
Proceedings of Machine Learning Research 123:100–109, 2020 NeurIPS 2019 Competition and Demonstration Track

Evolution Algorithm and Online Learning for Racing Drone

Sangyun Shin kimshin812@gmail.com

Yongwon Kang kyw2539@sju.ac.kr

Yong-Guk Kim* ykim@sejong.ac.kr

Department of Computer Engineering, Sejong University, Seoul, Korea

Editor: Hugo Jair Escalante and Raia Hadsell

Abstract

Drone racing has become one of the challenging topics in robotics and machine learning
because such a drone requires to equip with high performing modules that carry out de-
manding tasks, such as obstacle avoidance, mapping, and planning. In addition, one of
the most crucial aspects of the racing drone is its speed. However, this is the somewhat
less studied area compared to conventional topics such as obstacle avoidance and path-
finding, probably because designing a loss function for the speed optimization with the
gradient-based method is difficult. In this paper, we propose an evolutionary scheme for
optimizing the speed-related parameters for shortening the travel time rather than using
the gradient-based loss for them. For the planning part, we use an online learning method
with the racing parameter optimization. Therefore, our approach is to combine evolution-
ary algorithms for speed optimization and gradient-based online learning, achieving first
place in Tier 2 and Tier 3 in Game of Drones competition at NeurIPS 2019.

Keywords: Deep Drone Racing, Evolutionary Algorithm, Online Learning

1. Introduction

AI-based drone racing has gained popularity lately, mainly because of the challenges in
operating the drone fast and accurately. For the successful drone racing, it requires high
performing technologies that have been actively studied with deep neural networks. In par-
ticular, vision-based obstacle avoidance capability has become important in drone racing
because conventional navigation algorithms, such as Simultaneous Localization and Map-
ping(SLAM) show its weakness in dealing with the change in scene, though it has met great
needs on a static map without changes. This has led studies utilizing SLAM to apply a
vision-based approach with deep neural network, i.e. object detection, for dealing with the
change in the scene. On the other hand, instead of merging deep models into SLAM, studies
developing a neural network to handle everything have shown promising results in drone
navigation. To take advantage of the recent progress in deep learning for the task, these
studies have diverged into either utilizing supervised learning or reinforcement learning.
While deep neural network-based approaches have shown great performance in navigating
drone by obstacle avoidance, however, gradient-based optimization of deep models have dif-
ficulties in optimizing certain conditions, such as maximizing the speed, which is the crucial
condition for drone racing.

Recent studies have suggested that using evolutionary algorithms with neural networks
could enhance optimization performances. Though there are many applications of evolu-

c© 2020 S. Shin, Y. Kang & Y.-G. Kim*.



Evolution Algorithm and Online Learning for Racing Drone

tionary algorithms for neural network-based systems, one of the crucial reasons for adopting
the evolution scheme is that such algorithms do not require gradient during the optimization
process. In the present study, we propose an evolution-based optimization for racing param-
eters with simultaneous gradient-based online learning for drone racing. Our contributions
are:

1. In contrast to the conventional drone navigation problem where speed parameters are
often designed by manual fine-tuning, we propose an evolution-based approach for
optimizing the speed parameters.

2. A significant advantage of our proposed system is that the speed optimization for the
racing does not require any gradient-based method, leading to the remarkably simple
and intuitive design of the objective function, i.e., travel time of the racing drone.

3. It is shown that two different optimization methods, such as gradient-based and
evolution-based approaches, can successfully co-operate with each other to make a
significant improvement of the system performance for drone racing.

2. Related work

2.1. Neural network based drone controller

Deep neural network-based methods have been proposed to enhance the ability to control
the drone using computer vision for collision avoidance, navigation, etc (Carrio et al., 2017).
Among many, supervised learning and reinforcement learning have been successful. First,
supervised learning can be a useful approach if a large amount of labeled data is avail-
able. Recently, by utilizing a simulation environment during training, a CNN based model
for real-time navigation in a drone-racing track is proposed using micro UAV (Kaufmann
et al., 2018). Similarly, by using a large amount of data collected from the urban area, it
has been shown that a drone can navigate robustly by avoiding obstacles appearing in a
city (Loquercio et al., 2018).

Some researches try to overcome the issue of collecting and labeling a large number of a
dataset with the Reinforcement Learning(RL) perspective. By using sensory data from an
accelerometer, it is shown that the RL model can plan swing-free trajectories while carrying
the suspended load task (Faust et al., 2017). By applying a segmentation model with actor-
critic models, (Shin et al., 2020) has shown that an actor-network can successfully navigate
through obstacles using only visual input, where they have used the pre-trained actor model
and have trained it for the Game of Drones NeurIPS 2019 competition.

2.2. Neural network optimization with evolutionary algorithm

Recently, evolutionary algorithms have gained popularity in assisting the optimization pro-
cess for deep neural network based system. (Miikkulainen et al., 2019) has shown that
evolutionary optimization for finding the best architecture enhances the performance of the
network without any delicate tuning. Instead of finding the architecture, (Young et al., 2015)
has shown that an evolutionary algorithm could be used to optimize the hyper-parameters
of the network. In this study, a genetic algorithm (Davis, 1991) among many evolutionary
algorithms has been used for the hyper-parameter optimization for the racing drone.

101



Evolution Algorithm and Online Learning for Racing Drone

Figure 1: Flow diagram of the racing parameter optimization with online training for each
process. Using the genetic algorithm, t th generation consisting of N population
optimizes racing parameters such as maximum velocity, acceleration, and dist.
Each gene consists of racing parameters, and their corresponding process runs
the racing with the copied object detection model and control network f . Once
the t th generation finishes, the best performing genes are chosen, and their
parameters are combined together to make t + 1 th generation. Note that the
online training for f is performed during these racings.

3. Method

In this section, we describe our learning process for simultaneous online training of neural
network as well as optimizing the latent vectors consisting of racing parameters for the
racing. Object detection models are adopted to detect the gates in the given monocular
First Person View(FPV) image.

3.1. Online training of neural network for controlling the drone

To make a neural network learn to carry out sophisticated navigation against challenging
objects and tracks, the online training scheme is crucial throughout the multiple drone
racings. We have adopted a pre-trained actor-network f (Shin et al., 2020) for the online
training with the object detection model, as shown in Figure 2. f outputs linear velocities in
X, Y, and Z, which are later converted to the global coordinates through the post-processing
described in the latter of this section. Therefore, the training of f requires target values
corresponding to X(horizontal), Y(forward), and Z(vertical) movements, respectively. The
loss function Lo for online learning of f , given the processed data FPV as shown in Figure
2, is defined as:

Lo =
1

n

n∑
i

(Ci − f(FPVi))
2 (1)

where Cxz for horizontal and vertical targets are :

102



Evolution Algorithm and Online Learning for Racing Drone

Cxz
t = f(x, z|FPVt−1) +

imgcenter −Gatet
imgwidth,height

. (2)

The target value Cf for moving forward using the distance d between a current position to
a next gate is:

Cy
t = f(y|FPVt−1) +

dt−1 − d

dt−1
(3)

Here, Gatet stands for the center of a detected gate in X and Y from the raw image plane
when the tth action is made, and f indicates a neural network that receives the location
of the gate detected in an image plane. Note that X in image plane corresponds to the
horizontal movement in control output of f , whereas Y in image plane corresponds to the
vertical movement in f . imgcenter is the center of the image plane in X and Y . imgwidth and
imgheight are the width and height of the image, respectively. Note that Lo is designed to
make the drone passing through the center of the detected gate by considering the previous
outputs with regard to the center of the gate, as shown in Figure 3.

The control function we have used is moveBySplineAsync, as the function provides a
reliable control for Yaw. That is, the Yaw of the drone is automatically changed following
X and Y movement in global coordinate. Since our control network f produces X, Y, and
Z linear velocities in the local frame, we have used the rotation matrix to covert the linear
velocities into the global coordinate. The equation we used to calculate X, and Y global
position with the linear velocities from f is as follow:

qx = ox + cos(Y aw) ∗ (px − ox)− sin(Y aw) ∗ (py − oy)

qy = oy + sin(Y aw) ∗ (px − ox) + cos(Y aw) ∗ (py − oy)
(4)

where px and py stand for the point that x and y vectors were initially pointing, and ox and
oy are the origin of the vector. qx and qy are the rotated vector given yaw angle Y aw. For
4 directions, such as Forward, Backward, Left, and Right, qx and qy have been calculated
for every direction each time a control command has to be made. A combination of these
vectors is used to make the drone move. Since controlling roll and pitch leads to make the
drone move to either forward/backward or left/right, respectively, we were able to convert
the pre-trained actor model’s output into the command for moveBySplineAsync. Once
the drone moves by setting a position in X, Y, and Z, we have set a threshold parameter
dist for the termination of the command. That is, the movement command stops when the
distance between the drone’s current position and destination is less than dist. Figure 2
shows the process of online training for making the drone pass through the center of the
gate.

3.2. Racing parameter optimization with evolutionary algorithm

Racing parameters considered for the optimization are maximum velocity vel, acceleration
acc, and a distance threshold dist that determines whether or not the drone arrives at a
location where it was previously produced by the neural network f . The three parameters
are set according to the number of sections in the track. That is, given the track is divided
into n number of sections, the three parameters belonging to the section is applied to the

103



Evolution Algorithm and Online Learning for Racing Drone

Figure 2: Illustration of the flow from detecting the object to making an input for Control
Net f . An array with the same size as the image is first initialized with zero,
and the region where the gate is detected is filled with value one. The array is
divided into width w and height h for averaging the value inside each of them.
Lastly, these w×h number of average values are fed into the control network f
for producing the linear velocities of the drone.

output of the neural network f in Equation 1. For example, if the drone is flying in section
1, then the velocity, acceleration, and the distance threshold set for section 1 are applied
to the output of neural network. By defining Airsim as a function running the racing and
returning the termination time, the objective function we define for the minimization using
a genetic algorithm is as follow:

Airsim(w1
vel, w

1
acc, w

1
dist, .., w

n
vel, w

n
acc, w

n
dist) (5)

where n is a total number of gates, and w is variable that the genetic algorithm has to
optimize. Note that there are 3n variables in total. Using w, function moveOnSplineAsync
is called with its parameter set to wvel and wacc. For instance, if the drone is moving just
passed first gate and is going toward the second gate, all of moveOnSplineAsync call is
carried out with the parameter w2

vel and w2
acc with the threshold set to w2

dist until the drone
passes gate 2. In the experiment, we have set n as the number of gates, so that the section is
divided by the gate. For instance, if the drone passed through the gate 1 with then the w1

vel,
w1
acc, and w1

dist then section becomes 2 and w2
vel, w

2
acc, and w2

dist for section 2 are applied
for the control. The process was terminated either when the drone arrives at the last gate
or when the travel time exceeds the shortest travel time, which leads each generation to
evolve faster.

4. Experiment

In this section, we describe the experimental design for the competition and demonstration
of the results for Tier 2 and Tier 3 that we attended. First, we show the training and testing
performances for the object detection models, followed by the online training process for
passing through the centers of gates. Lastly, a detail evolutionary scheme we used for the
racing parameter optimization is illustrated.

4.1. Software and hardware specifications

A workstation equipped with Intel Xeon E5-2600 v4 CPU and 16×Nvidia Titan X with 256
Gb RAM were used for optimizing both racing parameters and Lo. Racing environments

104



Evolution Algorithm and Online Learning for Racing Drone

FPS
Complete/

Non-complete
Missing Collision Lag

SSD
Mobilenet

27 9/1 2.3 5.4 138

SSD
Inception

21 7/3 4.1 7.2 172

FRCNN
Resnet

9 9/1 4.72 2.4 220

RFCN
Resnet

8 5/5 8.4 2.2 254

Table 1: Success ratio, average numbers of the missing gate, collision, and lag time when
using each object detection model for Tier 2 in qualification round. Success
ratio was measured by calculating whether or not the drone could reach the goal
during 10 trials. Note that the experiments for the success ratio were carried out
after the first reach to the goal point during online learning.

FPS
Complete/

Non-complete
Missing Collision Lag

SSD
Mobilenet

26 9/1 1.7 3 183

SSD
Inception

21 8/2 3.4 5.2 214

FRCNN
Resnet

9 9/1 2.2 2 275

RFCN
Resnet

9 7/3 4.2 1.4 290

Table 2: Success ratio, average numbers of the missing gate, collision, and lag time when
using each object detection model for Tier 3 in qualification round.

were provided by Microsoft Airsim (Madaan et al., 2020) for Game of Drones competi-
tion at NeurIPS 2019. Python 3.6, Tensorflow 1.10.0 (Abadi et al., 2015), and OpenCV
3.4.1 (Bradski, 2000) were used for our network programming in Ubuntu 16.04 OS.

4.2. Object detection models

In this experiment, we wanted to see which object detection model performs the best for
the task. Since the task required a detection model to not only accurate but also fast,
we carried out experiments with various models using Tensorflow Object detection model
zoo(Pkulzc et al., 2019). For the training, we collected 987 images from training maps and
qualification maps. These data were labeled into four classes, consisting of tree, sky, gate,
and gate entry. Table 1 and Table 2 show the detection models’ performances for Tier 2
and Tier 3. By considering both the accuracy and the execution speed, SSDMobileNet
was selected for the final round and remaining experiments.

105



Evolution Algorithm and Online Learning for Racing Drone

Figure 3: Illustrations of the average loss values Lo throughout the training for Tier 2 (a),
and Tier 3 (b). Here, an optimization step means a racing from the start to the
terminal state. The red lines in each (a) and (b) indicate the steps when the
evolution-based optimization started. The yellow lines in (c) and (d) point the
direction produced by the control network f at the 11th gate in Tier 3. Note that
the control network f outputs the direction with the possible collision toward the
gate at the optimization step 120 in (c), whereas it outputs the direction towards
the center of the gate at step 160 in (d).

4.3. Online training for control network f

Training the control network f was carried out by online training for Tier 2 and Tier 3
individually. Before the training, we have adopted a pre-trained control network f from
the study (Shin et al., 2020), where a model f was trained to maneuver the drone towards
the indicated direction from a segmentation model. However, since the environment for
the competition is much more challenging with diverse objects, we have used the object
detection model and systematically label the gate’s position with higher values as similar
to the segmentation model indicated where to go, as shown in Figure 2.

Figure 3 shows the process of online training and the loss values Lo calculated by Equa-
tion 1. Before the racing parameter optimization, we have trained the network by minimiz-
ing Lo until the drone was able to reach the destination. For Tier 2, 153 racings in total
were needed for the initial reach to the destination, and it was 189 racings for Tier 3. After
the initial arrivals to the goal point, the optimization of the racing parameters started. For
the learning, Adam optimizer with the learning rate 5e−3 was used.

106



Evolution Algorithm and Online Learning for Racing Drone

Figure 4: Illustration of travel times for Tier 2 (a) and Tier 3 (b) during the racing pa-
rameter optimization using the genetic algorithm for the final round. Here, the
shortest travel times among genes of each generation are chosen. Our demo video
can be found at https://youtu.be/I8z1Ebs6eoY

It was shown that the loss value went down stable before the racing parameter optimiza-
tion began. However, with the racing parameter optimization, the loss value fluctuated as
the hyper-parameters, such as vel, acc, and dist, changed through the optimization. Based
on this, it was found that those parameters could make a difference in resulting action,
though the network f produces the same value in the identical situation. This indicates
that changing the racing parameters causes a significant effect in racing.

4.4. Racing parameter optimization

To see how much optimizing the racing parameter could help the overall performance, we
have adopted the genetic algorithm, which is one of the evolution-based optimizations. A
number of mutations were set to 2 in each generation, and the number of parents for the
next generation was set to 4 for both Tier 2 and Tier 3. Initial parameters were generated
from random uniform distributions. For vel, the range of initial values was from 30 to
200, and it was from 30 to 100 for acc. Lastly, it was from 2 to 32 for dist. As shown in
Figure 4, optimizing the racing parameters have significantly improved the travel time. As
shown in Figure 1, we adopted parallel processes for this optimization, where each process
played a role as a gene. The shortest travel time for Tier 2 among 225,000 racings during
9000 generation was 56 sec, and it was recorded 71 sec for Tier 3 among 270,000 racings in
total. During the generations, the travel time became shorter without fluctuating, because
every racing was terminated when its travel time exceeds the shortest travel time of the
moment. However, there were periods when the algorithm had difficulty finding better
racing parameters. For example, around generation 4400 in Figure 4 (a), it took about 600
generations to find the better racing parameters that make the travel time shorter.

5. Conclusion

In this study, we propose a learning scheme where multiple processes are individually ded-
icated to finding optimum racing parameters while each of them simultaneously carries
out online learning for vision-based drone racing. Within very challenging environments

107



Evolution Algorithm and Online Learning for Racing Drone

where high-performance obstacle avoidance and navigation abilities are necessary, we have
made use of a single network dealing with such challenging surroundings. We found that an
evolution-based approach for racing parameter optimization can play a crucial role in short-
ening the travel time, which led us to achieve first place in the competition. In contrast to
the conventional method for drone navigation, such as SLAM, our approach requires a single
neural network maneuvering the drone without expensive computation for post-processing.
Such an approach makes our drone free from the lag caused by heavy post-processing for
the control command, which in turn makes it reach the destination fast.

Acknowledgments

This research was supported by the MSIT(Ministry of Science and ICT), Korea, under
the ITRC(Information Technology Research Center) support program(IITP-2020-2016-0-
00312) supervised by IITP.

References

Mart́ın Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. URL http://tensorflow.org/. Software available from tensorflow.org.

G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

Adrian Carrio, Carlos Sampedro, Alejandro Rodriguez-Ramos, and Pascual Campoy. A
review of deep learning methods and applications for unmanned aerial vehicles. Journal
of Sensors, 2017, 2017.

Lawrence Davis. Handbook of genetic algorithms. 1991.

Aleksandra Faust, Ivana Palunko, Patricio Cruz, Rafael Fierro, and Lydia Tapia. Auto-
mated aerial suspended cargo delivery through reinforcement learning. Artificial Intelli-
gence, 247:381–398, 2017.

Elia Kaufmann, Antonio Loquercio, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and
Davide Scaramuzza. Deep drone racing: Learning agile flight in dynamic environments.
In CoRL, 2018.

Antonio Loquercio, Ana I Maqueda, Carlos R del Blanco, and Davide Scaramuzza. Dronet:
Learning to fly by driving. IEEE Robotics and Automation Letters, 3(2):1088–1095, 2018.

Ratnesh Madaan, Nicholas Gyde, Sai Vemprala, Matthew Brown, Keiko Nagami, Tim
Taubner, Eric Cristofalo, Davide Scaramuzza, Mac Schwager, and Ashish Kapoor. Airsim
drone racing lab. arXiv preprint arXiv:2003.05654, 2020.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Fran-
con, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep
neural networks. In Artificial Intelligence in the Age of Neural Networks and Brain Com-
puting, pages 293–312. Elsevier, 2019.

108

http://tensorflow.org/


Evolution Algorithm and Online Learning for Racing Drone

Pkulzc, Vivek Rathod, Mark Sandler, and Neal Wu. Tensorflow detection model
zoo. https://github.com/tensorflow/models/blob/master/research/object_

detection/g3doc/detection_model_zoo.md, 2019.

Sang-Yun Shin, Yong-Won Kang, and Yong-Guk Kim. Reward-driven u-net training
for obstacle avoidance drone. Expert Systems with Applications, 143:113064, 2020.
ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2019.113064. URL http://www.

sciencedirect.com/science/article/pii/S095741741930781X.

Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and Robert M
Patton. Optimizing deep learning hyper-parameters through an evolutionary algorithm.
In Proceedings of the Workshop on Machine Learning in High-Performance Computing
Environments, pages 1–5, 2015.

109

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
http://www.sciencedirect.com/science/article/pii/S095741741930781X
http://www.sciencedirect.com/science/article/pii/S095741741930781X

	Introduction
	Related work
	Neural network based drone controller
	Neural network optimization with evolutionary algorithm

	Method
	Online training of neural network for controlling the drone
	Racing parameter optimization with evolutionary algorithm

	Experiment
	Software and hardware specifications
	Object detection models
	Online training for control network f
	Racing parameter optimization

	Conclusion

