation Mk of c for each time step. The time steps k
are counted from the latest point t for which the autoregressive model had access to the
encoding zt. The loss for each mini-batch is calculated as follows:

LCPC = −
∑
n,k

log
exp(zTn,kMkcn)∑
m exp(zTm,kMkcn)

1. https://vincentherrmann.github.io/blog/immersions/
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Both n and m are indices of the mini-batch dimension. The numerator is a scalar
score that measures how well the prediction matches the correct encoding. It is divided
by the sum of the scores that measure the prediction against all encodings of the current
mini-batch. Minimizing LCPC maximizes the mutual information between c and future
encodings zk. This means that there is little incentive to encode high-frequency noise since
this information is not shared over longer time scales. Instead, the model can learn to focus
on “slow” features that are useful for differentiating those signals.

Using contrastive predictive coding frees us to choose our training data without many
constraints. No expensively labelled datasets are required, the model learns to make sense
of any inputs it is given.
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Figure 1: Encoder and autoregressive model architecture.

2.2. Architecture

The encoder network receives as input a scaleogram representation of an audio clip. A
scaleogram is the result of a constant-Q or a wavelet transformation (Kjartansson, 1979)
of the audio signal and comes quite close to the representation that the cochlea passes on
to the brain (Kell et al., 2018). For the purpose of input optimization, which we will cover
below, the transformation from a raw audio signal to the scaleogram has to be differen-
tiable. Fortunately, it can simply be implemented as a 1D convolutional layer with fixed
weights in any standard deep learning framework. For each frequency band, two channels
of the kernels are assigned to represent the real and imaginary part of the corresponding
finite impulse response filter. The stride parameter is equivalent to the hop length of the
transformation. The output of this layer can be reshaped to have the dimensions time,
frequency and real/imaginary. This representation is then converted into polar coordinates.
The amplitude is squared and logarithmically scaled. This results in the two-dimensional
scaleogram representation which is the input to the encoder network. We also use the
phase part as the second channel for the input, although this did not noticeably improve
the performance.

As encoder serves a 2D-ConvNet, similar to the kind common in computer vision and
image processing. It is based on the ResNet architecture (He et al., 2016), with a few
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modifications: Since the model is trained on a sequence prediction task, we use only causal
convolutions (Oord et al., 2016; Bai et al., 2018). In practice, this simply means that padding
is done only at the start and not at the end of the time dimension for both convolution
and pooling layers. Also, in addition to the usual quadratic kernels, we apply kernels that
only span the frequency dimension and serve as overtone and harmony detectors. Details
in Table 1(a).

At the output of the encoder, only the dimensions time and channel are left. They
represent time step k and features of zk. In Oord et al. (2018), a recurrent neural network
is used as the autoregressive model. We use a causal 1D-ConvNet instead, similarly to
the encoder network employing ReLU nonlinearities, residual connections, max pooling and
batch normalization — see Table 1(b).

Table 1: Number of channels, kernel sizes and pooling of the convolutions in the encoder
and the autoregressive model.

(a) Encoder
Block Channels Conv 1 Conv 2

0 8 3x3 pool 2 1x25
1 16 1x3 1x3
2 32 3x3 1x15
3 64 1x3 1x3
4 128 3x3 pool 2 1x25
5 256 1x3 1x3
6 512 3x3 1x5
7 512 1x3 1x3

(b) Autoregressive Model
Block Channels Conv

0 512 4
1 512 4
2 512 1 pool 2
3 512 4
4 256 4
5 256 1 pool 2
6 256 4
7 256 1
8 256 4

2.3. Experiments

For the experiments, we use as input audio clips with a length of four seconds at a sample
rate of 44.1 kHz. The scaleogram has a hop length of 1024 and 216 frequency bins (starting
at 40 Hz with 24 bins per octave), resulting in the input size 172 x 216. The encoder model
has two pooling layers with stride 2, which leads the time steps of the encodings zt to have
a length of ca. 93 ms. The autoregressive model integrates 42 consecutive encodings into
one representation c. From c, 16 future encodings zk are predicted, skipping the first 4
immediate next time steps because they pose no challenge.

The same model architecture was trained on two different datasets: one consisting of
about 40 hours of house music mixes and the other one being the MAESTRO dataset
(Hawthorne et al., 2018), containing 200 hours of classical piano music.

It is not necessarily evident just from a low value of LCPC whether the model has
indeed acquired any form of useful musical understanding. To evaluate this, the learned
representations are used as features for two test tasks. Unfortunately, there are no suitable
standard tests that are common in the raw audio and music domain, so the tasks used here

195



Visualizing and sonifying how an artificial ear hears music

should be seen more as a sanity check than as a way of completely and thoroughly assessing
the learning algorithm’s capabilities.

The first task is to assign audio clips to the house track it was extracted from (with a
total of 15 possible tracks). For the second task the composer of the given audio clip has
to be classified (the samples were taken from the MAESTRO validation set).

The test task audio data is fed into the trained models and one resulting feature c is
saved for each short audio clip. Due to the receptive field of the encoder, one c vector
represents ca. 1.8 seconds of sound, so there is no overlap between the items. These feature
vectors are then provided with the corresponding labels (the track they came from or the
composer) and partitioned into a training and an evaluation set. A linear classifier is fitted
with the training set.

As a very simple baseline, the whole architecture was trained from scratch in a purely
supervised setting for both of the tasks. For this, only the test task training data was used.

Also, the models were trained additionally with a slight modification of the CPC algo-
rithm described in 2.1: Instead of contrasting the prediction scores with the other samples
from the mini-batch, they are also contrasted with different time steps (score across time
steps, SAT):

LCPC SAT = −
∑
n,k

log
exp(zTn,kMkcn)∑
m,l exp(zTm,lMlcn)

Results can be found in Table 2. The performance of the CPC trained models on the
test tasks is encouraging, especially when compared to the supervised models. Maybe not
surprisingly, the latter show poor performance as there was not enough training data to
learn meaningful features for the tasks. The use of SAT loss improves performance only
for the model trained on the house dataset. One possible explanation might be that SAT
training makes better use of limited data, but can be harmful if enough data is available. It
could also depend on the specific nature of the data. To determine this, further investigation
is needed.

Model house loss house acc maestro loss maestro acc

CPC house 0.3914 90.44% 2.212 25.36%
CPC house SAT 0.3583 91.81% 2.087 30.06%
CPC maestro 0.5131 86.83% 0.659 77.49%
CPC maestro SAT 0.8789 76.62% 0.700 75.90%

supervised house 1.563 48.25%
supervised maestro 2.744 19.70%

Table 2: Results of the test tasks. Evaluation loss and accuracy are given for the house track
classification and the maestro composer classification using the representation c
as features for a linear classifier.
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3. Visualization

To illustrate what is going on inside the model at each moment, we visualize the activation
of the artificial neurons (i.e. the outputs of the nonlinearities). The place of each neuron
in our network can be described by four coordinates: layer, frequency, time and channel.
We will treat the time dimension different from the other ones and exclude it for now. The
neurons can be seen as the vertices of a graph. They are connected in different patterns by
edges, depending on the type of layer (e.g. fully connected or convolutional) the neurons
belong to. There exist methods to lay out graphs into suitable shapes. For our purposes,
the force layout technique (Walshaw, 2006; Hu, 2005) is the best fit. Here, the graph is
modelled as a physical system with different forces acting on the vertices. The system,
starting from random initial conditions, can be simulated using numerical methods, e.g.
Verlet integration (Verlet, 1967).

In our setting, there are three types of forces acting on each vertex. The first force pulls
together vertices that are directly connected. The strength is proportional to the distance
between vertices and can be scaled with the weight of the connecting edge. Formally, the
attractive force a, caused by vertex j and acting on vertex i, with their respective positions
p, and connected by an edge with weight wij , is:

aij = wij (pj − pi)

If the vertices i and j are not connected, wij is 0. In practice, the attractive forces are
calculated only for connected vertices.

The second force works as if each vertex had a certain electric charge which would make
vertices repel each other. The force r caused by vertex j and acting on vertex i, with their
respective charges q, is:

rij = qiqj
pi − pj

‖pi − pj‖k+1

For a physically accurate simulation of an electrostatic force, the exponent k would have
to be 2. But seen as an adjustable parameter, it gives us some control over the appearance
of the layout: It controls which of the forces, repulsive and attractive, dominates at a given
distance between vertices. For high values of k, the repulsive force is strong over short and
weak over long distances. This leads to the vertices being more evenly spread out. On the
other hand, low values of k result in dense clusters of vertices (see Figure 2).

The optional centring force, scaled by a global factor l, pushes vertices towards the
origin:

ci = −lpi

With that, the combined f force acting on vertex i, can be defined as:

fi = ci +
∑
j 6=i

rij + aij

Since the number of individual forces that have to be calculated scales quadratically
with the number of vertices, for large networks, it is necessary to approximate the forces
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Figure 2: Layout of the network with three different attraction exponent parameters k.

rij in a computationally efficient way using the Barnes-Hut-tree method (Barnes and Hut,
1986).

To avoid local energy minima, it is helpful to start the simulation with a low-resolution
graph and increasing the resolution in steps until the full graph reached. For our neural
networks, the construction of lower resolution levels can be done by iteratively consolidating
vertices that are neighbours in the channel or the frequency dimension. The expansion is
done in the inverse order. This can be seen in Figure 3. Also, it can be helpful to slowly
increase the centring force factor with each new resolution level.

There are many possibilities on how to determine the weights of the edges and the charges
of the vertices. In this work, uniform weights are used for the edges and the charge of a vertex
is set to be the variance of its corresponding neuron’s activation across the validation set. For
each point in the time dimension, which we excluded above, we get different charge values
for the vertices, which results also in a slightly different layout. Calculating several of these
snapshot layouts allows us to construct an animated version of the network. Once the layout
is worked out the current state of the net can be depicted by lighting up strongly activated
neurons and letting others stay dark. The code for the GPU accelerated layout calculation
(implemented in PyTorch) and the OpenGL-based visualization is publicly available2.

Figure 3: Force layout simulation at four progressive levels of resolution.

2. https://github.com/vincentherrmann/pytorch-graph-visualization
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4. Input Optimization

Today’s neural networks usually are completely differentiable. This means we can generate
inputs for a trained model that maximize the activations of certain neurons in the network
using iterative gradient-based optimization (Erhan et al., 2009; Mordvintsev et al., 2015;
Olah et al., 2017). These inputs can then be directly experienced by humans and show which
particular stimuli the selected neurons respond to. In our case, this procedure sonifies the
features that activate a selected region in the network.

Neural networks, especially if they did not receive adversarial training Engstrom et al.
(2019), are susceptible to small changes in the input. These can lead to local optima that are
not perceptible by humans but still have the required properties. To prevent this we apply
several types of regularization: temporal shifting of the input, small pitch changes, masking
of random regions in the scaleogram, noisy gradients and de-noising of the input. All these
methods make the input optimization more difficult in certain ways and thus enforce more
robust and distinct results. In practice, there is no clear way to evaluate the perceptual
quality of the generated inputs. Hence, finding the specific settings of the optimization
procedure that work best for a certain model requires a certain amount of trial and error.

From figures 4 and 5, it can be seen that focus on the lower layers of the network does
indeed result in more fine-grained and localized inputs. On the higher layers, however, it
produces more organized rhythmic and harmonic patterns.

(a) (b)

Figure 4: Input optimization for the first convolution of encoder block 1. Selected neurons
are highlighted in (a) and the scaleogram of the result is shown in (b).

5. Live Performance

Like the inputs, the generated audio clips have a duration of about four seconds. With
that, they lend themselves for a loop-based live performance. One loop then corresponds
for example to two 4/4 measures at 120 bpm. The optimization procedure described above
constantly generates new audio clips. As soon as one clip has finished playing, the latest
newly calculated clip is started. An acoustic morphing arises as a result that is also reflected
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(a) (b)

Figure 5: Input optimization for block 6 in the autoregressive model.

in the visualization (each pattern of activations yields its own distinct sounds). As origin
for the optimization silence and noise can be used as well as a pre-built clip that for example
dictates a certain rhythm.

All aspects of the procedure can be adjusted in real-time. For intuitive control, a
GUI was developed and the most important parameters were made controllable by a MIDI
controller. The setup described here is very flexible, other networks trained on different
data or with different architectures can easily be employed.

6. Conclusion

We showed that contrastive predictive coding is a promising self-supervised training algo-
rithm for learning representations of musical data and chose it as our method to construct
an “artificial ear”. Further work is needed to fully examine its potential as well as its limits.

The presented visualization method, besides being aesthetically interesting, allows us to
explore, evaluate and understand some aspects of a working neural network more intuitively
and directly. It can be adapted to most kinds of network architectures, although the number
of connections in very large models might make the application difficult.

The input optimization technique can successfully generate features in the audio domain
that activate certain neurons of a network. However, these results are arguably not quite as
pronounced and striking as the analogous results for images. This may have to do the fact
that neural network architectures, as well as training methods, are generally less matured
in the field of musical audio processing. Nevertheless, fascinating sounds can be obtained
that hint at the depth of those systems that is possible to explore.
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