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Abstract

Automated flight, e.g. first person view drone racing is a challenging task involving many
sub-problems like monocular object detection, 3D pose estimation, mapping, optimal path
planning and collision avoidance. Treating this problem, we propose an intuitive solution
for the NeurIPS (2019) Game of Drones competition, especially the perception focused
tier. We formulate a modular system composed of three layers: machine learning based
perception, mapping and planning. Fundamental is a robust gate detection for target
guidance accompanied with a monocular depth estimation for collision avoidance. The
estimated targets are used to create and update the 3D gate positions within a map. Rule
based trajectory planning is finally used for optimal flying. Our approach runs in real-time
on a state of the art GPU and is able to robustly navigate through different simulated
race tracks under challenging conditions, e.g. high speeds, confusing gate positioning and
irregular shapes.Our approach ranks on the 3rd place on the final leader board. In this
paper we present our system design in detail and provide additional experimental results.
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1. Introduction

First person view drone racing is a modern sport that recently attracted a lot of interest
in the AI research community (Kaufmann et al., 2019; Loquercio et al., 2019; Jung et al.,
2018a,b). Besides the competitive thrill it poses many practical problems for an autonomous
unmanned aerial vehicle (UAV) including:

e Robust perception based on a e Collision avoidance with static and
monocular video stream dynamic objects

e Optimal trajectory planning e Stable control of a non-linear system
with many degrees of freedom (DoF) at high speeds

Current fully autonomous solutions are still far behind human performance. To accelerate
the development and research in this area, several competitions were introduced in the past
years, e.g. IROS Drone Racing' or AlphaPilot>. The most recent NeurIPS 2019 Game

1. https://rise.skku.edu/2019-drone-racing
2. https://www.herox.com/alphapilot/community
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of Drones (GoD)? is the first fully simulation based challenge. Competitors simply need a
PC equipped with a decent GPU to participate which makes access to the challenge much
easier. Simulation avoids the risk of damaging any equipment during development and
offers additional information like object poses and their kinematics. Insights gained from
simulation can be transferred to real world applications and even cross-modal training is
possible (Bonatti et al., 2019). The simulation environment also offers the possibility to
test real hardware in the loop (HIL), e.g. flight controller or machine learning chips which
is an important component in the development cycle of applied robotics and another step
forward democratizing automated aircrafts.

This paper outlines a solution to the perception focused part of GoD (tier 2). We
propose a modular perception based approach that employs state-of-the-art convolutional
neural networks (CNNs) for pathway detection and collision avoidance in combination with
a simple rule-based mapping and policy algorithm. In the following we will describe the
task and the system architecture in detail. In addition to the official final race where our
approach ranked 3rd we also provide qualitative and quantitative results from experiments
on the training grounds. The evaluation demonstrates that our approach reliably solves the
given task and and is capable to finish in a competitive time. Nevertheless, the results also
indicate several remaining problems with room for improvement for future competitions to
come.

2. Related Work

Autonomous navigation of small scale UAVs using on-board sensors only is a young field
of research. Early works rely on GPS and inertial measurement unit (IMU) sensors only
(Hoffmann et al., 2004), use laser range finders (He et al., 2008; Grzonka et al., 2009) or
monocular RGB cameras (Engel et al., 2012, 2014), optionally with an additional depth
sensor (Bylow et al., 2013). These techniques employ classical approaches in path planning
and computer vision based on visual-inertial odometry or simultaneous localization and
mapping (SLAM). They work well when operating in static, feature-rich environments
with a good initialization but are less suited when a higher semantic understanding of the
surroundings is required. More recent methods use deep neural networks to address this
problem. There are two main paradigms in this area.

The behavior reflex approach tries to learn a direct mapping from the input domain
to the action space. Decisions are made end-to-end using the raw sensor input. Most
prominent approaches are imitation learning (Blukis et al., 2018; Bonatti et al., 2019) and
deep reinforcement learning (RL) (Walker et al., 2019; Shin et al., 2019). Imitation learning
requires a vast amount of training data to generalize well and it is naturally limited by the
performance of the demonstrator. RL is more powerful but also (even in simulation) very
expensive in terms of training time and hardware requirements.

The mediated perception approach semantically reasons about the scene and deter-
mines the flying decision based on it. Those systems follow a modular design that decouples
the path planning and control from the initial perception step. The approach is popular in
drone racing and collision avoidance (Kaufmann et al., 2019; Jung et al., 2018a,b). It enables
a more task specific network training which is feasible under limited availability of data,

3. https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing
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time and computing power. Furthermore those sub-systems can be tested and validated in
a modular way. By attaching redundant paths e.g. passive collision avoidance modules, a
higher level of safety can be achieved. For this reason, the solution proposed in this paper
follows a similar approach as the winners of the IROS 2018 Drone Race (Kaufmann et al.,
2019), who aggregate detections obtained from a CNN using an extended Kalman filter in
combination with model predictive control. While their system focused on save traversal of
a race track in a real indoor environment at comparatively low speed, we target drone racing
in a simulated outdoor environment at high velocities under challenging conditions. Our
system uses active perception for target guidance (object detection) and passive perception
for collision avoidance (monocular depth estimation).

3. Challenge

Figure 1: The AirSim environment: scenes from the final (left) and qualifier (right) tracks.

The GoD competition uses simulated race tracks in AirSim (Shah et al., 2018) which are
marked by consistently textured rectangular gates. They are embedded into realistically
looking environments like shown in Figure 1. The general goal is to fly through all gates in
the correct order without any collisions. High level control commands and accurate global
estimates for pose and kinematics of the drone are available within the environment. That
leaves two main tasks for the competition: perception and motion planning. This paper
solely addresses tier 2 of the competition which focuses mainly on perception and collision
avoidance with static objects without competing drones. As input, only single RGB images
of size (256 x 144) with small field of view are available for the front camera. Noisy gate
positions in the correct order are given in advance. To summarize, an autonomous racing
system on this tier needs to cope with the following challenges:

e Robust detection and distinction of gates with varying shapes and viewpoints in dif-
ferent environments and lighting conditions

e Inference of 3D gate positions without sensory depth information

e Optimal path planning that enables high speeds, avoids collisions and ensures observ-
ability of the target gate

e Dealing with non-linear drag and drift effects at higher speeds

e Providing detections at high frame rates with low latency
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4. System Design
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Figure 2: System Architecture

The system is designed in a fly-by-detection scheme. An overview is depicted in Figure 2.
It can be subdivided into three main parts: perception, mapping and policy.

Perception This pipeline step processes the images obtained from the on-board camera in
order to locate the next gates and potential objects that need to be avoided. Two standard
CNNs are utilized here. First, for the active perception, a FasterRCNN (Ren et al.,
2015) with a MobileNetV2 backbone (Sandler et al., 2018) is responsible for detecting up
to five 2D bounding boxes around the visible gates. Secondly, for the passive perception,
an independent SegNet (Badrinarayanan et al., 2015) estimates a dense monocular depth
map over the whole image. The architectures are specifically chosen because of their good
accuracy-latency trade-off which is important, because the perception step is the most
computationally expensive.

Mapping In theory a reliable detection of the next gate’s bounding box in 2D is suffi-
cient to determine the direction of flight given the known intrinsic and extrinsic camera
parameters. However, we found that maintaining a sparse 3D map has several important
benefits:

e Robustness to noise: By averaging over time the influence of false detections is
reduced and outliers are easier to spot.

e Gate pass detection: Close to a gate its frame moves out of view. The drone needs
to know when the gate is actually passed and to safely adjust the flight direction
towards the next gate without the risk of hitting or missing the current one.

e Speed planning: To traverse the race track as fast as possible high velocities are
important. In case of sharp curves or high lateral positional differences it is not safe
to fly too fast. Knowing about 3D gate locations in advance allows for optimal and
foresighted speed planning.
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The map is represented as an ordered set of pairs M = {(p;,0;) | p; € R3, i =1...N},
where p; is the belief position of gate ¢ in world coordinates, O; are the associated observa-
tions of that gate and N is the total number of gates. The set of observations is defined as
O; = {c;,, T, | ci, € R?, T;, € SE(3), k = 1...K;} where ¢;, denotes the 2D position of
the detected gate center and T';, is the associated camera pose for which accurate estimates
are available from the simulated IMU. M is initialized using the given noisy gate positions
from the simulator. When new detections are available the current gate beliefs are projected
onto the respective image planes by the known function 7r using the projection operator ®:

&, = ©(Ti, @ p;) (1)

All detected bounding box centers are accordingly matched, filtered and saved. In the next
step the affected gate beliefs are updated. For each observation a 3D location in world
coordinates is estimated as the point on the projection line running through the bounding
box center with minimum distance to the current gate belief:

D, = Ti_k1 ®s-m e,
s = argmin, [|B;, — pill2 (2)

The updated gate belief is then computed as the weighted average:

1 &
Pi = 7= Z wiP;, 3)
K; k=1

The exact weight distribution is a tunable hyperparameter. We found that giving new
observations higher weights works best, because they are usually more accurate and reliable.
In our final setting we used wy, = k?/ Z]K:zl 32.

Policy For the policy there are three main objectives:

e Time: Complete the whole track as fast as possible, i.e. pass all gates in the correct
order while flying with a high average velocity.

e Collisions: Avoid collisions with solid objects like gates or the ground, because that
adds a time penalty and additionally slows down the drone.

e Observability: Make sure that the next gate is in the field of view in order to allow
for good detections and map updates which is crucial to accomplish the first two tasks.

Because the gate positions are computed and refined during the race, the trajectory plan-
ning also needs to be defined in an adaptive online fashion. To keep it simple and fast the
trajectory is only locally defined in form of a straight line to a waypoint with a constant ve-
locity and a yaw angle. The procedure is detailed further in Algorithm 1. For the movement
the drone is allowed to use all three translational DoF. After each map update the local
trajectory is recalculated. When the drone is close enough to the waypoint the current gate
is counted as passed. Before it proceeds to the next gate the current movement direction
is maintained for a short period of time to avoid collisions with the current gate caused by
abrupt changes in direction. Overall that results in a piecewise linear path but in practice
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the trajectory is more smooth because the commands are passed asynchronously and the
movements are constrained by simulated physics. During each iteration the generated ve-
locity vector is verified by the monocular depth prediction. If objects come critically close,
the velocity is reset to zero. In practise this interupt occurs rarely.

Algorithm 1: LocalTrajectory planning

Input: Map M, Depth image D, Gate 0 < calcAzimuth(p,,,,)
index 1 if 0 < 0,4, then v« 0
Output: Velocity vector v, yaw angle else v+ 0
p;, O; « M(i] v < computeSpeed(Vpase, P;, Piy1: Ois T)
Ditr1, Oigy1 < Mi+1] d < rotate(peam, T~ 1)
T + getPoseIMU() ¢ < checkCollision(D) ¢ € {0,1}
pcam<_T®pway ’U(_Wd'c
5. Training

Figure 3: Dataset example with ground truth bounding boxes (left) and depth map (right).

Both neural networks are trained on a self-created dataset extracted from the training
environments that were provided by the challenge organizers. In these special environments
the simulation allows to obtain and set the true gate poses, to change their size and propor-
tions and to teleport the drone to any location. On top of that, depth maps are available for
the captured images. Leveraging these capabilities a dataset of 20.000 samples is generated.
Each sample i contains an RGB image from the on-board camera I; € R¥*"*% 4 depth
map D; € R"** and bounding boxes B; € R¥** for all k visible gates in that image. An
exemplary pair is visualized in Figure 3.

In order to train accurate models that are able to generalize well to unseen tracks the
dataset needs to contain a large variety of different viewpoints, gate distances, backgrounds,
lighting conditions and gate appearances. To accomplish this each sample is generated
using the steps in Algorithm 2. To increase the diversity even further data was extracted
from multiple different simulator maps. Both models were trained following the procedures
described in (Ren et al., 2015) and (Badrinarayanan et al., 2015). For the FasterRCNN
object classes the relative order of the visible gates was used (i.e. class 1 for the next gate,
class 2 for the subsequent one and so on). Training was conducted on a Nvidia RTX 2080t
using the ADAM optimizer (Kingma and Ba, 2015) and took for both models less than a
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Algorithm 2: Generation of a single training sample

Input: Gates G for i + 0 to len(G) do

Output: I, D, B a; + sampleAngleNormal()

a < sampleAngleUniform() d; < sampleVecNormal()

d <+ sampleVecUniform() Gli] < rotateAndShiftGate(G[i], o, d;)
G < rotateAndShiftTrack(G, o, d) Gli] « distortSizeAndShape(G|i]

i < sampleGateldxUniform() end

T « samplePoseBetweenGates(G[i], G[i+1]) I, D, B + captureData(G)
teleportDrone(T) if gatelsinView(G|i]) then goto Start

couple of hours until convergence and using a minimum of 200 epochs. The dataset was
split into a training and a validation set in a 9:1 ratio.

6. Results

Figure 4: Qualitative results on the test tracks: (a, b, e, f) predicted bounding boxes on
input image, (c, d, g, h) estimated depth maps with corresponding input image,
(top row) good examples, (bottom row) failure cases.

After training the gate detector achieves an average precision (AP) of 0.93 and an average
recall (AR) of 0.94 within an considered intersection over union (IoU) range of 0.5...0.95
on the validation set. Depths are estimated with a mean root square error (MRSE) of
2.45 in a range of 0...25m. Both scores are compliant to the state-of-the-art. Some
qualitative results from the test tracks are shown in Figure 4. Despite occasional mistakes
the gate detector is able to localize the closest gates even when they are partially occluded
or viewed from a flat angle. We tested the performance of the whole system on one of the
training environments. Figure 5(a) depicts the race track from above with the estimated
gate positions from the final map M. The average error is 0.38 m which is sufficient for the
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drone to complete the whole track without missing any gates in 7/10 runs at moderate speed.
The success rate strongly depends on the base speed and the initial noisy gate positions.
At higher velocities fewer detections are available for each gate leading to less accurate
predictions. For the test tracks policy hyperparameters were manually tuned towards a
higher average speed which resulted in a drastically reduced success rate. The scores* for
the best runs are listed in Table 5(b). Our approach ranked 3rd in both rounds right after
the 2nd place.

120
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(a) Policy evaluation on training track. (b) GoD ranking results.

Figure 5: Experimental results. Figure (a) shows one of the training tracks with estimated
gate positions from above. Table (b) lists the final competition leader board,
with r as the percentage of passed gates, t as time and the maximum and average
velocities vyqe and v.

7. Conclusion

We present a real-time capable and competitive solution for simulated autonomous drone
racing that is composed of three main pipeline steps: perception, mapping and policy. The
final competition scores and the experimental results have shown that the system is able
to detect and locate the 3D gate positions accurately and reliably. Furthermore, a high
frame rate and careful hyper-parameter tuning was required to accomplish the final race
performance. However, there is still room for improvement and we plan to investigate
further on a more accurate 3D gate position estimation as well as their orientations for a
more optimal path planning. Other interesting research directions include the incorporation
of RL to solve parts of the problem or adding more redundant perception paths to increase
robustness.

4. https://microsoft.github.io/AirSim-NeurIPS2019-Drone-Racing/leaderboard_final.html
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