
Proceedings of Machine Learning Research 123:37–46, 2020 NeurIPS 2019 Competition and Demonstration Track

A Deep-learning-aided Automatic Vision-based Control
Approach for Autonomous Drone Racing in Game of Drones

Competition

Donghwi Kim1,∗ dw95kim@kaist.ac.kr

Hyunjee Ryu2,∗ localryu@kaist.ac.kr

Jedsadakorn Yonchorhor1,∗ j.yonchor@kaist.ac.kr

David Hyunchul Shim1 hcschim@kaist.ac.kr
1Unmanned System Research Group (USRG), School of Electrical Engineering, KAIST, South Korea
2Unmanned System Research Group (USRG), Division of Future Vehicle, KAIST, South Korea
∗Denotes equal contribution

Editors: Hugo Jair Escalante and Raia Hadsell

Abstract

In Game of Drones - Competition at NeurIPS 2019, this autonomous drone racing requires
the drone to maneuver through the series of the gates without crashing. To complete
the track, the drone has to be able to perceive the gates in the challenging environment
from the FPV image in real-time and adjust its attitude accordingly. By utilizing deep-
learning-aided detection and vision-based control approach, Team USRG completed the
tier 2 challenge track passing the whole 21 gates in 81.19 seconds, and complete the tier 3
challenge track passing the whole 22 gates in 110.73 seconds.

Keywords: Drone Racing, Deep Learning, Vision-based Control

1. Introduction

The drone racing, which requires agile maneuvering of the drone through the series of
the gate, has skyrocketed as a popular attraction that challenges the robotics enthusiasts.
Using the high-fidelity simulation, AirSim, (Shah et al., 2017), Game of Drones - Compe-
tition at NeurIPS 2019 (Madaan et al., 2020), which encourages the racing with intelligent
algorithms, has drawn much attention from both roboticists and artificial intelligence re-
searchers.

Our team participates in two tiers of the challenges. In the tier2 and tier3 challenges,
given the first-person view (FPV) camera images from the RGB facing forward camera,
the ground-truth odometry of the drone and the ground-truth pose of the gate with per-
turbations, the drone needs to complete the track by flying through the series of the gates
as fast as possible without crashing to the environment. Moreover, in tier3 challenges, the
opponent drone is present in the racing, therefore, the position of the opponent drone from
the FPV image also needs to be considered so that our drone is not disqualified by crashing
with the opponent drone.

In these challenges, the problems could be divided into two parts which are the per-
ception problem and the control problem. First, the perception problem is how to reliably

c© 2020 D. Kim1,∗, H. Ryu2,∗, J. Yonchorhor1,∗ & D.H. Shim1.



Game of Drones

detect the gate and the opponent drone when our drone is moving at the high speed. Sec-
ond, the control problem questions on how to properly control the drone to pass through
the gates. Although the problems are twofold, these problems could not be decoupled be-
cause the drone needs to adjust its pose according to the perception of the gates. Hence,
our team utilizes the deep-learning-aided automatic vision-based control approach to solve
these problems.

2. Related Work

2.1. Gate detection method

The detection of the gates in the AirSim environment is a challenging task due to many
factors such as severely differing lighting conditions, occlusion of the gates, nonconformity
of the gates, etc., as shown in Figure 2. Therefore, the pixel-based algorithm, such as color
or shape detection (Cho and Shim, 2017), would not be suitable for this environment.

Thanks to the breakthrough of Convolution Neural Network (CNN), deep-learning-based
detector shows promising performance in terms of both accuracy and speed of the inference
in the aforementioned challenging environments (Jung et al., 2018b).

2.2. Vision-based control for drone

In IROS 2018 Autonomous Drone Racing (ADR) competition, Jung et al. (2018b) has
proposed the framework which combines the deep-learning-aided gate detection with Line-
Of-Sight (LOS) guidance to maneuver the drone through the center of the gate.

In our work, we improve the framework by combining the gate depth estimation, which
will be explained in Section 3.3.2. By knowing how far the drone is from the targeted gate,
the drone heading speed could be adjusted resulting in faster flight and smoother trajectory,
hence, improving the performance overall.

3. Approaches

3.1. Frame Conventions

In the following part, there are two important conventions: the drone frame and the image
frame. The drone reference coordinate frame is defined as North-West-Up (NWU). In other
word, X-axis aligns with the front of the drone, Y-axis aligns with the left side of the drone
and Z-axis align with the top of the drone. For the FPV image frame, the vertical axis is
defined as Z-axis and the horizontal axis is defined as Y-axis, as depicted in (a) in Figure 1,
with the origin at the center of the FPV image. This is to coincides both references frame
for simplicity.

3.2. Perception Part

In this racing, MobileNetSSD, because of its fast inference capability, is employed to ro-
bustly detect the gates in real-time. MobileNetSSD is a combination of convolutional neu-
ral network (MobileNet, Howard et al. (2017)) and objects detection network (SSD, Liu
et al. (2016)). Therefore, it needs training data: the RGB images of the gates in different
environments, which are collected from FPV image of several flights in the simulator.

38



Game of Drones

Assuming that the drone could see the gate in the sequential order it needed to navigate
through, we label the training data by creating the ground truth bounding box only at the
nearest gate in the image as shown in (a) in Figure 1.

(a) Labeling data (b) Detection Result

Figure 1: FPV image: the image frame is defined to be coincided with the drone frame.

To make our gate detector more robust, the collected training data are augmented
in several ways such as adjusting brightness, flipping horizontally, random cropping, etc.
Then, those augmented data are used to train the MobileNetSSD. The data augmentation
and network training are done in the Tensorflow framework (Huang et al., 2017).

Figure 2: Gate and drone detection result using two separated MobileNetSSD.

The gate detector outputs the location of the gate by creating the bounding box around
it as shown in Figure 2. Ideally, the bounding box should tightly fit with the gate such that

39



Game of Drones

the center of the gate coincides with the center of the bounding box, which is later used as
the reference point to the controller. In our approach, the bounding box is created at the
gate only when it is detected with more than 90% confidence.

Although the employed neural network model is capable of marvelously detecting the
gates throughout the race, in rare cases, it could detect more than one gate at a time
(false positive), as shown in (b) in Figure 1, for instance. In this case, the drone could
not properly track the next target gate. Therefore, our algorithm is designed such that the
drone should navigate through the gates in sequence such that it always tracked the nearest
gate first in the case of multiple detections of the gates. This is archived by choosing the
biggest bounding as the target in the presence of multiple bounding boxes. Algorithm 1
summarizes the gate detection procedure.

Algorithm 1 Gate Detection Algorithm

1. While receiving a FPV image

2. Feed the image to the trained MobileNetSSD (gate detector)

3. Create the bounding box at the gate detected with more than 90% confidence

4. If there is more than one bounding box

Calculate the area of each bounding boxes

5. Calculate the center of the bounding box with the largest area using vertices

6. Return the center of the bounding box

3.3. Control Part

In the control part, we design a hybrid control algorithm: position control and velocity-yaw
control. Given the noisy ground truth of the gate poses, the approximate locations of the
gates with respect to the world frame are known. Therefore, in the scenario that the drone
could not detect the gate, we use position control to maneuver the drone to the approximate
location of the gate so that the drone could detect the next target gate. On the other hand,
if the drone could detect the gate, then it follows the velocity-yaw control algorithm.

3.3.1. Position Control

The position control is the command to fly the drone directly to the target position with
respect to the world frame using airsimneurips API. This mode of controller is only used
when the drone could not detect the next target gate. In such cases, the position control
flies the drone to the appropriate position which allows the drone to the detect the next
target gate.

In the racing, given the noisy ground-truth pose of the gates, the drone knows roughly
about the positions of each of the target gates. Therefore, the drone needs to keep track of
the number of gates the drone has passed through to determine the proper next position
it should go to look for the next target gate. However, instead of going directly to the

40



Game of Drones

perturbed position of the next target gate, the target position is calculated by the weighted
average of the current drone position and the noisy ground-truth position as illustrated in
Figure 3(a) to ensure that the drone would be in the position that it could detect the next
target gate using the perception algorithm described in Section 3.2.

Ptarget = λ ∗ Pdrone + (1− λ) ∗ Pgate, (1)

where Ptarget, Pdrone and Pgate are the target, drone and (noisy) gate position, respectively
and λ ∈ [0, 1] is the weight parameter.

(a) Position control (b) Yaw Angle Control

Figure 3: Control Method (top-view): a) the target point is calculated using the current
position of the drone and the noisy ground-truth pose, where Pgate is the noisy
ground truth pose of the gate and m is the weight parameter. b) X-axis of the
drone is the camera direction and also drone heading vector

3.3.2. Velocity-yaw Control

Inspired by the work of Jung et al. (2018b), Jung et al. (2018a), Jung et al. (2018c) our
team makes use of the classical Proportional-Derivative (PD) controller (Ang et al., 2005)
to command the linear velocities in 2 axes, namely, Y, Z with respect to the drone frame,
and yaw angle of the drone. Then, the velocity of the X-axis is set proportionally to the
distance of the drone to the target gate obtained from the gate depth estimation algorithm
explained in the next topic. The velocity and yaw commands from the controller are then
inputted to the airsimneurips API to maneuver through the center of the gates.

Gate Depth Estimation To improve the speed of the flight, we want to set the X-axis
linear velocity to be proportional to the distance from the target gate. Therefore, knowing
the distance of the drone from the gate is crucial to our approach.

From the output of MobileNetSSD, we could obtain the gate’s pixel width and pixel
height in the image frame. We model the relationship between the distance from the

41



Game of Drones

drone to the detected gate, called depth, d̂, and the width of the detected gate using the
exponential model as shown in Equation (2):

d̂ = K1 ∗ eK2∗x, (2)

where K1 and K2 are the parameter to be obtained from the collected data, x is the
measured width of the gate (in pixel), d̂ is the estimated depth (in meters).

To obtain the parameter in Equation (2), we collected various of the gate width data
with the distance by flying the drone heading straight toward the gate. Then, we use the
regression technique to fit the model to the collected data to obtain the parameter K1 and
K2 that best fit the model with the collected data.

Velocity Control The controller obtains the coordinate of the center of the bounding
box in the image frame, which is assumed to be very closed to the center of the detected
gate in the image frame, from the gate detector stated in Section 3.2. To align the center
point of the gate to the center point of the image frame, the controller tries to minimize
the position error eposition, calculated from the pixel distance between the two points in the
image frame.

eposition = (f(ey), f(ez)), (3)

= (f(
CBy − CIy

Wg
), f(

CBz − CIz
Hg

)), (4)

where (CBy, CBz) are the center of the bounding box in Y-axis and Z-axis, (CIy, CIz) are
the center of the FPV image in Y-axis and Z-axis, and (WB, HB) are the width and the
height of the bounding box of the detected gate, respectively. The error is scaled by the size
of the bounding box to reduce the sensitivity of the movement of the center of the bounding
box, as the drone flies toward the gate. Moreover, f is a function to impose Dead Zone
concept which is defined as

f(x) =

{
x, |x| < threshold

0, otherwise

The Dead Zone is defined near the center of the FPV image to avoid overshooting and
to decrease sensitivities. In the image frame, if the center of the detected gate has entered
the Dead Zone, the position error will be nullified. This reduces the oscillation of the flight
toward the gate.

Desirably, the displacement error of the two points should approach to zero to ensure
that the drone flies through the center of the gate. PD controller plays an important role
to determine the velocity command in the Y-axis, uy, and Z-axis, uz, with respect to the
drone frame to minimize such an error

uy = KPy ∗ ey +KDy ∗ ėy, (5)

uz = KPz ∗ ez +KDz ∗ ėz, (6)

where (KPy,KPz) and (KDy,KDz) are the proportional gains and derivative gains in the
Y-axis and Z-axis that need to be tuned. In our approach, the velocity commands are
updated with 50 Hz frequency.

42



Game of Drones

The command of the heading speed, ux, is set proportionally to the estimated distance
from the drone to the gate, d̂, defined in Equation (2),

ux = K3 ∗ d̂+K4, (7)

where K3 and K4 are parameters to be tuned.

Yaw Angle Control For the drone to fly through the center of the gate, the drone
heading vector needs to align with the vector from the drone to the center of the gate as
shown in Figure 3(b). Since the ground truth pose of the drone is given, we could compute
the error of yaw angle, eψ, using the estimated depth, d̂, defined in Equation (2), and the
displacement of the center of the gate and the image frame in the Y-axis, ey, defined in
Equation (3),

eψ = arctan
ey

d̂
(8)

In the same manner with position error, the controller tries to minimize the angle of
drone heading vector and drone-gate vector by executing the yaw command

uψ = KPeψ ∗ eψ +KDeψ ∗ ėψ (9)

where KPeψ and KDeψ are the proportional gains and derivative gains which require tuning,
respectively.

3.4. Drone Overtaken Part

In tier 3, we also need to consider the presence of the opponent drone and try to outrace it
without crashing.

3.4.1. Drone Detection

The detection of the drone is done in the same manner with the gate detection explained in
Section 3.2. However, using the same network model to detect both the opponent drone and
the gates cause imbalanced data. Therefore, two separate networks are used for detection:
one for drone detection and one for gate detection.

3.4.2. Strategy

We considered three scenarios from the RGB input image.
First, only the drone was detected in the image. In this case, we separated the image into

two areas (altitude separation) and set the collision risk area. Then, if the drone detected
in the considered area, do the altitude separation. If the opponent drone is detected higher
than the center of the image, our drone lowers the altitude. Otherwise, the drone will raise
the altitude.

Second, only the gate was detected in the image. In this case, we could consider this
challenge as the tier 2 challenge, hence, the same control algorithm is employed.

Last, both the drone and the gate are detected, we re-select the area that drone would
fly through and reset the drone’s goal point. Calculating the area separated by the opponent
drone in the gate, we select the largest area and set the center point of the selected area as
a new goal point of the drone.

43



Game of Drones

4. Result

To verify the performance of our approach in maneuvering the drone through the targeted
gate, the position error and yaw error from the flight between gate 7 and gate 8 in challenge
2 in 5 different race trials are collected. Note that the error is only recorded when the gate
is detected by the detection model. The results are depicted in Figure 4.

The result illustrates that the proposed approach shows a promising performance by
nullifying the position and yaw error such that the drone could pass through the target
gate.

Next, the RMSE of position error, yaw error and the heading velocity of the drone during
the flight of the first ten gates in tier 2 challenge is illustrated in Figure 5. This shows that
our approach successfully reduces the positional error and yaw error before passing through
each gate. As a result of setting the heading velocity proportionally to the gate depth, it is
automatically adjusted such that the drone does not overshoot when passing through the
gate resulting in zigzag trajectory while flying at the high speed.

(a) error in Y-axis (b) error in Z-axis

(c) RMSE of position error (d) error in yaw angle

Figure 4: Error data of the flight from gate 7 to gate 8 in challenge 2 in 5 different trials

With the proposed approach, our team manages to complete both tier 2, passing through
21 gates in 81.19 seconds, and tier 3 challenges, passing through 22 gates in 110.73 seconds.
For tier 3 challenge. The videos of the result could be accessed from https://youtu.be/

uBwf0NA7eTE and https://youtu.be/VEuHEvct-_4.

44

https://youtu.be/uBwf0NA7eTE
https://youtu.be/uBwf0NA7eTE
https://youtu.be/VEuHEvct-_4


Game of Drones

5. Conclusion

The deep-learning-aided automatic vision-based control appraoch shows promising perfor-
mance in this Autonomous Drone Racing in Game of Drones Competition. By labeling
only the closest gate to the drone and choosing the biggest bounding box, the gate detec-
tor, MobileNetSSD, could always locate the correct targeted gate.

Once the location of the targeted gate is identified in the FPV image, the controller
commands the drone to minimize the position error between the center of the target gate
and the center of the FPV image in order to fly the drone to the center of the gate.

At the same time, the gate depth, which is the distance of the gate from the drone,
determines the heading speed of the drone.

Our proposed appraoch is capable of competing in the challenging drone racing track.
This method is used to win second place in both tier 2 and tier 3 challenge in Game of
Drones - Competition at NeurIPS 2019.

(a) RMSE of position error (b) error in yaw angle

velocity.PNG
(c) heading velocity

Figure 5: The flight data from the first ten gates of tier 2 challenge

45



Game of Drones

References

Kiam Heong Ang, Gregory Chong, and Yun Li. Pid control system analysis, design, and
technology. IEEE transactions on control systems technology, 13(4):559–576, 2005.

Sungwook Cho and David Hyunchul Shim. Development of a vision-enabled aerial manipu-
lator using a parallel robot. Transactions of the Japan Society for Aeronautical and Space
Sciences, Aerospace Technology Japan, 15(APISAT-2016):a27–a36, 2017.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara,
Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al.
Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7310–7311, 2017.

Sunggoo Jung, Sungwook Cho, Dasol Lee, Hanseob Lee, and David Hyunchul Shim. A direct
visual servoing-based framework for the 2016 iros autonomous drone racing challenge.
Journal of Field Robotics, 35(1):146–166, 2018a.

Sunggoo Jung, Sunyou Hwang, Heemin Shin, and David Hyunchul Shim. Perception, guid-
ance, and navigation for indoor autonomous drone racing using deep learning. IEEE
Robotics and Automation Letters, 3(3):2539–2544, 2018b.

Sunggoo Jung, Hanseob Lee, Sunyou Hwang, and David Hyunchul Shim. Real time embed-
ded system framework for autonomous drone racing using deep learning techniques. In
2018 AIAA Information Systems-AIAA Infotech@ Aerospace, page 2138. 2018c.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European conference
on computer vision, pages 21–37. Springer, 2016.

Ratnesh Madaan, Nicholas Gyde, Sai Vemprala, Matthew Brown, Keiko Nagami, Tim
Taubner, Eric Cristofalo, Davide Scaramuzza, Mac Schwager, and Ashish Kapoor. Airsim
drone racing lab. arXiv preprint arXiv:2003.05654, 2020.

Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity
visual and physical simulation for autonomous vehicles. In Field and Service Robotics,
2017. URL https://arxiv.org/abs/1705.05065.

46

https://arxiv.org/abs/1705.05065

	Introduction
	Related Work
	Gate detection method
	Vision-based control for drone

	Approaches
	Frame Conventions
	Perception Part
	Control Part
	Position Control
	Velocity-yaw Control

	Drone Overtaken Part
	Drone Detection
	Strategy


	Result
	Conclusion

