
Proceedings of Machine Learning Research 123:215–231, 2020 NeurIPS 2019 Competition and Demonstration Track

MicroNet for Efficient Language Modeling

Zhongxia Yan zxyan@mit.edu

Massachusetts Institute of Technology

Hanrui Wang hanrui@mit.edu

Massachusetts Institute of Technology

Demi Guo dguo@college.harvard.edu

Harvard University

Song Han songhan@mit.edu

Massachusetts Institute of Technology

Abstract

It is important to design compact language models for efficient deployment. We improve
upon recent advances in both the language modeling domain and the model-compression
domain to construct parameter and computation efficient language models. We use an effi-
cient transformer-based architecture with adaptive embedding and softmax, differentiable
non-parametric cache, Hebbian softmax, knowledge distillation, network pruning, and low-
bit quantization. In this paper, we provide the winning solution to the NeurIPS 2019
MicroNet Challenge in the language modeling track. Compared to the baseline language
model provided by the MicroNet Challenge, our model is 90 times more parameter-efficient
and 36 times more computation-efficient while achieving the required test perplexity of 35
on the Wikitext-103 dataset. We hope that this work will aid future research into efficient
language models, and we have released our full source code on GitHub.

Keywords: Language model, model compression, Transformer

1. Introduction

Language modeling has been one of the most commonly studied sequence modeling tasks
and one of the most studied tasks in the natural language processing community. Within
the past few years, numerous works have improved the state-of-the-art language modeling
results with deep neural network (DNN)-based sequence models. The Long Short-Term
Memory (LSTM) network (Hochreiter and Schmidhuber, 1997) was designed to model de-
pendencies in sequential data, and has successfully been applied to language modeling
in a series of works, including the AWD-LSTM (Merity et al., 2017). Nevertheless, the
LSTM architecture suffers from the vanishing gradient effect, limiting its ability to model
long-term dependencies. On the other hand, the development of the Transformer atten-
tion architecture (Vaswani et al., 2017) inspired new Transformer-based language models,
such as Transformer-XL (Dai et al., 2019), which achieved new state-of-the-art in language
modeling benchmarks. In addition, several works have developed architecture-agnostic en-
hancements such as adaptive embedding and adaptive softmax (Baevski and Auli, 2018),
non-parametric cache (Grave et al., 2016), Hebbian softmax (Rae et al., 2018), and dynamic
evaluation (Krause et al., 2017). While these works focused on improving the predictive

c© 2020 Z. Yan, H. Wang, D. Guo & S. Han.

https://github.com/mit-han-lab/neurips-micronet

MicroNet for Efficient Language Modeling

accuracy of language models, relatively few works have optimized for parameter and com-
putational efficiency, which are critical for tasks with hardware constraints.

On the other hand, there have been numerous advances in parameter and computation
efficient neural network architectures and model-compression techniques for deep neural net-
works. SqueezeNet (Iandola et al., 2016) and MobileNet (Howard et al., 2017) are efficient
convolutional neural networks that take advantage of 1x1 convolutions and depthwise sepa-
rable convolutions, respectively. Ma et al. (2019) applies Block-term Tensor Decomposition
(Lathauwer, 2008) to compress transformer-based language models. Architecture agnostic
model compression techniques such as knowledge distillation (Hinton et al., 2015), network
pruning (Han et al., 2016), and trained quantization (Han et al., 2016) are commonly used
techniques to either increase the predictivity of neural networks or decrease the model size.
There are also recent efforts focusing on automatically designing efficient models (He et al.,
2018; So et al., 2019; Wang et al., 2020b) and designing specialized accelerators to process
the compressed models (Parashar et al., 2017; Zhang et al., 2020). Nevertheless, these tech-
niques are mostly developed on convolutional neural networks and computer vision tasks,
and only a handful of recent works like DistilBERT (Sanh et al., 2019) and HAT (Wang
et al., 2020a) applied them to natural language tasks.

In this work, we integrate advances in both the language modeling domain and the
model-compression domain to construct parameter- and computation-efficient language
models. Specifically, we evaluated our model with the criteria of the NeurIPS 2019 Mi-
croNet Challenge (Gale et al., 2019). Compared to the baseline language model provided
by the MicroNet Challenge, our model is 90 times more parameter-efficient and 36 times
more computation-efficient while maintaining good performance. Our entry into the Mi-
croNet Challenge achieved the top performance in parameter- and computation-efficiency
in the language modeling track.

2. NeurIPS 2019 MicroNet Challenge Language Modeling Track

The NeurIPS 2019 MicroNet Challenge asks contestants to build efficient yet still performant
models (Gale et al., 2019). In particular, the language modeling track of the competition
asks participants to train efficient word-level language models on the Wikitext-103 Dataset
(Merity et al., 2016), a standard benchmark dataset composed of 103 million words in the
training set, 217 thousand words in the validation set, and 245 thousand words in the test
set, with a total of 267735 word tokens in the vocabulary. The challenge requires that
entries achieve a word-level perplexity of below 35 on the test set, but otherwise does not
factor perplexity into the score.

2.1. Scoring

Assuming an entry achieved the prerequisite perplexity threshold of 35, it is scored based
on two criteria:

1. Parameter storage. This is the total number of 32-bit model parameters required to
be loaded from disk to perform inference. Reduce-precision model parameters with
less than 32-bits are counted as a fractional number. For example, an 8-bit parameter
counts as 1

4th of a parameter.

216

MicroNet for Efficient Language Modeling

2. Math operations. This is the mean number of 32-bit arithmetic operations required to
perform inference on each token in the tokenized version of the test set. Multiplies and
additions count separately. Tokens are assumed to be fed sequentially to the model,
and the model must predict the next token before receiving it. Conversion to and from
reduced-precision format (e.g., int8) do not count as operations. Reduced-precision
operations are counted analogously to the parameter storage.

The total score of an entry is normalized by the size of the LSTM language model in Rae
et al. (2018), which has 159M 32-bit parameters and 318M 32-bit math operations

Score =
Parameter Storage

159M
+

Math Operations

318M
.

3. Core Language Model

For a corpus of tokens x = (x1, . . . , xN), we take the standard approach to modeling the
joint probability P (x) by factorizing it into a product of conditional probabilities

P (x) = P (x1)
N∏
n=2

P (xn|x1:n−1).

We model each conditional probability P (xn|x1:n−1) term with a transformer-based neural
network with a categorical distribution output. Here discuss the set of language modeling
enhancements that are applicable on top of the vanilla transformer (Vaswani et al., 2017).

3.1. Transformer-XL Model

The Transformer-XL model extends the vanilla Transformer decoder model (Vaswani et al.,
2017) by adding segment-level recurrence with state reuse and relative positional embed-
dings (Dai et al., 2019). These modifications improve the inference-time computational
efficiency greatly when comparing with the vanilla Transformer. To maintain a fixed con-
text size for predicting each token, the vanilla transformer requires full forward-computation
of the entire context due to its absolute positional embedding, while the Transformer-XL
merely needs to compute the forward-computation for one token due to its relative po-
sitional embeddings. We note this computational advantage of the Transformer-XL and
incorporate it into our model.

3.2. Joint Optimization of Groups of Short Contexts

While Transformer-XL focuses on modeling long-term dependencies with per-layer context
size Cxl on the order of thousands of tokens, we experiment with using short per-layer
context size C � Cxl in the MicroNet challenge; this approach allows us to train multiple
contexts jointly and reduces the test-time computation cost.

Transformer-XL and our model both consist of L layers, allowing the size of the context
to grow linearly with the number of layers. However, due to limitations of GPU memory,
Transformer-XL only backpropagates to the previous Cxl − 1 dependencies at training-
time—dropping the gradients to further dependencies—despite using L(Cxl−1)+1 previous

217

MicroNet for Efficient Language Modeling

dependencies at test-time. In addition, Dai et al. (2019) reported diminishing decreases in
perplexity as Cxl increases.

In contrast, we choose a relatively short per-layer context size C on the order of a
few hundred tokens but jointly optimize over an extended context of Ce tokens. Each
additional layer allows us to backpropagate to C − 1 more dependencies at training-time,
so in total we backpropagate to dependencies up to min(Ce, L(C − 1) + 1) tokens away
across L layers. In practice we choose Ce ≥ L(C − 1) + 1 so that we can backpropagate
to up to L(C − 1) + 1 dependencies at training-time. At test-time, each prediction has an
efficient per-layer context of C and a total context of L(C − 1) + 1. In Appendix C, we
verify that our choice of C � Cxl is ideal in parameter- and computation-efficient settings.
We illustrate joint training across short contexts in Figure 1.

︸ ︷︷ ︸
Cxl=4

L = 2

(a) Two consecutive training steps for
Transformer-XL: each step the model
predicts Cxl − 1 new tokens from the
computed dependencies (red) and the
stored dependencies (yellow). Gradi-
ent is only backpropagated to the com-
puted dependencies but not the stored
dependencies.

︸ ︷︷ ︸
C=4︸ ︷︷ ︸

Ce=9

(b) One training step for our model: the
model predicts Ce new tokens by com-
puting all dependencies and keeping
all gradient information. In the blue
triangle, we backpropagate the gra-
dient of the top node to all of its
L(C − 1) + 1 dependencies.

Figure 1: Transformer-XL vs. our model. Black lines represent forward- and backward-
propagation while gray lines represent forward-propagation only. Each blue tri-
angle represents all the dependencies of the top node in the triangle.

3.3. Adaptive Embedding and Softmax

We use the adaptive embedding and adaptive softmax as presented in Baevski and Auli
(2018). Naive word embedding and softmax require parameter, memory, and computation
costs proportional to the vocabulary size, which significantly reduces the batch size available
for tasks like Wikitext-103, which has a vocabulary size of 267735. Intuitively, adaptive
embedding and softmax allow us to allocate more representational power to the embedding
space of tokens that occur more frequently in the training set; we sort the tokens in the
vocabulary by frequency and assign smaller embedding vectors to less frequent vocabulary.

218

MicroNet for Efficient Language Modeling

3.4. Hebbian Updates

We experiment with using Hebbian softmax (Rae et al., 2018), which updates the output
embedding by combining traditional gradient descent and interpolation with the last hidden
activations. Rae et al. (2018) suggests that non-parametric Hebbian updates help the
embedding memorize the representations of infrequent tokens.

3.5. Differentiable Non-parametric Cache

We explore the use of a non-parametric cache with a cache size on the order of thousands of
activations. As described by Grave et al. (2016), the non-parametric cache stores the most
recent activations of the network and their corresponding labels, which improves prediction
for infrequent tokens that appeared in the recent context. We define cache size ncache and
model activation h. To calculate cross entropy loss for token xn, we use predicted token
probability P (xn) given by

P (xn|x1:n−1) = (1− λcache)Psoftmax(xn|x1:n−1) + λcachePcache(xn|x1:n−1)

Pcache(xn|x1:n−1) ∝
ncache∑
i=1

eθcacheh
T
n−ihn1xn−i=xn ,

where Psoftmax is the output probability of the language model and Pcache is the binned
softmax of cache similarities.

While Grave et al. (2016) and Rae et al. (2018) perform hyperparameter grid-search over
θcache and λcache on the validation set, we make an enhancement to jointly optimize the cache
hyperparameters with gradient descent during training. We make an additional observation
that batches at training-time are randomly sampled with no relation to the previous batch,
while batches at test-time are iterated in order. To exploit this structure, we explore the
effect of local search on the cache parameters θcache and λcache on the validation set after
training. Since we may use a different cache size for local search, we define nt

cache and ns
cache

to denote the cache size at training-time and local search-time, respectively.

4. Compression Techniques

We experiment with three compression techniques—knowledge distillation, pruning, and
quantization—on top of our core language model.

4.1. Knowledge Distillation

The knowledge distillation technique (Hinton et al., 2015) first learns a larger, more predic-
tive teacher model Pteacher then transfers its behavior into a more compact student model.
For efficiency, we compute the largest 30 “soft” labels S30 ⊂ {Pteacher(x|x1:n−1) : x ∈ Vocab}
for token xn in the training set. We train the student model with distillation loss Lsoft in
addition to the standard crossentropy loss Lhard, which uses xn as the ground truth label.
We apply teacher annealing (Clark et al., 2019) to linearly reduce the weight of the Lsoft

219

MicroNet for Efficient Language Modeling

from λmax to λmin in T training steps. The total loss for token xn at step t is

Lt(xn) = (1− λsoft(t))Lhard(xn) + λsoft(t)Lsoft(Pteacher)

Lsoft(Pteacher) = −
∑
x∈S30

Pteacher(x|x1:n−1) logP (x|x1:n−1)

λsoft(t) = λmax −
t

T
(λmax − λmin)

4.2. Pruning

To prune a given model, we perform sensitivity analysis (Li et al., 2016) on the model’s
parameter matrices Φ = {φ1, . . . , φp} to analyze how the performance of the model degrades
with sparsity ρφ of each parameter. We empirically obtain the ξφ = fφ(ρφ), which maps
the sparsity of φ to the model perplexity ξφ. Next, we choose a target model sparsity ρ as
a hyperparameter, which is a weighted combination of the parameter sparsities ρφ.

ρ =

∑
φ∈Φ |φ|ρφ∑
φ∈Φ |φ|

=

∑
φ∈Φ |φ|f

−1
φ (ξ∗)∑

φ∈Φ |φ|

In practice, we solve for the perplexity threshold ξ∗ by doing a binary search on values of ξ∗

until we achieve a model sparsity of ρ. We then use Automatic Gradual Pruning (Zhu and
Gupta, 2017) to simultaneously prune parameters with target sparsities ρφ = fφ(ξ∗), which
specifies different levels of aggressiveness for different parameters. We explore the effect on
model size and performance for several values of ρ.

4.3. Quantization

To quantize a given model, we choose a bit-width w to quantize our model to, then per-
form one step of quantization-aware training with linear-range symmetric fake-quantization
(Jacob et al., 2018) on the model parameters and activations. To ensure that our model
can be expressed in reduced-precision integer representation, we make sure that the last w
bits of the mantissa of the inverse scale factors are 0. We perform quantization only on
the non-embedding weights and on activations with no normalization operations; we do not
quantize the output of layer normalization and softmax layers. Due to competition rules,
we assume that all addition operations take place as 32-bit operations.

5. Experiments

We discuss experiments on the effect of the training cache size nt
cache and the effects of

compression techniques. Due to space constraint, we defer the detailed list of model con-
figurations, comparison with state-of-the-art language models, analysis of per-layer context
size, ablation study on the training cache sizes, ablation study on Hebbian softmax, and
analysis of search cache sizes to Appendices A, B, C, D, E, and F, respectively. We depict
our overall pipeline in Figure 2 with performances results and processing time estimates.

220

MicroNet for Efficient Language Modeling

Core
LM

Base
74M 149M

30hr

+Adaptive
Embed

8.3M 17M

39.5

+Training
Cache

18M

33.7

+Hebbian
Softmax 33.6

Cache
Search 33.0 3min

Teacher
53.9M 111M

23.0 48hr

Core LM
8.3M 18M

33.6 30hr

+Distill
32.4

Prune
5.6M 13M

34.6 15hr

Cache
Search 33.8 3min

Quantize
1.8M 8.8M

34.1 2min

Figure 2: Our pipeline without (left) and with (right) compression techniques, using the
hyperparameters in Appendix A. From top to bottom, each stack displays the
progression of techniques. Each row displays associated metrics: parameters (top
left), operations (top right), validation perplexity (bottom left), and estimated
processing time (bottom right). Metrics are displayed when changed from the
previous row, with green for desirable change and red for undesirable. Red rows
represent Core LM techniques, blue rows represent compression techniques, and
gray rows represent cache search; joined rows represent joint training.

5.1. Overall Results

We report our performance with the hyperparameters detailed in Appendix A. Without
compression techniques, our core language model (Core LM) achieves a validation per-
plexity of 33.6 with 8.3M parameters and 18M math operations. Adding the compression
techniques, our model achieves a validation perplexity of 34.1 and test perplexity of 35.0,
using 1.8M 32-bit parameters and 8.8M 32-bit math operations for a final MicroNet score of
0.0387. This is equivalent to a 90-fold reduction in parameter size and a 36-fold reduction
in math operations compared to the MicroNet baseline. We compare our results to those
of other MicroNet challenge language modeling track participants in Table 1.

Participant MicroNet Score

Ours∗ 0.0387
MIT-HAN-Lab (Ours†) 0.0475
Clova AI / Kyoto University 0.1657
JAIST / ISM 0.8232

Table 1: Performance of teams in the MicroNet Challenge Language Modeling track (Gale
et al., 2019). Ours† is our original submission to the challenge, which contains an
evaluation error. Ours∗ is the work presented in this paper with the error resolved.
Clova AI / Kyoto University does not report methods. JAIST / ISM uses a QRNN
base-model (Bradbury et al., 2016) rather than a Transformer base-model.

221

MicroNet for Efficient Language Modeling

5.2. Cache Effect Analysis

We analyze the token-level effect of the non-parametric cache on different token bins within
the validation loss. Grave et al. (2016) states that the cache increase prediction accuracy
on rare labels within the cache range. We analyze three models with training cache sizes
nt

cache ∈ {no-cache, 1000, 2000}. In Figure 3(a), we bin the loss by token index sorted in
decreasing order of token frequency and compare loss incurred in nt

cache ∈ {no-cache, 1000}
to loss incurred in nt

cache = 2000. We observe that most of the additional loss in nt
cache ∈

{no-cache, 1000} is attributed to rare tokens, with token indices > 103 in the vocabulary.
In Figure 3(b), we define the token gap to be the distance between a token and the

previous occurrence of that token in the validation set. Similarly to above, we bin the
loss by token gap and identify which token gap incur additional loss. We observe that
nt

cache = 2000 significantly outperforms no-cache on tokens with gaps between 100 and 2000
and slightly underperforms no-cache on tokens with gaps ≥ 2000. We also observe that
nt

cache = 2000 outperforms nt
cache = 1000 on tokens with gaps between 1000 and 2000. In

both cases, the non-parametric cache improves prediction accuracy within the cache range.

(a) Binned by token index (b) Binned by token gap

Figure 3: Blue: cumulative sum over the binned validation loss-difference between nt
cache ∈

{no-cache, 1000} and nt
cache = 2000. Red: cumulative bin size for comparison.

If the loss-difference were equally distributed across all tokens, the cumulative
loss-difference would exactly match the cumulative bin size. All experiments are
performed with C = 97, Hebbian softmax, and no compression techniques.

5.3. Effect of Distillation, Pruning, and Quantization

We take per-layer context C ∈ {97, 129, 257} and run an ablation study on the compres-
sion techniques, comparing the performance at each stage of compression to the perfor-
mance of the Core LM. We perform cache search before quantization because we empir-
ically found that quantization immobilizes the cache parameters, and cache search after
quantization fails to yield better parameters. Consistent with Appendix C, we observe
that C ∈ {129, 257} results in significantly lower perplexity than C = 97 for much of the
pipeline before quantization. Surprisingly, the perplexities of C ∈ {129, 257} increases sig-
nificantly after quantization, while the perplexity of C = 97 only increases marginally. We

222

MicroNet for Efficient Language Modeling

suspect that this phenomenon is due to the fact that C = 97 is more reliant on the cache;
C = 97 has cache weight λcache = 0.15, larger than 0.13 for C ∈ {129, 257}. Overall, we
find [C = 97, ρ = 0.358, ns

cache = 3000, bits = 9] to be the best hyperparameters for the
MicroNet challenge.

Core LM +Distill +Prune +Search +Quantize

C Val Val ρ Val ns
cache Val bits Params Ops Val Test

97 33.6 32.9 0.239 33.6 2000 33.2 8 1.8M 9.5M 34.7 35.6
9 2.0M 9.7M 33.5 34.4

0.358 34.6 2000 34.1 9 1.8M 8.5M 34.5 35.3
10 1.9M 8.7M 34.2 35.1

3000 33.8 8 1.6M 8.6M 35.2 36.1
9 1.8M 8.9M 34.1 35.0

4000 33.6 8 1.6M 8.9M 35.1 36.0
9 1.8M 9.1M 34.0 34.8

0.477 36.2 2000 35.7 9 1.6M 7.5M 36.1 36.8
4000 35.2 10 1.7M 8.4M 35.3 36.0

129 33.3 32.7 0.358 34.0 2000 33.5 9 1.8M 8.6M 35.0 36.0
10 1.9M 8.8M 33.8 34.8

3000 33.2 9 1.8M 8.9M 34.7 35.7

257 32.2 31.6 0.358 33.3 2000 32.9 9 1.8M 9.1M 34.3 35.2

Table 2: Performance of different choices of per-layer context C, model sparsity ρ, local
search cache size ns

cache, and quantization bit. We bold the overall best result for
the MicroNet challenge. “Val” and “Test” denote respective perplexities.

6. Conclusions

In our work, we combined transformer-based methods and cache-based language modeling
methods to significantly reduce the total amount of parameters and computation while
maintaining good perplexity. Furthermore, we showed that model-compression techniques
achieve large reductions in parameter size and computation. We hope that this work will
aid future research into efficient language models, and we have released our full source code
on GitHub.

Acknowledgments

We thank Facebook Faculty Award, AWS Machine Learning Award, and AMD for spon-
soring this research. We are grateful to Phillip Isola for helpful discussions.

223

https://github.com/mit-han-lab/neurips-micronet

MicroNet for Efficient Language Modeling

References

Alexei Baevski and Michael Auli. Adaptive input representations for neural language mod-
eling. CoRR, abs/1809.10853, 2018. URL http://arxiv.org/abs/1809.10853.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models, 2019.

James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. Quasi-recurrent
neural networks. CoRR, abs/1611.01576, 2016. URL http://arxiv.org/abs/1611.

01576.

Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal, Christopher D. Manning, and
Quoc V. Le. Bam! born-again multi-task networks for natural language understand-
ing. CoRR, abs/1907.04829, 2019. URL http://arxiv.org/abs/1907.04829.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Ruslan
Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context.
CoRR, abs/1901.02860, 2019. URL http://arxiv.org/abs/1901.02860.

Trevor Gale, Erich Elsen, Sara Hooker, Olivier Temam, Scott Gray, Jongsoo Park, Cliff
Young, Utku Evci, Niki Parmar, and Ashish Vaswani. Micronet challenge, 2019. URL
https://micronet-challenge.github.io/.

Edouard Grave, Armand Joulin, and Nicolas Usunier. Improving neural language models
with a continuous cache. CoRR, abs/1612.04426, 2016. URL http://arxiv.org/abs/

1612.04426.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. International Confer-
ence on Learning Representations (ICLR), 2016. URL https://arxiv.org/abs/1510.

00149.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for
model compression and acceleration on mobile devices. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 784–800, 2018. URL https://arxiv.

org/pdf/1802.03494.pdf.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network,
2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. CoRR, abs/1704.04861, 2017. URL
http://arxiv.org/abs/1704.04861.

Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb
model size. CoRR, abs/1602.07360, 2016. URL http://arxiv.org/abs/1602.07360.

224

http://arxiv.org/abs/1809.10853
http://arxiv.org/abs/1611.01576
http://arxiv.org/abs/1611.01576
http://arxiv.org/abs/1907.04829
http://arxiv.org/abs/1901.02860
https://micronet-challenge.github.io/
http://arxiv.org/abs/1612.04426
http://arxiv.org/abs/1612.04426
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/pdf/1802.03494.pdf
https://arxiv.org/pdf/1802.03494.pdf
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1602.07360

MicroNet for Efficient Language Modeling

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation
of neural sequence models. CoRR, abs/1709.07432, 2017. URL http://arxiv.org/abs/

1709.07432.

Lieven Lathauwer. Decompositions of a higher-order tensor in block terms—part ii: Def-
initions and uniqueness. SIAM J. Matrix Analysis Applications, 30:1033–1066, 01 2008.
doi: 10.1137/070690729.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters
for efficient convnets. CoRR, abs/1608.08710, 2016. URL http://arxiv.org/abs/1608.

08710.

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Dawei Song, and Ming
Zhou. A tensorized transformer for language modeling. CoRR, abs/1906.09777, 2019.
URL http://arxiv.org/abs/1906.09777.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel
mixture models. CoRR, abs/1609.07843, 2016. URL http://arxiv.org/abs/1609.

07843.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing
LSTM language models. CoRR, abs/1708.02182, 2017. URL http://arxiv.org/abs/

1708.02182.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan
Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and William J Dally. Scnn:
An accelerator for compressed-sparse convolutional neural networks. ACM SIGARCH
Computer Architecture News, 45(2):27–40, 2017. URL https://arxiv.org/abs/1708.

04485.

Jack W. Rae, Chris Dyer, Peter Dayan, and Timothy P. Lillicrap. Fast parametric learning
with activation memorization. CoRR, abs/1803.10049, 2018. URL http://arxiv.org/

abs/1803.10049.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter, 2019.

David R So, Chen Liang, and Quoc V Le. The evolved transformer. arXiv preprint
arXiv:1901.11117, 2019. URL https://arxiv.org/abs/1901.11117.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

225

http://arxiv.org/abs/1709.07432
http://arxiv.org/abs/1709.07432
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1906.09777
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1708.02182
http://arxiv.org/abs/1708.02182
https://arxiv.org/abs/1708.04485
https://arxiv.org/abs/1708.04485
http://arxiv.org/abs/1803.10049
http://arxiv.org/abs/1803.10049
https://arxiv.org/abs/1901.11117
http://arxiv.org/abs/1706.03762

MicroNet for Efficient Language Modeling

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song
Han. Hat: Hardware-aware transformers for efficient natural language processing. In
Annual Conference of the Association for Computational Linguistics, 2020a.

Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, Hanrui Wang, Yujun Lin, and
Song Han. Apq: Joint search for network architecture, pruning and quantization policy.
In Conference on Computer Vision and Pattern Recognition, 2020b.

Zhekai Zhang, Hanrui Wang, Song Han, and William J. Dally. Sparch: Efficient architec-
ture for sparse matrix multiplication. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2020. URL https://arxiv.org/

abs/2002.08947.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning
for model compression, 2017.

Neta Zmora, Guy Jacob, Lev Zlotnik, Bar Elharar, and Gal Novik. Neural network distiller,
June 2018. URL https://doi.org/10.5281/zenodo.1297430.

226

https://arxiv.org/abs/2002.08947
https://arxiv.org/abs/2002.08947
https://doi.org/10.5281/zenodo.1297430

MicroNet for Efficient Language Modeling

Appendices

A. Configurations and Hyperparameters

Our best model use the following hyperparameters. Unless otherwise stated, experiments
discussed in this paper also use these hyperparameters. The full implementation can be
found in the code release.

1. Adaptive embedding and softmax: after sorting in order of increasing frequency, we
divide the vocabulary into three bins: [1, 3500], [3501, 25000], [25001, 267735]. For the
tokens in each bin, we use embedding vectors of sizes [256, 64, 4], respectively.

2. Base transformer: we use a base transformer with context size C = 97, extended
context Ce = 1152, L = 8 layers, input and output dimension dmodel = 256, h =
8 attention heads, key and value dimensions dk = dv = 24, and an “inner” fully
connected layer dimension dff = 768.

3. Cache training: we use a cache of size nt
cache = 2000 with initial parameters θcache,0 =

0.016 and λcache,0 = 0.07.

4. Hebbian softmax: we use a minimum discount factor γhebbian = 0.01 and a smoothing
limit Thebbian = 500 classes.

5. Training: we train for T = 200000 steps with the Adam Optimizer (Kingma and Ba,
2014), learning rate 0.0001, and cosine learning rate decay with 1000 linear-warmup
steps. We choose the largest batch size that fits in memory.

6. Distillation: we distill from a teacher model trained with L = 16, embedding vectors
of size [512, 256, 16], dmodel = 512, dk = dv = 64, dff = 1536, learning rate 0.0005,
dropout 0.1, no cache, and otherwise the same hyperparameters as the student model.
The teacher model has 53.8M parameters and a validation perplexity of 23.0. We train
the student model with λmax = 0.5 and λmin = 0.05.

7. Pruning: we choose a target sparsity ρ = 0.358. We initialize the model with the best
model from the distillation step, prune this model to an initial sparsity ρ0 = 0.16,
then train for 175000 steps, pruning every 1000 steps. We use the Distiller (Zmora
et al., 2018) implementation of the Adaptive Gradual Pruning algorithm.

8. Cache local search: we perform local search on the cache parameters θcache and λcache

with a search cache size ns
cache = 3000.

9. Quantization: we quantize the model to 9 bits using the Distiller (Zmora et al., 2018)
implementation of quantization-aware training and symmetric linear-range quantiza-
tion.

We train the large teacher model on eight GeForce RTX 2080 Ti GPUs and all other models
on a single GeForce GTX Titan X GPU, RTX 2080 Ti, or V100 GPU.

227

MicroNet for Efficient Language Modeling

B. Comparisons to SOTA

In Table 3, we compare the performance of our models against performances of state-of-the-
art methods reported by Bai et al. (2019). These methods use full word embeddings with
embedding dimension 512, while we use embedding dimension 256 to reduce parameters. We
compare a base-model with full word embedding and also compare our best small adaptive
embedding models (with and without cache). We find that our base-model performance
is comparable to Transformer-XL despite requiring half as many embedding parameters.
Adding adaptive embedding and cache allows us to stay competitive with state-of-the-art
methods while using much fewer parameters.

Model Params Embedding Model ntcache Test PPL
Params Params

Transformer-XL Small 139M 134M 4.9M 0 35.8
DEQ-Transformer Small 138M 134M 4.5M 0 32.4
Ours, Base 73.6M 68.5M 5.0M 0 36.5
Ours, Adaptive 8.3M 3.3M 5.0M 0 41.3
Ours, Adaptive, Cache 8.3M 3.3M 5.0M 2000 34.9

Table 3: Our models are competitive with SOTA transformer-based models while using
much less embedding parameters. Here we do not use Hebbian softmax. We note
that the DEQ Transformer Bai et al. (2019) uses root-finding methods to optimize
model parameters and does not provide an estimate on computations required.

C. Context Length Experiment

We perform a sweep over per-layer context length C as detailed in Table 4 and analyze model
performance and math operations. We see that using C = 257 or C = 129 achieves a good
trade-off between the number of operations and the validation perplexity. Interestingly,
C ∈ {513, 1025} results in both increasing computation cost and worse perplexity; we
suspect that the latter may be due to the small model size that we use.

D. Training Cache Size Ablation Study

We conduct an ablation study on the effect of the training cache size on perplexity. In
Table 5, we see that the non-parametric cache is crucial to good performance; the 8.3M
parameter model equiped with ntcache = 2000 performs similarly to a model with between
11M and 15M parameters with no cache.

E. Hebbian Softmax Ablation Study

We perform an ablation study on the Hebbian softmax technique presented in Rae et al.
(2018). Unlike in their work, we do not see a significant decrease in perplexity when using

228

MicroNet for Efficient Language Modeling

Context C Params Operations Val PPL

1025 8.5M 23.4M 38.4
513 8.4M 20.1M 37.7
257 8.3M 18.5M 37.5
129 8.3M 17.6M 38.6
97 8.3M 17.4M 39.5
65 8.3M 17.2M 40.5

Table 4: Performance of different per-layer context C with only adaptive softmax; we do
not use cache, Hebbian softmax, or compression techniques.

ntcache Params Operations Val PPL

0 8.3M 17.4M 39.2
0 11.0M 23.3M 37.6
0 15.2M 31.6M 32.4
1000 8.3M 17.9M 34.8
2000 8.3M 18.4M 33.6

Table 5: Non-parametric cache improves the performance of the 8.3M parameter model
greatly at little extra cost. We use C = 97 and Hebbian softmax for all models,
but do not apply local cache search or compression techniques.

229

MicroNet for Efficient Language Modeling

the Hebbian softmax technique. A potential explanation is that they use an LSTM base-
model and regular softmax, whereas we use a transformer base-model and adaptive softmax.

No Cache With Trained Cache

Rae et al. (2018) No Hebbian 36.0 34.5
With Hebbian 34.1 29.7

Ours No Hebbian 39.5 33.7
With Hebbian 39.2 33.6

Table 6: Comparison of validation perplexity with and without Hebbian softmax in our
model vs in Rae et al. (2018). We use context C = 97 for all experiments here.
For our experiments with trained cache, we use nt

cache = 2000.

F. Cache Training and Cache Search Experiment

As mentioned in Subsection 3.5, we sample random extended contexts Ce at training-time
but sequentially iterate over contexts in the validation and test sets; the latter setup allows
for stronger temporal locality. We therefore expect that even if we train cache weight λcache

at training-time, increasing this hyperparameter yields better performance at test-times.
We empirically observe that the validation perplexity is a smooth function of θcache and
λcache with a clear global minimum, so we perform local search on θcache and λcache to
minimize the validation perplexity, instead of using grid-search. In Table 7, we compare the
performance of combinations of training cache size and search cache size, which we denote as
(nt

cache, n
s
cache). Interestingly, (2000, no-search) significantly outperforms (no-cache, 2000),

which suggests that jointly training of the cache hyperparameters is preferable to solely
performing hyperparameter search over the validation set. We suspect that joint training
learns more cache-friendly final layer activations h. We also observe that performing local
search after training still improves performance, with bigger improvements for larger ns

cache.
Correspondingly, we observe that the cache weight λcache increases with ns

cache.

230

MicroNet for Efficient Language Modeling

Training ntcache Search nscache Val PPL λcache θcache
no-cache 2000 34.8 0.0922 0.0197
no-cache 4000 34.7 0.0964 0.0213
no-cache 6000 34.8 0.0963 0.0221
2000 no-search 33.6 0.0689 0.0242
2000 2000 33.0 0.145 0.0266
2000 4000 32.6 0.156 0.0276
2000 6000 32.4 0.158 0.0281
2000 8000 32.4 0.160 0.0284

Table 7: Performance of models with different combinations of training and local search
cache sizes. Note that (2000, 2000), (2000, 4000), (2000, 6000), and (2000, 8000)
merely performs local search on the trained model from (2000, no-search). We use
C = 97 and Hebbian softmax for all models.

231

	Introduction
	NeurIPS 2019 MicroNet Challenge Language Modeling Track
	Scoring

	Core Language Model
	Transformer-XL Model
	Joint Optimization of Groups of Short Contexts
	Adaptive Embedding and Softmax
	Hebbian Updates
	Differentiable Non-parametric Cache

	Compression Techniques
	Knowledge Distillation
	Pruning
	Quantization

	Experiments
	Overall Results
	Cache Effect Analysis
	Effect of Distillation, Pruning, and Quantization

	Conclusions
	Appendices
	Configurations and Hyperparameters
	Comparisons to SOTA
	Context Length Experiment
	Training Cache Size Ablation Study
	Hebbian Softmax Ablation Study
	Cache Training and Cache Search Experiment

