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Abstract

The 2019 IARAI traffic4cast competition is a traffic forecasting problem based on traffic
data from three cities that are encoded as images. We developed a ResNet-inspired graph
convolutional neural network (GCN) approach that uses street network-based subgraphs
of the image lattice graphs as a prior. We train the Graph-ResNet together with GCN
and convolutional neural network (CNN) benchmark models on Moscow traffic data and
use them to first predict the traffic in Moscow and then to predict the traffic in Berlin and
Istanbul. The results suggest that the graph-based models have superior generalization
properties than CNN-based models for this application. We argue that in contrast to
purely image-based approaches, formulating the prediction problem on a graph allows the
neural network to learn properties given by the underlying street network. This facilitates
the transfer of a learned network to predict the traffic status at unknown locations.
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1. Introduction

Today 55 % of the world’s population live in urban areas. This number is expected to rise
to 68 % by 2050 (United Nations, 2018). The growing urbanization in combination with
population growth and private car ownership threatens to raise the already high levels of
congestion which in turn increases pollution and economic costs and accelerates climate
change (Reed, 2019). In order to facilitate the transition towards a more sustainable traffic
system the growing traffic volume has to be managed in a smart way to reduce its negative
impact.

A backbone of smart traffic management are short-term traffic flow predictions. They
allow the detection of anomalies, such as accidents or obstacles (Wang et al., 2016), the
smart routing of vehicles to optimally use the existing infrastructure (Ringhand and Voll-
rath, 2018) or the predictive control of the transportation system using traffic lights (Huang
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et al., 2018). There is a vast body of literature concerning traffic forecasting available (Vla-
hogianni et al., 2014; Ermagun and Levinson, 2018), however, “comparing the forecasting
applications across studies is almost impossible” (Ermagun and Levinson, 2018, p. 791) as
studies use different spatio-temporal data resolution and report different error metrics on
different aggregation levels.

Traffic4cast competition
In response to this lack of standardization, the Institute of Advanced Research in Artifi-
cial Intelligence (IARAI) published a novel, publicly available traffic forecasting benchmark
dataset as part of the traffic4cast competition1. The Traffic4cast dataset comprises traffic
data from three cities (Berlin, Istanbul and Moscow) and covers one year in 5-minute inter-
vals. The data is given as as three-channel images with normalized information about traffic
volume, average speed and average direction, which all range from 0 - 255. An example of
the data can be seen in Figure 1. Here the logarithm of the per-city sum of all channels over
all training images is shown as a proxy for the activity level per pixel. Only few pixels are
always zero over the whole dataset2, nevertheless the street network is still clearly visible
in each city.

The task in the traffic4cast competition is to predict the traffic of the next 15 minutes
(3 images) based on the last hour (12 images). The results are then evaluated using a pixel-
wise calculation of the mean-squared-error (MSE) between the prediction and the ground
truth.
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Figure 1: Logarithm of the per city sum of all training images of all channels.

Graph convolutional neural networks (GCNs)
The competition specifically encoded the traffic data as images to facilitate the usage of
deep convolutional neural networks (CNN). However, the image-based representation omits
explicit information about the street network and therefore disregards that the movement
of cars is usually restricted to the road network. While a CNN-based approach will likely
be able to extract the street network and store it in its weights, the street network could
be provided explicitly to greatly reduce the problem complexity.

1. www.iarai.ac.at/traffic4cast
2. 29 % for Berlin, 11 % for Moscow and 23 % for Istanbul.
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GCNs have been developed over the past couple of years in an attempt to generalize
the success of CNNs to irregularly structured domains that can often be described via
graphs (Bronstein et al., 2017; Defferrard et al., 2016). By now, there are several propo-
sitions for graph (convolutional) neural network architectures that are described in the
available review papers (Wu et al., 2019; Zhou et al., 2018). GCNs have already been ap-
plied to many different domains (Bronstein et al., 2017; Wu et al., 2019; Zhou et al., 2018)
but there are only few examples that are related to the movement of people (Martin et al.,
2018) or short-term traffic forecasting (Yu et al., 2018; Cui et al., 2019; Zhang et al., 2019).

Contribution
In this work use the image-based U-Net approach of team MIE-Lab (Martin et al., 2019)3

that won the second place in the traffic4cast competition and compare it with an alterna-
tive approach based on GCNs. We use well-known GCN architectures as well as suitable
modifications such as the Graph Residual Network (Graph-ResNet) which is inspired by the
residual learning network (ResNet) presented in (He et al., 2016a). We provide evidence
that while the U-Net approach outperforms the GCN approach on known cities, the GCN
approach generalizes better to unknown cities. The code to reproduce all experiments is
publicly available4.

2. Graph based traffic forecasting

2.1. Preprocessing

We introduce the ordered set of timestamps T = N12×24×365 to index all the 5-minute
intervals throughout the year5. We denote all available training data as a 5-dimensional
tensor P with shape (|U |, |T |, h, w, |C|), where an individual value Pu,t,i,j,c ∈ N255 denotes
the integer value of a single pixel with u ∈ U = {B, I,M} (for Berlin, Istanbul and Moscow),
t ∈ T the timestamp throughout the year, i ∈ N495 and j ∈ N436 the pixel coordinates,
c ∈ C = {V, S,H} the channel (corresponding to Volume, Speed and Heading), and h = 495
and w = 436 are the height and width of a single image.

We define a sample as (x(i),y(i)) where xi is a short movie of 12 consecutive traffic images
with the timestamps [t(i), t(i) + 1, ..., t(i) + 12] and y(i) consists of the images with the next
three consecutive timestamps [t(i) + 13, t(i) + 14, t(i) + 15] which represent the prediction
target. As it is described in Martin et al. (2019) we collapse the time dimension into the
channel dimension. x(i) is then of shape (12 · |C|, h, w) and y(i) of shape (3 · |C|, h, w). The
official test set in the traffic4cast competition contains only a small subset of timestamps
for every day, namely 01:30, 04:45, 09:30, 14:30, 18:30. In this work, all experiments
are performed using only the subset of the data that corresponds to the available test
timestamps (e.g, we use all training images corresponding to 01:30, 04:45, 09:30, 14:30,
18:30 but we omit training images corresponding to different time stamps). This approach
leads to only a slight loss in performance while greatly decreasing training time.

3. Code and pretrained networks are available under https://github.com/mie-lab/traffic4cast.
4. https://github.com/mie-lab/traffic4cast-Graph-ResNet
5. We define Nw = {1, 2, ..., w} as the set of natural numbers up until w.

155

https://github.com/mie-lab/traffic4cast
https://github.com/mie-lab/traffic4cast-Graph-ResNett


Graph-ResNets for short-term traffic forecasts in almost unknown cities

2.2. Graph extraction

To enable the usage of GCNs we follow the workflow shown in Figure 2. (1) a city-specific
mask is used to extract pixels that lie on the street network. The mask is generated based on
the training images of the city. (2) the remaining pixels are transformed into a graph. In this
graph representation, data is represented as a vector of node features and a sparse adjacency
matrix to store their connectivity. (3) we use GCNs to generate node level predictions. (4)
the data is transformed back from the graph domain into the image domain where the error
is calculated based on the competition rules.

To create a graph from the traffic images, we define an image as a regular grid with pixels
as nodes. The pixel-nodes are connected to all directly adjacent and diagonally adjacent
pixel-nodes via undirected edges with weight 1. The pixel values of all available channels
are stored as a vector of node features. For a given graph, the node feature vectors form
a feature matrix with dimension n × 12 · |C|. We introduce sparsity in the above defined
grid graph by deleting nodes corresponding to low activity pixels. A low-activity pixel P̂i,j

is defined as a pixel for which the sum over all available training images (of a single city u)
does not exceed a certain user-defined threshold µ:

PLA,u = {P̂i,j |
∑
t∈T,

∑
c∈C

Pu,t,i,j,c < µ} (1)

A visualisation of the sum (before applying the threshold) is given in Figure 1.
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Figure 2: The graph-based traffic forecasting workflow. The input images are transformed
into graphs by filtering out inactive pixels, after which the Graph ResNet learns
to predict traffic on this graph.

2.3. GCN architectures

Based on the graphs extracted in Section 2.2, we use a GCN as proposed in (Kipf and
Welling, 2016) as baseline and introduce three variations based on this baseline and on the
ideas of the ResNet proposed by (He et al., 2016a).

Simple graph convolutional neural network
Similar to (Kipf and Welling, 2016), we define a graph convolutional processing block as the
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Figure 3: The different GCN architectures used and introduced in this paper.

sequential application of a graph convolution and a ReLU activation function (we optionally
consider dropout and batch normalization layers but do not explicitly denote them in the
formalization below):

H
(l+1)
Gu

= σ(D−
1
2A(u)D−

1
2H

(l)
Gu

W (l)) (2)

Here, l denotes the current layer in the network, H
(l)
Gu

the input from the previous layer

(where H
(0)
Gu

= x(i) is the input, A(u) is the adjacency matrix, D is the diagonal node

degree matrix of A(u) (used to normalize the adjacency matrix), and W (l) is a layer-specific
(learned) weight matrix. σ(·) is an appropriate activation function; in this work, we use
rectified linear units (ReLU) for all experiments. In addition to the network proposed
by (Kipf and Welling, 2016), we add a skip connection that concatenates the input x(i)

with the output from the last GCN block before applying a last graph convolution (i.e.,

y(i) = H
(m+1)
Gu

= D−
1
2A(u)D−

1
2 (H

(m)
Gu
⊕H

(0)
Gu

)W (m) with m being the number of GCN
blocks). The combined SkipfNet has the advantage that it can very well learn functions
resembling the identity function f(x) = x due to the direct availability of the non-convoluted
input (cf. He et al. (2016b)). A central hyperparameter of the SkipfNet is the number of
GCN blocks; Figure 3 shows exemplary networks with one and two blocks.
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Graph ResNet
Inspired by the popular ResNet architecture (He et al., 2016a), we introduce a Graph ResNet
to further improve the predictive power of the SkipfNet. We define a graph residual block
similar to the GCN block of the SkipfNet, but add input of the previous layer to the output
of the current layer before passing it on to the next graph residual block (cf. Figure 3;
again, we do not mathematically represent dropout and batch normalization below):

H
(l+1)
Gj

= σ(D−
1
2A(u)D−

1
2H

(l)
Gj

W (l)) + H
(l)
Gj

(3)

While in the original ResNet architecture, the layer size varied throughout the network using
pooling. However, as pooling for graphs is more complex and still under active research
(Ying et al., 2018; Lee et al., 2019), we keep the layer size constant.

3. Experiments and results

We perform two groups of experiments. At first we train different graph networks to solve
the traffic4cast prediction task in Moscow and compare the results to U-Nets of different
depth. As a second set of experiments we use the GCN and U-Nets that were trained only
on Moscow and use them to predict the traffic in Berlin and Istanbul.

All U-Nets are trained using the parameters and training schedule from (Martin et al.,
2019) with a varying depth between 2 and 6 layers. Additionally, we include the original
KipfNet with 16 hidden units as used in the original paper for the CORA dataset (Kipf and
Welling, 2016) and with 128 hidden units, which is the maximum that our GPU allows. We
fit 36 SkipfNets of depth 1, 29 SkipfNets of depth 2 and a total of 42 Graph-ResNets using
random search on the hyperparameter space shown in Table 1. All Networks are fitted with
the ADAM optimizer, learning rate 0.01 and weight decay of 0.0001 for a maximum of 10
epochs with early stopping if the validation error is not decreasing for two epochs in a row.
The learning rate is divided by 10 after 5 epochs. We use a batch size of 2 and the mean
squared error as a loss function. All graph networks receive the pixel coordinates of the
nodes as two additional channels. These additional channels were omitted for the U-Nets
as they degraded their performance. Training was performed using a Tesla P100 GPU with
12 GB of RAM. All experiments were implemented in Pytorch (Paszke et al., 2019) and
Pytorch-Geometric (Fey and Lenssen, 2019).

Network H 1 H 2 / depth K K mix sc bn dropout

SkipfNet 8, 16, 32, 48, 64 - 2, 4, 6, 8 1,2,4,6 0, 1 0 0.5

SkipfNet2 8, 16, 32, 48, 64 8, 16, 32, 48 2, 4, 6, 8 1,2,4 0, 1 0 0.5

Graph ResNet 16 - 100 (100) 2 - 60 (4) 2 - 6 (4) 1, 2 (2) 0, 1 (1) 0, 1 0, 0.5

Table 1: Hyperparameter space explored during graph network training. H=Hidden layer;
K and K mix=number of terms for the Chebyshev polynomial from (Defferrard
et al., 2016) for the convolutional layers and the last mixing layer; sc=usage of op-
tional skip connection (blue in Figure 3); bn=usage of batchnorm; dropout=used
dropout probability. Hyperparameters of best model are shown in bold.
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3.1. Traffic prediction capacity

The out-of-sample errors of the different models for the Moscow validation dataset are shown
in the top graph of Figure 4 and in Table 2. The Figure shows a clear dependency between
the number of model parameters and the performance. In general there are two major
ways to add complexity to the models: increasing the depth of the model or increasing
the number of channels of the convolutional layers. The model complexity of the graph
networks is limited because deeper networks lead to over-smoothing of the prediction (Li
et al., 2018) and because the lack of suitable graph pooling operations forces us to add
channels at the full-size graph which quickly drains GPU memory. In our work the original
KipfNet architecture reaches the memory limit of our GPU at 128 output channels of
the convolution. The Skipfnet architecture with the variable K parameter and the skip
connection allows adding additional parameters without over-smoothing. Finally the Graph
ResNet allows us to increase the performance even further. None of the graph networks
reaches the performance of the deeper U-Net versions, however, all of the methods are below
the official traffic4cast baseline6 that is shown as a dashed line.

KipfNet nh16 KipfNet nh128 Graph-ResNet SkipfNet1 SkipfNet2

Nb. of params 1.5 · 103 1.2 · 104 1.7 · 105 1.8 · 104 2.8 · 104

MSE Moscow 867 836 814 836 828
MSE Berlin 492 475 468 474 471
MSE Istanbul 671 645 633 644 639

U-Net d2 U-Net d3 U-Net d4 U-Net d5 U-Net d6

Nb. of params 4.2 · 105 1.8 · 106 7.7 · 106 3.1 · 107 1.2 · 108

MSE Moscow 813 797 791 794 794
MSE Berlin 478 500 520 519 501
MSE Istanbul 653 713 731 727 704

Table 2: Number of parameters and the resulting mean squared error for all models in the
different cities. The content of the table is visualized in Figure 4.

3.2. Generalization capacity

In a second step we use the models trained on Moscow to predict the traffic in Berlin and
Istanbul. To make up for the GCN’s additional knowledge of the of the street network
we mask the U-Net predictions by multiplying them with the binary mask of the street
network. The results of this experiment are shown in Figure 4.

The first result is that all methods generalize surprisingly well to unknown cities, as all
methods are able to beat the baseline that is described in Footnote 6 and shown as a dashed

6. The baseline is a MSE of 1032 for Moscow, 789 for Istanbul and 582 for Berlin. It consists of predicting
the per-channel mean of the last three images for the next three images. Due to the high regularity in
traffic, this can be considered a strong baseline. The implementation of the baseline is available under
https://github.com/iarai/NeurIPS2019-traffic4cast.

8. See Footnote 6
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Figure 4: Traffic forecasting results. All models are trained on Moscow (top) and tested
on Berlin (middle) and Istanbul (bottom). The competition baseline is shown as
dashed line8.

line for each city. Next, the results show that the relationship between performance and
number of parameters does not hold anymore. For the U-Nets we observe that the shallow
U-Net has the best prediction results and that the U-Net loses performance the deeper it
gets. This trend is not as clear for U-Nets for depth 5 and 6 which might be a sign that
they have not been trained with enough data or not long enough. To support this claim,
we repeated this experiment with the pretrained U-Net of depth five used in the traffic4cast
competition by Team MIE-Lab9. This competition network was tuned more carefully and
trained with more data and indeed does fail miserably in the generalization task. It achieves
a MSE of 774 for Moscow where it outperforms all other networks but a MSE of 798 for
Berlin and an MSE of 3357 for Istanbul (both off the charts).

For the GCNs, the relationship between performance and number of parameters is still
intact with the Graph-ResNet now being the overall best performer. An explanation for
these observations is that the more parameters the conventional CNNs have and the more
data they get during training, the better they can extract the (non-transferable) street
network and store it in their weights. Whereas with few parameters they will simply learn
a baseline like the conditional mean of the input data, which is to a large extent generalizable
to other cities. The graph-based networks however already know the street network as it
is provided as an explicit input and can therefore learn transferable rules based on the
propagation of traffic through the network.

9. See Footnote 3.
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4. Conclusions and future work

In this work, we presented a graph-based approach for traffic forecasting and apply it to
the publicly available dataset from the traffic4cast competition. We define ResNet-inspired
GCN networks with skip connections that allow the training of deeper GCNs without over-
smoothing. We train all models on traffic data from Moscow and validate them on data
from Berlin and Istanbul. Our results suggest that the GCN based models generalize better
than the state-of-the-art CNN models from the traffic4cast competition. We think that
the large performance difference between U-Nets and GCNs in the known city prediction is
largely because the image-based competition design heavily favors conventional CNNs. Es-
pecially GPS positioning noise in combination with the MSE evaluation which favors blurry
predictions (Lotter et al., 2016) is hard for the graph networks which can, by design, only
predict values exactly on the graph. To still have a good performance under competition
rules10, the threshold for extracting the street network from Equation 1 was chosen rather
low. However, a low threshold almost reproduces a grid graph where conventional CNNs
are known to outperform GCNs. Therefore follow-up work should evaluate the performance
of graph models under conditions that do not disadvantage graph-based approaches (e.g.,
by only evaluating pixels that lie on the graph). Furthermore, the relationship between
parameters and model performance for graph models on unknown cities should be further
explored by creating more complex graph models. A key role for this will be the successful
integration of graph pooling methods in the model architecture. These experiments will be
important to validate the findings of this work that, opposed to CNN-based models, GCN-
based models continue to increase their performance with increasing model complexity when
forecasting traffic in unknown cities.
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