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Abstract

MineRL 2019 competition challenged participants to train sample-efficient agents to play
Minecraft, by using a dataset of human gameplay and a limit number of steps the envi-
ronment. We approached this task with behavioural cloning by predicting what actions
human players would take, and reached fifth place in the final ranking. Despite being a
simple algorithm, we observed the performance of such an approach can vary significantly,
based on when the training is stopped. In this paper, we detail our submission to the
competition, run further experiments to study how performance varied over training and
study how different engineering decisions affected these results.
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1. Introduction

Reinforcement learning (RL) is notorious for being sample inefficient and for providing dif-
ferent results on different training runs Henderson et al. (2018), but it can be supported with
imitation learning, like behavioural cloning (BC) Pomerleau (1989); Bojarski et al. (2016);
Vinyals et al. (2019); de Haan et al. (2019), to kickstart the learning process and reduce
number of training samples needed. To support such research, MineRL 2019 competition
Guss et al. (2019a) challenged participants to train agents to play Minecraft with limited
amount of training time in the environment, along with a dataset of human gameplay to
learn from Guss et al. (2019b).

Minecraft is an open-world, 3D vision-based video game where players progress by col-
lecting resources and crafting tools, which enables harvesting of further resources. The
world is procedurally generated at the start of each game, creating a new experience for
each game. This inherent randomness, vision-based gameplay, hierarchical progression and
open-ended nature makes Minecraft a good test-bench for new RL and imitation learning
methods Johnson et al. (2016); Guss et al. (2019b). MineRL competition challenges players
to obtain diamond in the game, a feat that takes an experienced human player 5 to 15
minutes to complete Guss et al. (2019b). On top of allowing only a limited training budget,
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submission systems were trained on the evaluation server, encouraging the use of robust
methods that provide the same results from different training runs.

Motivated by these limitations and recent results in human-level BC in Starcraft II
Vinyals et al. (2019), we began our work on the challenge by only using behavioural cloning,
i.e. by predicting what actions human players would take. We believed BC would be a
robust alternative to RL methods, and also perform well enough to be competitive. But we
learned that BC requires the same level of engineering for stability and performance, despite
being a simple method. While this is not a novel observation de Haan et al. (2019), BC
results are often represented as single, averaged numbers without further detail on variance,
painting a picture of a stable learning method Hester et al. (2018); Vinyals et al. (2019);
Bojarski et al. (2016); Codevilla et al. (2018).

In this paper, we summarize our submission to the MineRL 2019 competition, based
on BC, and study the issues we ran into during the competition. Specifically, we discuss
the variance in agent’s performance during training period, the effect of uniform sampling
of the training dataset, the use of data augmentation to improve the performance and the
possibility of agent biasing towards over-represented actions. Our main contribution is
highlighting how behavioural cloning is not as robust as expected, and how we should also
report variance in its results, just like in RL research Henderson et al. (2018).

2. MineRL competition

Contrary to previous Minecraft-related competitions, like the MARLÖ competition Perez-
Liebana et al. (2018), MineRL competition’s task requires player to complete a hierarchical
crafting-tree by harvesting resources and crafting items Guss et al. (2019a). Agents were
rewarded with exponentially increasing rewards as they progressed in this crafting tree, and
sum of rewards per game were used as an evaluation metric, averaged over 100 games. In
the first round (“Round 1”), participants had to submit their code along with a trained
agent to the evaluation server where it was evaluated. In the second round (“Round 2”),
ten finalists only submitted their program code and the agent was trained on the evaluation
server.

The provided MineRL package consists of two distinct parts: A dataset of human plays
in Minecraft Guss et al. (2019b), and a corresponding RL learning environment built on
top of Malmo Johnson et al. (2016). Learning agents are provided with similar observations
and actions a human player would have: a vision observation from the point-of-view of the
character, information on the contents of current inventory and actions as keyboard-like
on-off decisions, along with the horizontal and vertical turning of the camera. After each
action, the game progresses by 1/20 seconds. On top of the standard movement controls
(e.g. forward, backward, move camera, jump), MineRL exposes convenience functions for
e.g. crafting with a single-step action, while a human player has to perform a complex GUI
to craft the desired item. The full action space of MineRL-ObtainDiamond-v0 task consists
of 13 discrete variables with different number of options, as well as 2 continuous actions for
moving camera on both axes. The dataset provides all observations and actions in these
same formats.
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Figure 1: Our submission to the MineRL competition, for playing Minecraft with be-
havioural cloning. Action heads are treated independent from each other.

3. Playing Minecraft with Behavioural Cloning

Upon seeing the evaluation protocol, we realized RL training could be too unreliable Hen-
derson et al. (2018). Behavioural cloning, on the other hand, is easy to implement and has
been applied to practical problems with success Vinyals et al. (2019); Bojarski et al. (2016).
With all its successes, it is also known to suffer from distributional shift and causal confusion
de Haan et al. (2019), where model fails to learn the true causal-effect relationship between
observations and actions. Former of these are commonly cited as the main limitation of
behavioural cloning, as it breaks the i.i.d. assumption of supervised learning by subjecting
the agent to different distributions of observations during training and testing Ross et al.
(2011). To combat this, methods like DAgger Ross et al. (2011) gradually gather expert
demonstrations by playing the environment. Alas, such methods are infeasible without
an access to an expert, and competition rules prohibited using additional data. Another
approach would be to use batch reinforcement learning Fujimoto et al. (2019), where RL
agents are trained with a fixed dataset, but the performance of such methods is unclear (see
benchmarks of Fujimoto et al. (2019) versus the results in original articles per method).

With these observations in mind, we started our work on the competition submission
using BC, with the goal to obtain similar human-like performance as in Starcraft II. Our
final submission using only BC reached rank #5/10 in the final round (from a total of 40
participants in the whole competition). Overview of our system is illustrated in the Figure
1. The round 1 submission did not include a replay buffer, the effect of which we discuss
in Section 4.1. Code to this submission is available at https://github.com/Miffyli/

minecraft-bc.

3.1. Observations

Observations consist of two parts: A visual observation and “direct features”. Visual ob-
servation, corresponding to what a human player would see on the screen, is a RGB image
of resolution 64×64. An example of this is shown in Figure 1. Direct features represent the
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amount of items in the inventory (one-hot vectors up to size of 8), currently equipped item
(one-hot vector) and durability of the equipped item (scalar in [0, 1], zero being a broken
item.

3.2. Actions

Each agent action consists of 10 independent discrete decisions (referred as “actions”), each
with varying number of options to choose from, corresponding to a MultiDiscrete space in
OpenAI Gym Brockman et al. (2016) and illustrated in Figure 1 on the right. We removed
the following actions to simplify action-space: move left, move right, move back, sneak
and sprint. Moving the mouse is discretized into three options per axis (turn left/up,
turn right/down or stay still for that axis), with fixed movement speed of two degrees per
step. Each action is repeated for four steps (0.2s of gameplay). During the evaluation, we
replace actions to craft axes (used to cut trees faster) and un-equip the main-hand item
with “no-ops”, latter of which improved results as agent would not be able to accidentally
un-equip crucial items for progression (pickaxes for mining).

We process dataset samples by discarding the same actions as above by simply ignoring
them. We convert the continuous mouse movement into discrete by thresholding: if a player
moved the mouse by more than one degree to the right, then discrete mouse action for pitch
is to move right, for example.

3.3. Model architecture

Agent’s model for predicting actions is a deep neural network, following the architecture
presented in Espeholt et al. (2018). Image observations are processed with a residual net-
work, consisting of three residual blocks He et al. (2016), concatenated with direct features,
fed through a single fully-connected layer, concatenated with direct features again and then
mapped into probabilities per action with softmax activation. Options for each action are
then sampled from these probabilities (multilabel classification). All layers are followed by
a ReLU activation and initialized with FixUp method Zhang et al. (2019). Direct con-
nection between direct features and action probabilities allows inventory counts to directly
emphasize actions, e.g. the player should always craft logs into planks.

Note that we do not include any recurrent network techniques like LSTM or provide
past frames, like done in e.g. Atari games Mnih et al. (2015). Related work with BC has
shown providing such information to be detrimental to the performance Wang et al. (2019);
de Haan et al. (2019). We observed the same in our internal experiments, both in this
competition and during our participation in the Obstacle Tower Challenge Juliani et al.
(2019). In addition, this prevents the confusion with dropped actions by the action-space,
e.g. “player did not press anything, yet they moved backward?”. Theoretically, none of the
tasks in the challenge require memory to solve.

3.4. Training

The agent is trained on the MineRLObtainDiamond-v0 and MineRLObtaindIronPickaxe-v0

subsets of the dataset for 25 epochs. We store samples into a replay buffer of size 500000,
from which we sample batches used for training (further discussed in the Section 4.1). We
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(a) Round 1 (b) Round 2

Figure 2: Distribution of progress in the crafting tree obtained by our BC systems in rounds
1 and 2. Y-axis shows how often the agent reached the item on X-axis. Round 1
submission had higher average reward, but round 2 submission obtained cobble-
stone and stone pickaxes more reliably after wooden pickaxe.

discard all the samples where the player took no action. Parameters are updated using an
Adam optimizer Kingma and Ba (2015) with a small learning rate of 5 ·10−5 for more stable
learning, and with L2 regularization weight of 10−5. Network is trained to minimize KL-
divergence between predictions and actions from the dataset, given the single observation.
One-hot action labels are smoothed with a smoothing constant 0.005 to avoid overfitting
Szegedy et al. (2016). We found this to improve performance. In total, the network is
trained with approximately 2.3 million batches of 32 elements.

To improve generalization, we augment the dataset by applying random noise, random
adjustments to brightness and contrast and by randomly flipping the images horizontally.
We further discuss this in Section 4.2.

3.5. Competition results

Our round 1 submission scored an average reward of 21.7 and round 2 submission 17.9. We
found evaluation results to vary significantly between different evaluation runs, even with
100 games used to evaluate the agents by the evaluation server.

Figure 2 shows the distribution of how far our round 1 and 2 submission progressed in
the crafting tree. In round 1, half of the games where agent obtained a crafting table also
obtained a wooden pickaxe, while in round 2 only one-fifth achieved the same. After the
wooden pickaxe, round 2 submission obtained cobblestone and a stone-pickaxe more reliably
than the round 1 submission. This suggests the round 2 submission could have achieved
higher reward, had it only learned to craft a wooden pickaxe.
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Figure 3: Learning curves of six different training runs with the round 2 submission code,
three for shorter and three for longer training. Each evaluation point is an average
over 200 games (standard variance in [10, 16] for agents after million updates).
The first evaluation is after 25000 updates. Solid line is mean over the three runs,
with individual runs shown in transparent lines. The performance of an agent
can be significantly lower or higher, depending on when the training is stopped.

Upon discussing with the other participants, we learned that at least two teams with
higher or equal scores also used BC without RL1. This leads to two conclusions: 1) Be-
havioural cloning can be used to play Minecraft, with comparable performance to RL meth-
ods. 2) Such performance requires careful engineering, as also summarized by de Haan et al.
(2019).

4. Discussion and further analysis

4.1. Variance in the results

As this behavioural cloning can be seen as a multilabel classification task, we did not
expect the evaluation performance to vary from run-to-run, with a steady improvement in
performance over training. After all, many published research articles with results with BC
only show single, averaged numbers without variance (e.g. Hester et al. (2018); Vinyals
et al. (2019); Bojarski et al. (2016); Codevilla et al. (2018)). Turns out this was not so.

Figure 3 shows learning curves of six individual runs, split into three shorter and three
longer runs2. We include longer runs to confirm the agent does not improve with longer
training. Most differences between consecutive evaluation points are not statistically sig-

1. Private communication.
2. Local evaluation performance is significantly lower than on competition evaluation servers for unknown

reasons. Other competition participants have reported the same (private communication).
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nificant according to the t-test (two-tailed, p > 0.05)3, as the variances of evaluations are
large. There is also no consistent improvement after two million updates. That said, note
the sudden spikes, especially in the beginning and at the four million updates. By stopping
the training at the right time, we can jump from an average reward of 9.5 to 13.1, a relative
increase of 38% (statistically significant change with p < 0.05). The same was observed
with learning rate annealing to zero. This demonstrates the need to also study variances in
results with BC methods, as done in e.g. de Haan et al. (2019).

One explanation for the variance in our case is the non-uniform sampling of the dataset.
The MineRL dataset consists of videos, one per game (or episode). The provided dataset-
loader reads consecutive frames of trajectories, leading to correlated batches of training
samples, despite reading samples concurrently from many games. We observed this as a
periodic oscillation in the training loss throughout the training. To balance the sampling,
we asynchronously load samples to a replay buffer of 500000 samples, from which we sample
the training batches. With this setup we obtain an average loss of 1.505 with std. 0.0281
in the last 10% of training updates (loss starts from ≈ 3.0). By comparison, with a replay
buffer of size 10000 (simulating the round 1 submission), we have a mean loss of 1.544 and
std. of 0.1136, a four times higher variance. Doubling the buffer size did not reduce the
variance. This shows that the original sampling had uneven training batches, and that a
replay buffer helps to stabilize learning.

4.2. Augmenting dataset with noise

Augmenting dataset by modifying images with noise, cropping, translation and other trans-
formations is a very common practice in machine vision, RL and BC experiments alike
(e.g. Codevilla et al. (2018); Karttunen et al. (2020)). This simple trick improves the
generalization of the trained agents, and it has been used in the previous RL video-game
competitions (e.g. Dosovitskiy and Koltun (2017); Nichol (2019)). As such, we started
our work by augmenting the dataset with the following transformations: Multiply pixels
by uniformly sampled strength from [0.9, 1.1] (contrast), with one value per channel to
change the hue, add a uniformly sampled value from [−0.1, 0.1] to all pixels (brightness),
add normal noise to each pixel from N (0.0, 0.02), flip image (and associated actions) with
50% probability and clip pixels to original range [0.0, 1.0]. The changes were visible to a
human eye but did not obstruct any information. As such, we believed this would work for
training.

Turns out the augmentation was too strong. During competition we decreased the
strengths to [0.98, 1.02], [−0.02, 0.02] and N (0.0, 0.005), respectively, which consistently
improved the performance. With these strengths, the changes are hardly visible to a human
eye, only visible in a side-by-side comparison. Repeating round 2 training with the original
augmentations reached a score of 6.0, a significantly lower result than all three round 2
results in the Figure 3. After training with all of the possible combinations, all but one
stayed below a score of 8. The experiment with only brightness-augmentation obtained a
score of 11.5. This demonstrates that, haphazardly applying augmentation may not provide

3. We assume fixed sample mean variance, given the narrow range of means we focus on here. Larger
sample means have larger variance, due to exponential spacing of individual rewards.
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Table 1: Distribution of options per action in MineRLObtainDiamond-v0 subset, in the ac-
tion space used by our system. First column corresponds to None action. Options
in craft, nearbyCraft and place have very little representation, yet are cru-
cial for progressing in the game (e.g. “craft a wooden pickaxe”, “place a crafting
table”).

Action Distribution of options per action (%)

attack 49.16 50.84
camera x 84.77 7.55 7.68
camera y 86.48 6.65 6.87
craft 99.93 0.01 0.02 0.03 0.01
equip 99.92 <.01 0.01 0.02 0.01 0.03 <.01 0.02
forward 81.09 18.91
jump 96.54 3.46
nearbyCraft 99.96 <.01 0.01 <.01 0.01 <.01 0.01 0.01
nearbySmelt 99.99 0.01 <.01
place 99.52 0.03 0.06 0.21 0.02 0.02 0.14

improved results, or even be detrimental, even if to a human eye the changes do not seem
significant.

4.3. Imbalanced dataset

A class imbalanced dataset can lead the classifier to bias towards classes that are over-
represented Chawla et al. (2002). Same applies to BC, being a classification problem.
Table 1 shows the ratio of actions (classes) in the MineRLObtainDiamond-v0 subset of the
MineRL dataset. Special actions, like crafting, are barely represented, as these happen
rarely in a single game: player only needs to craft a single crafting table, for example. Same
applies even after removing all no-op actions. We believed this would lead to the classical
classification bias: network will learn to mainly predict the over-represented actions. This
was the main motivation to include label smoothing.

To study if class imbalance was an issue in our submission, we play 20 games with the
three short-train agents and record the taken actions. We discard samples where the action
is not feasible, i.e. when the player does not have the necessary materials to craft/place the
item. To our surprise, some under-represented actions like crafting a wooden pickaxe (0.01%
in the dataset) has constantly over 50% probability of being sampled. However, crafting
and placing a crafting table both have 99% of the probabilities at under 60%, never going
above 80%. Subjective analysis of these games show how the agent was able to reliably
gather wood and craft it into a crafting table, but rarely places it down even when it needs
it to craft further items. By supporting the agent with hard-coded actions for crafting, the
evaluation results of the three short-train agents increased by relative of 30%, 37% and 92%,
all of which were statistically significant. Furthermore, the latter agent was able to reach a
reward of 291 in three of the 200 games. This demonstrates how the agents were hindered
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by these specific actions, and again highlights the difference in agents, despite being trained
with the same setup.

During the competition we experimented with weighting the losses according to the
rarity of labels in the dataset (rarer actions had higher weight), and with under-sampling
(discard samples with only common actions). Neither of these improved the results. We
believe a more sophisticated sampling technique, like SMOTE Chawla et al. (2002), could
improve the results.

5. Conclusion

We presented a behavioural cloning system for playing Minecraft, which reached fifth place
in the final ranking, out of total of 40 participants. This demonstrated its effectiveness
among reinforcement learning methods, but during the competition we learned even BC is
not free from the engineering required.

Digging deeper into the results, we learned that by stopping the training at the cor-
rect moment, the agent reaches a statistically significant improvement in the evaluation
performance. We discussed the non-uniform sampling of the dataset as an explanation for
this, and used a replay-memory to stabilize this. Meanwhile, agents had trouble executing
actions that were under-represented in the dataset, leading to a lower performance. That
being said, this was not observed for all such actions. All in all, we argue the research with
BC should include variance of the results over multiple runs, just like with RL experiments
Henderson et al. (2018). Work in de Haan et al. (2019) is a great example of this.

With many questions remaining, we believe there is still much untapped potential in BC.
The better results of the two other contestants with BC are both uplifting and discouraging:
we now know we could have done better, but at least we know we can do better! This
motivates us to study behavioural cloning further, both in regard to points brought up in
this work, and in studying what was different in other competitors’ submissions.
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