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Abstract

The deployment and evaluation of learning algorithms on autonomous vehicles (AV) is
expensive, slow, and potentially unsafe. This paper details the F1TENTH autonomous
racing platform, an open-source evaluation framework for training, testing, and evaluat-
ing autonomous systems. With 1/10th-scale low-cost hardware and multiple virtual en-
vironments, F1TENTH enables safe and rapid experimentation of AV algorithms even in
laboratory research settings. We present three benchmark tasks and baselines in the set-
ting of autonomous racing, demonstrating the flexibility and features of our evaluation
environment.

Keywords: Reinforcement Learning, Autonomous Vehicles, Autonomous Racing

1. Introduction

Unlike supervised learning tasks, the minimal evaluation environment for reinforcement
learning-based (RL) approaches to robotics must include more than a labeled dataset. We
propose that RL evaluation environments should incorporate: (1) accurate and efficient
simulators to reduce the time and cost of testing, (2) accessible hardware to correlate sim-
ulation results with real-world performance, and (3) adaptable benchmarks which include
strong baselines supported by competition to drive innovation and reduce overfitting. While
others (e.g. Brockman et al., 2016) have described a subset of these requirements, their ef-
forts classify the validation, realism, and accuracy of simulation tools, and availability of
hardware as future goals rather than necessary components. In response, we create an
open-source RL evaluation environment (simulator, hardware, benchmarks, baselines, and
competitions) based on a scaled autonomous vehicle situated in a racing environment.

Accurate simulation is a necessary component of any practical evaluation system, as
real-world evaluations are dangerous, expensive, and time consuming. A number of other
studies note the sensitivity of RL-based agents to simulation details (c.f. Lewis et al., 2019;
Henderson et al., 2018). Indeed, like all simulators, ours fails to capture agent vehicle
dynamics with perfect fidelity. However, we follow classical system identification methods
to actively quantify and minimize this discrepancy with respect to performance on a real
hardware platform. Additionally, we propose simple methods to more accurately simulate
a 2D LIDAR, IMU and cameras in a photorealistic environment.

Hardware-based experiments must support simulation-based evaluation in order to
ensure that an approach performs well in reality. As noted by Yang et al. (2020), the
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hardware platform used must not limit potential solutions. However, similar benchmarks
such as Balaji et al. (2019) impose sensor configuration and training method restrictions,
whereas others (Goldfain et al., 2019) are too expensive to be used widely. In contrast, we
offer a full-fledged Open-AI Gym API for controlling a real world vehicle with the ability to
redefine step/reward functions in an intuitive manner for numerous sensor configurations.
Furthermore, running experiments does not require a special track, as our carefully tuned
SLAM packages use the onboard LIDAR to create maps of tracks (eg. a corridor loop),
and seamlessly use those maps within simulation. Finally, our hardware is open-source,
documented, affordable, and supported by an active community.

In addition to simulation and hardware environments we also define a set of bench-
mark tasks by which to standardize evaluations. The context of these tasks, autonomous
racing, aids in the definition of evaluation metrics; unlike day-to-day driving, each episode
has a clear winner and is likely to expose the agent to the most difficult regimes of the dy-
namics. Importantly, the benchmarks naturally include both single agent and multi-agent
formulations which are of interest to multiple communities.
Contributions and Organization: In Section 2, we compare our simulation environ-
ment and hardware support with existing platforms. In Section 3, we describe in detail
the simulators that serve as a virtual evaluation environment, enabling rapid implementa-
tion and dissemination of algorithms in an environment where reproducibility is enforced.
In Section 4, we describe the low-cost, 1/10th scale vehicle and standardized software in-
frastructure that supplements our virtual benchmarking tools, enabling the use of a wide
range of RL algorithms in reality. In Section 5 and 6, we describe three benchmarks in our
environment, spanning continuous control and RL methods.

2. Related work

It is still unknown how deep RL will be used in autonomous vehicles; however, a recent
survey (Kiran et al., 2020) highlights numerous promising directions. Nevertheless, the
goal of this work is not to describe autonomous driving methods, but rather to build tools
which enable a community wide effort. As such, one closely related body of literature
includes autonomous vehicle simulators (e.g Shah et al., 2017; Dosovitskiy et al., 2017;
Quiter and Ernst, 2018; LG Electronics, Inc., 2019). Although these tools are widely used
in deep RL research, none specifically include a corresponding vehicle platform. More
general simulation environments used within the RL community (e.g. Todorov et al., 2012;
Coumans and Bai, 2016) utilize multi-body physics. In contrast, our simulator is narrow;
it uses simple car-like vehicle dynamics described as continuous ODEs. While our domain
of interest is targeted, the task is still challenging due to the non-holonomic behavior of the
robot, the use of high-dimensional measurements, and interactions with external dynamic
agents.

Other related work includes open-source implementations of full-scale autonomous ve-
hicle stacks (Baidu Apollo Team, 2017; Kato et al., 2018). Our approach differs because
we prioritize the use of scaled, inexpensive hardware that does not require special permis-
sion or insurance for operation. Of course, there are now many scaled autonomous vehicle
projects available to the community (c.f. Fishberg et al., 2019; Gonzales et al.; Roscoe,
2019; Srinivasa et al., 2019; Goldfain et al., 2019). The F1TENTH hardware is most similar
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to RACECAR, and in fact shares some low-level drivers; however, F1TENTH differs in its
simulation capabilities which are more easily extended beyond pedagogical settings. Our
goal of creating a standardized evaluation system is shared with Balaji et al. (2019). While
the DeepRacer platform has a lower upfront cost, the lack of sensing modalities such as
LIDAR, non-standard hardware acceleration for neural network components, and closed
nature of the simulation system limit the use of DeepRacer in research settings.

3. Simulation Tools

In this section we describe the containerized simulation engine for the 1/10th scale vehicle
platform of Section 4. We note that simulated environments include a reality gap which
is characterized by the discrepancy between the performance of the system obtained in
simulation relative to the deployed performance. We describe how our simulator design can
mitigate and control factors which influence the reality gap.

3.1. Simulator design

The simulator can operate in two modes: (1) a ROS-based mode designed for software-
in-the-loop (SIL) testing and (2) an OpenAI Gym (Brockman et al., 2016) mode designed
for distributed training. The OpenAI Gym simulator mode supports the additional option
to generate photo-realistic camera observations which enables the testing and training of a
computer vision pipeline.

The SIL-oriented simulator is a plug-and-play replacement for the 1/10th scale platform
itself. The response of the vehicle to control commands is captured using the single track
model described in Althoff et al. (2017). The simulator also replaces the sensors used on
the actual vehicle (see Section 4). Synthetic sensors mimic odometry information from
the electronic speed controller and laser scans from LIDAR. The same message types and
ROS publisher subscriber mechanisms are used to communicate the sensor observations.
The primary use-case for this simulation mode is debugging shortly before deployment as
implementation errors related to ROS and the vehicles interface can be found safely.

The training-oriented simulator is created with the RL community’s needs in mind. In
contrast to the SIL mode, training mode explicitly steps time with the given action input
in order to create deterministic rollouts. Since the simulator is capable of simulating mul-
tiple vehicles and their sensor observations, the API is designed such that all agents are
stepped simultaneously. Determinism has two benefits; first, experiments are repeatable,
a feature useful both for debugging and in service of our stated goal of creating fair and
accurate evaluations. Second, the explicit stepping enables the physics engine to take ad-
vantage of faster than real-time execution (up to a 6x speedup per-worker on commodity
cloud instances). In addition, we provide a containerized executable of the simulator which
includes a ZeroMQ (Hintjens, 2013) interface implementing the MapReduce pattern (Dean
and Ghemawat, 2008) for scaling distributed training algorithms. Finally, we implement
a bridge to the vehicle’s ROS interface which enables easy deployment after training has
completed, see Figure 2(c). Unlike other work (Balaji et al., 2019) our system is open source
and can be deployed on any cloud-service.

Depending on the sensor payload carried on board the vehicle it may be necessary
for the simulator to simulate a camera. Thus, the training-oriented simulator can also
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Figure 1: (a) Left: reality, right: simulation (b) DR via rendering parameters (Tempera-
ture) (c) DR via texture replacement (d) DR via static obstacle generation (e)
Tuning the rendering parameters (temperature) with natural image statistics

provide synthetic images; our implementation utilizes Unreal Engine 4 which we access via
a plugin, UnrealCV (Qiu et al., 2017). We discuss the specifics of our modeling choices via
an example environment which mimics a track instance used for experiments (see Figure 1)
in Section 3.2. A benchmark and baseline implementation for the training mode simulator
with synthetic image generation is described in Section 6.2.

3.2. Addressing the reality gap

In this section we consider two sources of error in simulated evaluations of vehicle per-
formance. The first source is the vehicle dynamics model itself. The simulator provides
variable vehicle model parameters including: mass, center of mass, moment of inertia, dy-
namic friction coefficient between the four tires and the environment surface, cornering
stiffness, and maximum acceleration/deceleration rates. In order to address the reality gap
from a system dynamics perspective, the simulator contains parameters for the vehicle and
test environment identified (see Figure 2(b)) using the methods outlined in O’Kelly et al.
(2019). The second source of error, sensor model fidelity, especially the synthetic camera is a
more pernicious factor. We utilize natural image statistics (Kundu, 2016), a measure of the
spatial complexity and color content of an image, to quantify the distributional shift between
simulation and reality. In order to minimize the gap, we adjust the renderer’s lighting tem-
perature. In addition, our plugin implements a variety of domain randomization techniques
(Tobin et al., 2017) which include renderer settings, texture replacement, and procedural
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(a) F1/10 components (b) System Identification (c) Onboard Gym API

Figure 2: Major components of the F1/10 platform and SystemID procedure.

generation of obstacles in order to improve generalization in the real-world . Finally, issues
of the environment geometry mismatch are addressed by including a state-of-the-art SLAM
front end which enables the capture of maps Hess et al. (2016). Figure 1.(a) compares the
same hallway in reality and in the simulation; (b), (c), and (d) in Figure 1 shows differ-
ent strategies of domain randomization (DR), and Figure 1.(e) details the statistics of real
images collected on the vehicle relative to a variety of simulation settings.

4. Hardware Specification and Middleware

The hardware platform, shown in Figure 2(a) F1/10 (2020), consists of two halves: a widely
available 1/10-th scale RC car modified to accommodate autonomous control inputs as well
as a sensor and compute platform which enables autonomous decision making. The first
half, known as the base chassis has 1. A high torque brushless DC motor. 2. An electronic
speed controller (VESC) based on an open source design (Vedder, 2015) to convert speed
input into motor RPM. 3. A servo motor for controlling the Ackermann steering, 4. A
Lithium Polymer (LiPo) battery pack.

The second half is called the sensor and compute platform; it consists of the sensor
payload, power management board, and the on-board computer.

The power management board provides a stable voltage source for the compute unit and
its peripherals since the battery voltage varies as the vehicle is operated. The sensor suite
includes a Hokuyo UST-10LX LIDAR, selected for its durability and high maximum scan
frequency of 40Hz. The platform includes options to mount a Intel RealSense D435i which
provides RGBD images and an integrated a IMU. Odometry is provided by the VESC. The
default compute unit is the Jetson TX2, and there is additional support for the Xavier and
Nano variant of the Jetson. The TX2 is mounted on a carrier board to reduce the form
factor.

Finally, the platform also includes a open source middleware stack comprising: a driver
that provides the interface between on-board ROS nodes and the hardware in order to
obtain sensor information and actuate the vehicle; configuration files that define the lower
level motor actuation and odometry estimation; and an OpenAI Gym interface as shown in
Figure 2(c) that enables quasi-deterministic stepping and resetting of the physical car.
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5. Benchmark Tasks and Competitions

The autonomous driving task encompasses a subset of general navigation and locomotion
problems. Through the lens of autonomous racing (AR) we further partition the navigation
problem into three distinct settings of increasing complexity. Note that our benchmark
environments allow the use of alternate rewards for training, but submitted solutions are
measured by a simple, sparse reward: lap time.
Benchmark 1: Static Kinodynamic Planning: The first benchmark environment
involves a known race-track and a single vehicle; the objective of the autonomous vehicle is
to navigate the track in a minimal amount of time; the task is considered successful only
if the trajectory is collision free. Many planning algorithms assume that it is possible to
observe the vehicle’s full state and identify accurate polyhedral representations of obstacles.
In practice, an accurate map and localization system can justify the assumption in this task.
We describe a baseline solution based on evolution strategies implemented in Section 6.1.
Benchmark 2: Online Kinodynamic Planning: The importance of hardware-based
benchmarks (at least as motivation for assumptions) is made more clear if we consider
a relaxation of Benchmark 1; the map or equivalently the location of obstacles (still
polyhedral) is not known prior to runtime. The agent must detect and avoid static obstacles
in real time. Furthermore, due to occlusions and sensor properties the vehicle’s pose restricts
a precise representation of the full map. We describe an imitation learning-based baseline
for this problem in Section 6.2.
Benchmark 3: Multi-agent Dynamic Games: Another advantage of the AR setting
is that it naturally extends to multi-agent robotics problems. In the third benchmark task
we consider two or more agents driving simultaneously on the same map. Interestingly,
a subtle variation of the training reward signal induces widely different solutions. If the
reward is given as finishing a set number of laps before the opponent, rather than minimizing
the time to finish a set number of laps the optimal strategy exhibits blocking behavior not
present under the timing based reward (Liniger and Lygeros, 2019). Since we allow arbitrary
training reward signals users are free to explore this modality. We detail a suite of control
theoretic baselines in Section 6.3.

We curate hardware-tested baseline solutions to the described benchmarks by organizing
biannual competitions (Mangharam et al., 2018a,b, 2019a,b). Each competition includes
races (Benchmark 1,3) and qualification rounds (Benchmark 2). We support entrants
by providing tools (described in this paper) and teaching material (Agnihotri et al., 2020).1

6. Baseline Solutions

6.1. Benchmark 1: Kinodynamic planning

In Benchmark 1, the environment consists of the racetrack encoded as a map, a random
starting position, and a reward function which measures lap-time. The agent, through inter-
actions with the environment, tunes a parameterized model of its dynamics, strategy, and
controller, with the objective of finding an assignment of these parameters that minimizes

1. See https://github.com/f1tenth/f1tenth_baselines for baselines and https://github.com/

f1tenth/f1tenth_gym for simulation tools.
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the lap-time. We employ the covariance matrix adaptation evolutionary strategy (CMA-
ES) Hansen et al. (2003) optimizer due to the non-smooth objective function landscape.
This baseline straddles continuous control and RL methods; the parameters of the vehicle’s
model predictive controller are tuned based on the results of rollouts which evaluate a can-
didate solution’s quality. A detailed discussion of the learning problem and approach 2 can
be found in O’Kelly et al. (2019).

The results comparing simulated lap times and the actual lap times are shown in Table
1. In all the experiments, the lap times measured on hardware rollouts are higher than the
simulated lap times. Several factors contribute to this discrepancy: the friction coefficient
between the driving surface and the tires is not constant, the steering delay is time-varying,
and the accuracy of localization varies depending on the vehicle’s location in the map.
Each of these factors causes the ego-vehicle to deviate from the optimal trajectory found in
simulation. Importantly, however, the local planning and feedback control methods which
are presented in greater detail within Section 6.3 allow the solutions found in simulation
to remain feasible in the real-world. Moreover, the difference in lap times between sim and
real is small, 0.61% for the test track, demonstrating the accuracy of the simulator.

Method Lap Time (s, sim) Lap Time (s, real)

TunerCar 16.2376 ± 0.2161 16.19
Pure Pursuit 17.2307 ± 0.0620 17.00

Table 1: Best Solution Lap Times in Sim vs. Real

6.2. Benchmark 2: Online kinodynamic planning

In Benchmark 2, a random number of static obstacles are dispersed around the track which
the agent will navigate. The agent does not have prior knowledge of the static obstacles’
positions in the map before being deployed. Our baseline implementation for this benchmark
illustrates a method to transfer a reactive LIDAR based obstacle avoidance policy to a vision
based policy via self-supervised imitation learning (SSIL). The oracle policy, based on the
follow the gap method (FGM) (Sezer and Gokasan, 2012) uses the most recent LIDAR scan
to avoid the nearest obstacle and steer toward the largest gap. We define I as the stack of
input images, S as the snapshot of the current laser scan, ao as the steering angle output from
the oracle policy at time t, and av as the steering angle output generated by the vision-based
agents at time t. We utilize the network architecture described in (Bojarski et al., 2016) and
trained on tuples (I, ao). Given a trajectory (I0, S0, av,0), (I1, S1, av,1) . . . (IT , ST , av,T ) we
use St and FGM to relabel each av,t to ao,t. The relabeled trajectories are used to iteratively
correct, via DAgger (Ross et al., 2011), the policy as the vehicle explores the state space.

In the simulated training phase, every rollout occurs in a domain randomized envi-
ronment where obstacle placement, simulator asset textures, and lighting temperature are
varied. Following the simulation-based training phase; the vehicle is deployed in the envi-
ronment and trained in the same manner in situ. After the agent is capable of completing

2. See https://youtu.be/7rOZ1ZgRGqE
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the real track without any collision, it is evaluated in the same environment with the learned
vision only policy3. We show the resulting average lap times of the imitation policy and
the oracle policy on the same Philadelphia Track in 6.1 in Table 2. SSIL DAgger pro-
duces an average lap time 5% slower than that of the FGM Oracle Policy, indicating that
the vision-based policy mimics the LIDAR based policy after sufficient DAgger iterations.
Future baselines should explore the ability of imitation learning approaches to exceed the
performance of oracle policies.

Method Avg. Lap time (s, sim) Avg. Lap time (s, real)

SSIL DAgger 22.625 ± 0.1092 26.71
FGM (Oracle) 21.55 ± 0.0967 18.24

Table 2: Performance of SSIL and DAgger on Benchmark 2

6.3. Benchmark 3: Multi-agent dynamic games

For Benchmark 3 we evaluate reactive, randomized, and model predictive approaches
to multi-agent racing. The reactive method uses the same FGM policy described in Sec-
tion 6.2. The probabalistic planning method is based on rapidly-exploring random trees
(RRT) (LaValle, 1998). The RRT planner randomly samples points in the workspace of
the vehicle and then expands a tree to find a path between the car’s current position and
goal position. We also demonstrate a variant of RRT, RRT* (Karaman and Frazzoli, 2011),
which rebuilds the tree structure based on the path traversal cost such that the selected
path asymptotically approach the global minimum cost. The solutions provided by RRT
and RRT* are not inherently dynamically feasible; thus, an additional trajectory track-
ing controller (Coulter, 1992) is utilized. The model predictive control approach, lattice
planning, and has been demonstrated on full scale autonomous vehicles (Urmson et al.,
2008). The formulation of the MPC trajectory generation component in the planner is
described in McNaughton (2011). Online, the lattice planner samples a set of goal poses
in the ego-vehicle’s moving reference frame, for each sample a trajectory, parameterized a
cubic polynomial, which drives the vehicle from its current state to the goal is computed.
Given the set of sampled trajectories, each is evaluated for feasibility and progress. This
process repeats in a receding horizon fashion.

Table 3 reports the average lap times, crash rate, and win rate of baseline solutions
on Benchmark 3. Unlike the baseline provided in the previous section, the algorithms
investigated all originate from motion planning and continuous control. In these methods
the opponent is treated as a dynamic obstacle rather than an adversarial agent. Thus,
although all the baselines have win rate higher than 50%, they all have non-zero crash
rates due to their relatively unsophisticated prediction mechanisms relative to RL and
game-theoretic approaches (Liniger and Lygeros, 2019). Further work (Sinha et al., 2020)
extends the multi-agent benchmark to balance safety and performance within our evaluation
environment, providing a suite of diverse adversarial agents.

3. See https://youtu.be/qq9I2lBAxgI
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Method Avg. Lap time (s) Crash Rate Win Rate

FGM 18.647 ± 2.65 50% 50%
RRT 17.14 ± 2.11 45% 55%
RRT* 13.91 ± 0.64 35% 65%

Lattice Planner 15.59 ± 1.22 30% 70%

Table 3: Performance of Local Planners on Multi-agent benchmark

7. Conclusion

This paper details the F1TENTH platform, an open-source evaluation framework with
virtual environments and a low-cost hardware counterpart which enables safe and rapid
experimentation suitable for laboratory research settings. We present three benchmark
tasks and baselines in the setting of autonomous racing, demonstrating the flexibility and
features of our evaluation environment. A limitation of this work is the relatively small
sample size of algorithms included in our baseline examples; however, the goal of releasing
this environment is to generate a wider variety of community submitted solutions. In the
future, we will explore more efficient methods for generating test cases suitable for high-
performance agents which fail rarely (e.g O’Kelly et al., 2018; Uesato et al., 2018).
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