Learning LWF Chain Graphs: A Markov Blanket Discovery Approach

Mohammad Ali Javidian
Marco Valtorta
Computer Science \& Engineering Department
University of South Carolina
Columbia, SC 29201

Abstract

This paper provides a graphical characterization of Markov blankets in chain graphs (CGs) under the Lauritzen-Wermuth-Frydenberg (LWF) interpretation. The characterization is different from the well-known one for Bayesian networks and generalizes it. We provide a novel scalable and sound algorithm for Markov blanket discovery in LWF CGs and prove that the Grow-Shrink algorithm, the IAMB algorithm, and its variants are still correct for Markov blanket discovery in LWF CGs under the same assumptions as for Bayesian networks. We provide a sound and scalable constraint-based framework for learning the structure of LWF CGs from faithful causally sufficient data and prove its correctness when the Markov blanket discovery algorithms in this paper are used. Our proposed algorithms compare positively/competitively against the state-of-the-art LCD (Learn Chain graphs via Decomposition) algorithm, depending on the algorithm that is used for Markov blanket discovery. Our proposed algorithms make a broad range of inference/learning problems computationally tractable and more reliable because they exploit locality.

1 INTRODUCTION

Probabilistic graphical models are now widely accepted as a powerful and mature tool for reasoning and decision making under uncertainty. A probabilistic graphical model (PGM) is a compact representation of a joint probability distribution, from which we can obtain marginal and conditional probabilities (Sucar, 2015). In fact, any PGM consists of two main components: (1) a graph that

Figure 1: The procedure of Markov blanket recovery in the Grow-Shrink based algorithms.
defines the structure of that model; and (2) a joint distribution over random variables of the model. Two types of graphical representations of distributions are commonly used, namely, Bayesian networks (BNs) and Markov networks (MNs). They encompass the properties of factorization and independence, but they differ in the set of independencies they can encode and the factorization of the distribution that they induce.

Currently systems containing both causal and non-causal relationships are mostly modeled with directed acyclic graphs (DAGs). Chain graphs (CGs) are a type of mixed graphs, admitting both directed and undirected edges, which contain no partially directed cycles. So, CGs may contain two types of edges, the directed type that corresponds to the causal relationship in DAGs and a second type of edge representing a symmetric relationship (Sonntag and Peña, 2015). LWF Chain graphs were introduced by Lauritzen, Wermuth and Frydenberg (Frydenberg, 1990, Lauritzen and Wermuth, 1989) as a generalization of graphical models based on undirected graphs and DAGs and widely studied (Lauritzen 1996, Lauritzen and Richardson, 2002; Drton, 2009; Studený, Roverato, and Stěpánová, 2009: Sonntag and Peña, 2015.

Roverato, 2005, Roverato and Rocca, 2006). From the causality point of view, in an LWF CG: Directed edges represent direct causal effects. Undirected edges represents causal effects due to interference (Shpitser, Tchetgen, and Andrews, 2017, Ogburn, Shpitser, and Lee, 2018; Bhattacharya, Malinsky, and Shpitser 2019).

One important and challenging aspect of PGMs is the possibility of learning the structure of models directly from sampled data. Five constraint-based learning algorithms, which use a statistical analysis to test the presence of a conditional independency, exist for learning LWF CGs: (1) the inductive causation like (IC-like) algorithm (Studený, 1997), (2) the decomposition-based algorithm called LCD (Ma, Xie, and Geng, 2008), (3) the answer set programming (ASP) algorithm (Sonntag et al. 2015), (4) the inclusion optimal (CKES) algorithm (Peña, Sonntag, and Nielsen, 2014), and (5) the local structure learning of chain graphs algorithm with false discovery rate control (Wang, Liu, and Zhu, 2019).

In a DAG G with node set V, each local distribution depends only on a single node $v \in V$ and on its parents (i.e., the nodes $u \neq v$ such that $u \longrightarrow v$, here denoted $p a(v)$). Then the overall joint density is simply $p(x)=$ $\Pi_{v \in V}^{n} p\left(x_{v} \mid x_{p a(v)}\right)$. The key advantage of the decomposition in this equation is to make local computations possible for most tasks, using just a few variables at a time regardless of the magnitude of $|V|=n$. In Bayesian networks, the concept that enables us to take advantage of local computation is Markov blanket. The Markov blanket (Markov boundary in Pearl's terminology) of each node v, defined as the smallest set $\mathbf{M b}(v)$ of nodes that separates v from all other nodes $V \backslash\{v, \mathbf{M b}(v)\}$. Markov blankets can be used for variable selection for classification, for causal discovery, and for Bayesian network learning (Tsamardinos et al. 2003).

Markov blanket discovery has attracted a lot of attention in the context of Bayesian network structure learning (see section 2). It is surprising, however, how little attention (if any) it has attracted in the context of learning LWF chain graphs. In this paper, we focus on addressing the problem of Markov blanket discovery for structure learning of LWF chain graphs. For this purpose, we extend the concept of Markov blankets to LWF CGs. We prove that Grow-Shrink Markov Blanket (GSMB) (Margaritis and Thrun, 1999), IAMB, and its variants (Tsamardinos et al., 2003, Yaramakala and Margaritis, 2005) (that are mainly designed for Markov blanket recovery in BNs) are still correct for Markov blanket discovery in LWF CGs under the faithfulness and causal sufficiency assumptions. We propose a new constraintbased Markov blanket recovery algorithm, called MBCCSP, that is specifically designed for Markov blanket dis-
covery in LWF CGs.
Since constraint-based learning algorithms are sensitive to error propagation (Triantafillou, Tsamardinos, and Roumpelaki, 2014), and an erroneous identification of an edge can propagate through the network and lead to erroneous edge identifications or conflicting orientations even in seemingly unrelated parts of the network, the learned chain graph model will be unreliable. In order to address the problem of reliable structure learning, we present a generic approach (i.e., the algorithm is independent of any particular search strategy for Markov blanket discovery) based on Markov blanket recovery to learn the structure of LWF CGs from a faithful data. This algorithm first learns the Markov blanket of each node. This preliminary step greatly simplifies the identification of neighbours. This in turn results in a significant reduction in the number of conditional independence tests, and therefore of the overall computational complexity of the learning algorithm. In order to show the effectiveness of this approach, the resulting algorithms are contrasted against LCD on simulated data. We report experiments showing that our proposed generic algorithm (via 6 different instantiations) provides competitive/better performance against the LCD algorithm in our Gaussian experimental settings, depending on the approach that is used for Markov blanket discovery. Our proposed approach has an advantage over LCD because local structural learning in the form of Markov blanket is a theoretically well-motivated and empirically robust learning framework that can serve as a powerful tool in classification and causal discovery (Aliferis et al., 2010). We also note that Markov blankets are useful in their own right, for example in sensor validation and fault analysis (Ibargüengoytla, Sucar, and Vadera 1996). Code for reproducing our results and its corresponding user manual is available at https://github.com/majavid/ MbLWF 2020 . Our main theoretical and empirical contributions are as follows:
(1) We extend the concept of Markov blankets to LWF CGs and we prove what variables make up the Markov blanket of a target variable in an LWF CG (Section 4).
(2) We theoretically prove that the Grow-Shrink, IAMB algorithm and its variants are still sound for Markov blanket discovery in LWF chain graphs under the faithfulness and causal sufficiency assumptions (Section 4).
(3) We present a new algorithm, called MBC-CSP, for learning Markov blankets in LWF chain graphs, and we prove its correctness theoretically (Section 4 .
(4) We propose a generic algorithm for structure learning of LWF chain graphs based on the proposed Markov blanket recovery algorithms in Section 4 , and we prove its correctness theoretically (Section 5).
(5) We evaluate the performance of 6 instantiations of
the proposed generic algorithm with 6 different Markov blanket recovery algorithms on synthetic Gaussian data, and we show the competitive performance of our method against the LCD algorithm (Section 6).

2 RELATED WORK

Markov Blanket Recovery for Bayesian Networks with Causal Sufficiency Assumption. Margaritis and Thrun (1999) presented the first provably correct algorithm, called Grow-Shrink Markov Blanket (GSMB), that discovers the Markov blanket of a variable from a faithful data under the causal sufficiency assumption. Variants of GSMB were proposed to improve speed and reliability such as the Incremental Association Markov Blanket (IAMB) and its variants (Tsamardinos et al., 2003), Fast-IAMB (Yaramakala and Margaritis, 2005), and IAMB with false discovery rate control (IAMBFDR) (Peña, 2008). Since in discrete data the sample size required for high-confidence statistical tests of conditional independence in GSMB and IAMB algorithms grows exponentially in the size of the Markov blanket, several sample-efficient algorithms e.g., HITONMB (Aliferis et al., 2010) and MaxMin Markov Blanket (MMMB) (Tsamardinos et al., 2006) were proposed to overcome the data inefficiency of GSMB and IAMB algorithms. One can find alternative computational methods for Markov blanket discovery that were developed in the past two decades in (Peña, 2007, Liu and Liu, 2016, Ling et al., 2019), among others.
Markov Blanket Recovery without Causal Sufficiency Assumption. Gao and Ji (Gao and Ji, 2016) proposed the latent Markov blanket learning with constrained structure EM algorithm (LMB-CSEM) to discover the Markov blankets in BNs in the presence of unmeasured confounders. However, LMB-CSEM was proposed to find the Markov blankets in a DAG and provides no theoretical guarantees for finding all possible unmeasured confounders in the Markov blanket of the target variable. Recently, Yu et. al. (Yu et al., 2018) proposed a new algorithm, called M3B, to mine Markov blankets in BNs in the presence of unmeasured confounders.
In this paper, we extend the concept of Markov blankets to LWF CGs, which is different from Markov blankets defined in DAGs under the causal sufficiency assumption and also is different from Markov blankets defined in maximal ancestral graphs without assuming causal sufficiency. So, we need new algorithms that are specifically designed for Markov blanket discovery in LWF CGs.

3 DEFINITIONS AND CONCEPTS

Below, we briefly list some of the central concepts used in this paper.

A route ω in G is a sequence of nodes (vertices) $v_{1}, v_{2}, \ldots, v_{n}, n \geq 1$, such that $\left\{v_{i}, v_{i+1}\right\}$ is an edge in G for every $1 \leq i<n$. A section of a route is a maximal (w.r.t. set inclusion) non-empty set of nodes $v_{i} \cdots v_{j}$ s.t. the route ω contains the subroute $v_{i}-\cdots-v_{j}$. It is called a collider section if $v_{i-1} \rightarrow v_{i}-\cdots-v_{j} \leftarrow v_{j+1}$ is a subroute in ω. For any other configuration the section is a non-collider section. A path is a route containing only distinct nodes. A partially directed path from v_{1} to v_{n} in a graph G is a sequence of n distinct vertices $v_{1}, v_{2}, \ldots, v_{n}(n \geq 2)$, such that
(a) $\forall i(1 \leq i \leq n)$ either $v_{i}-v_{i+1}$ or $v_{i} \rightarrow v_{i+1}$, and
(b) $\exists j(1 \leq j \leq n)$ such that $v_{j} \rightarrow v_{j+1}$.

A partially directed path with $n \geq 3$ and $v_{n} \equiv v_{1}$ is called a partially directed cycle. If there is a partially directed path from a to b but not b to a, we say that a is an ancestor of b. The set of ancestors of b is denoted by $a n(b)$, and we generalize the definition to a set of nodes in the obvious way.

Formally, we define the set of parents, children, neighbors, and spouses of a variable (node) in an LWF CG $G=(V, E)$ as follows, respectively: $p a(v)=\{u \in$ $V \mid u \rightarrow v \in E\}, \operatorname{ch}(v)=\{u \in V \mid v \rightarrow u \in E\}$, $n e(v)=\{u \in V \mid v-u \in E\}, \operatorname{sp}(v)=\{u \in V \mid \exists w \in$ V s.t. $u \rightarrow w \leftarrow v$ in $G\}$. The boundary $b d(A)$ of a subset A of vertices is the set of vertices in $V \backslash A$ that are parents or neighbors to vertices in A. The closure of A is $c l(A)=b d(A) \cup A$. If $b d(a) \subseteq A$, for all $a \in A$ we say that A is ancestral set. The smallest ancestral set containing A is denoted by $\operatorname{An}(A)$.
An $L W F C G$ is a graph in which there are no partially directed cycles. The chain components \mathcal{T} of a CG are the connected components of the undirected graph obtained by removing all directed edges from the CG. A minimal complex (or simply a complex) in a CG is an induced subgraph of the form $a \rightarrow v_{1}-\cdots \cdots-v_{r} \leftarrow b$. We say that a is a complex-spouse of b and vice versa, and that $\operatorname{csp}(a)=\{b \in V \mid \exists$ a minimal complex of form $a \rightarrow$ $x-\cdots-y \leftarrow b\}$. The skeleton of an LWF CG G is obtained from G by changing all directed edges of G into undirected edges. For a CG G we define its moral graph G^{m} as the undirected graph with the same vertex set but with α and β adjacent in G^{m} if and only if either $\alpha \rightarrow \beta$, $\beta \rightarrow \alpha, \alpha-\beta$, or if $\alpha \in \operatorname{csp}(\beta)$.

Global Markov property for LWF CGs: For any triple (A, B, S) of disjoint subsets of V such that S separates A from B in $\left(G_{A n(A \cup B \cup S)}\right)^{m}$, the moral graph of the smallest ancestral set containing $A \cup B \cup S$, indicated
as $A \Perp_{c} B \mid S$ (read: S-separates A from B in the CG G), we have $A \Perp_{p} B \mid S$, i.e., A is independent of B given S. In words, if $S c$-separates A from B in the CG G, then A and B are independent given S. An equivalent path-wise c-separation criterion, which generalizes the d-separation criterion for DAGs, was introduced in (Studený, 1998). A route ω is active with respect to a set $S \subseteq V$ if (i) every collider section of ω contains a node of S or $\operatorname{an}(S)$, and (ii) every node in a non-collider section on the route is not in S. A route which is not active with respect to S is intercepted (blocked) by S. If G is an LWF CG then X and Y are c-separated given S iff there exists no active route between X and Y.

We say that two LWF chain graphs are Markov equivalent if they induce the same conditional independence restrictions. Two chain graphs are Markov equivalent if and only if they have the same skeletons and the same minimal complexes (Frydenberg, 1990). Every class of Markov equivalent CGs has a unique CG, called the largest $C G$, with the greatest number of undirected edges (Frydenberg, 1990).
The Markov condition is said to hold for a DAG $G=$ (V, E) and a probability distribution $P(V)$ if every variable T is statistically independent of its graphical nondescendants (the set of vertices for which there is no directed path from T) conditional on its graphical parents in P. Pairs $\langle G, P\rangle$ that satisfy the Markov condition satisfy the following implication: $\forall X, Y \in V, \forall Z \subseteq$ $V \backslash\{X, Y\}:\left(X \Perp_{d} Y\left|Z \Longrightarrow X \Perp_{p} Y\right| Z\right)$. The faithfulness condition states that the only conditional independencies to hold are those specified by the Markov condition, formally: $\forall X, Y \in V, \forall Z \subseteq V \backslash\{X, Y\}$: $\left(X \not \mathscr{H}_{d} Y\left|Z \Longrightarrow X \not \not_{p} Y\right| Z\right)$.

Let a Bayesian network $G=(V, E, P)$ be given. Then, V is a set of random variables, (V, E) is a DAG, and P is a joint probability distribution over V. Let $T \in V$. Then the Markov blanket $\mathbf{M b}(T)$ is the set of all parents of T, children of T, and spouses of T. Formally, $\mathbf{M b}(T)=$ $p a(T) \cup \operatorname{ch}(T) \cup s p(T)$.

4 MARKOV BLANKET DISCOVERY IN LWF CHAIN GRAPHS

Let $G=(V, E, P)$ be an LWF chain graph model. Then, V is a set of random variables, (V, E) is an LWF chain graph, and P is a joint probability distribution over V. Let $T \in V$. Then the Markov blanket $\mathbf{M b}(T)$ is the set of all parents of T, children of T, neighbors of T, and complex-spouses of T. Formally, $\mathbf{M b}(T)=$ $b d(T) \cup \operatorname{ch}(T) \cup \operatorname{csp}(T)$. We first show that the Markov blanket of the target variable T in an LWF CG probabilistically shields T from the rest of the variables. Un-
der the faithfulness assumption, the Markov blanket is the smallest set with this property. Then, we propose a novel algorithm, called MBC-CSP, that is specifically designed for Markov blanket discovery in LWF CGs. In addition, we prove that GSMB, IAMB and its variants, and MBC-CSP are sound for Markov blanket discovery in LWF CGs under the faithfulness and causal sufficiency assumptions.

Theorem 1 Let $G=(V, E, P)$ be an LWF chain graph model. Then, $T \Perp_{p} V \backslash\{T, \boldsymbol{M b}(T)\} \mid \boldsymbol{M b}(T)$.

Proof It is enough to show that for any $A \in V \backslash$ $\{T, \mathbf{M b}(T)\}, T \Perp_{c} A \mid \mathbf{M b}(T)$. For this purpose, we prove that any route between A and T in G is blocked by $\mathbf{M b}(T)$. In the following cases $(A-* B$, where means $A-B$ or $A \rightarrow B$ and $A * * B$ means $A-B, A \rightarrow B$, or $A \leftarrow B$), we assume without loss of generality that T cannot appear between A and B. (If T appears between A and B, the argument for the appropriate case can be applied inductively.)
(1) The route ω between A and T is of the form $A * * \cdots * * B \rightarrow T$. Clearly, B blocks the route ω.
(2) The route ω between A and T is of the form $A * * \cdots * * B-T$. Clearly, B blocks the route ω.
(3) The route ω between A and T is of the form $A * * \cdots * * C * * B \leftarrow T$. We have the following subcases:
(3i) The route ω between A and T is of the form $A * * \cdots * * C \leftarrow B \leftarrow T$. Clearly, B blocks the route ω. (3ii) The route ω between A and T is of the form $A * * \cdots * * C-B \leftarrow T$. If B is not a node on a collider section of ω, B blocks the route ω. However, If B is a node on a collider section of ω, there are nodes D and $E(\neq A, T)$ s.t. the route ω has the form of $A * * \cdots * * E \rightarrow D-\cdots-C-B \leftarrow T . E \in \operatorname{csp}(T)$ blocks the route ω.
(3iii) The route ω between A and T is of the form $A * * \cdots * * C \rightarrow B \leftarrow T . C \in \operatorname{sp}(T)$ blocks the route ω.
From the global Markov property it follows that every c-separation relation in G implies conditional independence in every joint probability distribution P that satisfies the global Markov property for G. Thus, we have $T \Perp_{p} V \backslash\{T, \mathbf{M b}(T)\} \mid \mathbf{M b}(T)$.

Example 1 Suppose G is the LWF CG in Figure 2]. $\boldsymbol{M b}(T)=\{C, F, G, H, K, L\}$, because $p a(T)=$ $\{C, G\}, \operatorname{ch}(T)=\{K\}, n e(T)=\{F\}, \operatorname{csp}(T)=$ $\{L, H\}$. Note that if only T's adjacents are instantiated, then T is not c-separated from L and H in G.

Figure 2: The LWF CG G. The Markov blanket of the target node T is $\mathbf{M b}(T)=\{C, F, G, H, K, L\}$.

4.1 The MBC-CSP Algorithm for Markov Blanket Discovery in LWF CGs

The MBC-CSP algorithm is structurally similar to the standard Markov blanket discovery algorithms and follows the same two-phase grow-shrink structure as shown in the Figure 1. An estimate of the $\mathbf{M b}(T)$ is kept in the set $C M B$. In the grow phase all variables that belong in $\mathbf{M b}(T)$ and possibly more (false positives) enter CMB while in the shrink phase the false positives are identified and removed so that $C M B=\mathbf{M b}(T)$ in the end.
In the grow phase, MBC-CSP first recovers $\operatorname{adj}(T):=$ $p a(T) \cup c h(T) \cup n e(T)$, i.e., the variables adjacent to T. This step is similar to AdjV algorithm in (Yu et al. 2018). Then it discovers complex-spouses of T denoting by $\operatorname{csp}(T)$. In the shrink phase, MBC-CSP removes one-by-one the elements of $C M B$ that do not belong to the $\mathbf{M b}(T)$ by testing whether a feature X from $C M B$ is independent of T given the remaining $C M B$.

MBC-CSP Description: In Algorithm 1, $\operatorname{adj}(T)$ stores the variables adjacent to T, S is the conditioning set, $\operatorname{cor}\left(V_{i}, T\right)$ denotes the value of the correlation between V_{i} and $T, \# a d j(T)$ is the number of variables in $\operatorname{adj}(T)$, and $\operatorname{Sepset}\left(T, V_{i}\right)$ means the separation set for V_{i} with respect to T, i.e., the conditioning set that makes T and V_{i} conditionally independent. From line 1 to 8 of Algorithm 1. MBC-CSP removes the variables that are marginally independent of T and then sorts the remaining variables in an ascending order of their correlations with T. The obtained $\operatorname{adj}(T)$ at the end of line 8 may include some false positives. In order to remove false positives from $\operatorname{adj}(T)$, we select the variable with the smallest correlation with T, because a variable with a weak correlation with T may have a higher probability to be removed from $\operatorname{adj}(T)$ as a false positive than a variable with a strong correlation with T. In this way we speed up the procedure of false positives removal. This procedure begins with a conditioning set of size 1 and then increases the size of the conditioning set one-by-one iteratively until its size is bigger than the size of the current set $\operatorname{adj}(T)$. At each iteration, if a variable is found to be independent of T, the variable is removed from the

```
Algorithm 1: MBC-CSP: An algorithm for Markov
blanket discovery in LWF CGs
Input: a data set with variable set \(V\), target variable \(T\), and
            significance level \(\alpha\).
Output: \(\mathbf{M b}(T)\).
/* Phase 1: Grow (Forward) */
/* step 1: \(\operatorname{adj}(T):=p a(T) \cup \operatorname{ch}(T) \cup n e(T)\), the
    set of variables adjacent to \(T\). */
for \(\left(V_{i} \in V \backslash\{T\}\right.\) ) do
    \(p_{V_{i}}=\operatorname{pvalue}\left(T \Perp V_{i} \mid \varnothing\right)\);
    if \(\left(p_{V_{i}}>\alpha\right)\) then
            \(\operatorname{Sepset}\left(T, V_{i}\right)=\varnothing\); /* \(T\) is marginally
                independent of \(V_{i}\). */
            else
            Add \(V_{i}\) to \(\operatorname{adj}(T)\);
    end
end
Sort \(\operatorname{adj}(T)\) in increasing value of \(\operatorname{cor}\left(V_{i}, T\right)\);
Set \(k=1, \# a d j=|\operatorname{adj}(T)|\);
while ( \(k \leq \#\) adj) do
        for \(\left(V_{j} \in \operatorname{adj}(T)\right)\) do
            if \(\left(\exists S \subseteq \operatorname{adj}(T) \backslash\left\{V_{j}\right\}\right.\) s.t. \(T \Perp V_{j} \mid S\) and \(\left.|S|=k\right)\)
                then
                    \(\operatorname{adj}(T)=\operatorname{adj}(T) \backslash V_{j} ;\)
                    \(\operatorname{Sepset}\left(T, V_{j}\right)=S\);
            end
        end
        \(k=k+1, \# \operatorname{adj}=|\operatorname{adj}(T)| ;\)
end
/* step 2: \(\operatorname{csp}(T)\), complex-spouses of \(T\).
        */
for \(V_{i} \in \operatorname{adj}(T)\) do
        for \(V_{j} \in V \backslash\{\operatorname{adj}(T), T\}\) do
            pval \(_{1}=\operatorname{pvalue}\left(T \Perp V_{j} \mid \operatorname{Sepset}\left(T, V_{j}\right)\right)\);
            pval \(_{2}=\operatorname{pvalue}\left(T \Perp V_{j} \mid\left(\operatorname{Sepset}\left(T, V_{j}\right)\right) \cup\left\{V_{i}\right\}\right) ;\)
            if pval \(_{1}>\alpha\) and pval \({ }_{2}<\alpha\) then
                Add \(V_{j}\) to \(\operatorname{csp}(T)\);
            end
        end
end
\(C M B=\operatorname{adj}(T) \cup \operatorname{csp}(T)\);
/* Phase 2: Shrink (Backward) */
continue = TRUE;
if \((|C M B|=0)\) then
            continue \(=\) FALSE;
end
while (continue) do
        \(P_{Y}=\underset{Y \in C M B}{\operatorname{pvalue}}(T \Perp Y \mid C M B \backslash\{Y\}) ;\)
        p.val. \(\max =\max _{Y \in C M B} P_{Y}\);
        Candidas \(=\left\{Y \in C M B \mid P_{Y}=\right.\) p.val. \(\left.m a x\right\}\);
        if \((\) p.val. \(\max >\alpha)\) then
            /* i.e., \(T \Perp Y \mid C M B \backslash\{Y\}\) */
            \(C M B=C M B \backslash\) Candidas[1];
            /* Candidas[1] means the first
                element of Candidas. */
        else
            continue \(=F A L S E ;\)
    end
end
return \(C M B\);
```

current $\operatorname{adj}(T)$ (line 9 to 19 of Algorithm 1). Now, we need to add the complex-spouses of T to the obtained set at the end of line 19. For this purpose, lines 21-29 find the set of $\operatorname{csp}(T)$ by checking the following conditions for each $V_{j} \in V \backslash\{\operatorname{adj}(T), T\}: T \Perp V_{j} \mid \operatorname{Sepset}\left(T, V_{j}\right)$ and $\left.T \not \Perp \perp V_{j} \mid\left(\operatorname{Sepset}\left(T, V_{j}\right)\right) \cup\left\{V_{i}\right\}\right)$. According to the global Markov property for LWF CGs, these two conditions together guarantee that $V_{j} \in \operatorname{csp}(T)$. At the end of line 30, we obtain a candidate set for the Markov blanket of T that may contain some false positives. The phase 2 of Algorithm 1i.e., lines 35-44, uses the same idea of the shrinking phase of Markov blanket discovery algorithm IAMB (Tsamardinos et al., 2003) for the output of phase 1 to reduce the number of false positives in the output of the algorithm. For this purpose, we remove one-by-one the variables that do not belong to the $\mathbf{M b}(T)$ by testing whether a variable Y from $C M B$ is independent of T given the remaining variables in $C M B$.

Remark 2 For the adjacency recovery phase of Algorithm 1 (line 1-19), one can use the HITON-PC or MMPC (Aliferis et al., 2010) algorithms, especially in cases where a sample-efficient algorithm is needed.

Theorem 3 Given the Markov assumption, the faithfulness assumption, a graphical model represented by an LWF CG, and i.i.d. sampling, in the large sample limit, the Markov blanket recovery algorithms GS (Margaritis and Thrun 1999), IAMB (Tsamardinos et al. 2003), MMBC-CSP (Algorithm 7), fastIAMB (Yaramakala and Margaritis 2005), Interleaved Incremental Association (interIAMB) (Tsamardinos et al.] 2003), and farIAMB (Peña, 2008) correctly identify all Markov blankets for each variable. (Note that Causal Sufficiency is assumed i.e., all causes of more than one variable are observed.)

Proof [Sketch of proof] If a variable belongs to $\mathbf{M b}(T)$, then it will be admitted in the first step (Grow phase) at some point, since it will be dependent on T given the candidate set of $\mathbf{M b}(T)$. This holds because of the faithfulness and because the set $\mathbf{M b}(T)$ is the minimal set with that property. If $X \notin \mathbf{M b}(T)$, then conditioned on $\mathbf{M b}(T) \backslash\{X\}$, it will be independent of T and thus will be removed from the candidate set of $\mathbf{M b}(T)$ in the second phase (Shrink phase) because the Markov condition entails that independencies in the distribution are represented in the graph. Since the faithfulness condition entails dependencies in the distribution from the graph, we never remove any variable X from the candidate set of $\mathbf{M b}(T)$ if $X \in \mathbf{M b}(T)$. Using this argument inductively we will end up with the $\mathbf{M b}(T)$.

```
Algorithm 2: MbLWF: An algorithm for learning LWF
CGs via Markov blanket discovery
Input: a set \(V\) of nodes and a probability distribution \(p\)
    faithful to an unknown LWF chain graph \(G=(V, E)\).
Output: The pattern of \(G\).
/* Phase 1: Learning Markov blankets */
For each variable \(X_{i} \in V\), learn its Markov blanket \(\mathbf{M b}\left(X_{i}\right)\);
2 Check whether the Markov blankets are symmetric, e.g.,
    \(X_{i} \in \mathbf{M b}\left(X_{j}\right) \leftrightarrow X_{j} \in \mathbf{M b}\left(X_{i}\right)\). Assume that nodes for
    whom symmetry does not hold are false positives and drop
    them from each other's Markov blankets;
\({ }_{3} \operatorname{Set} \operatorname{Sepset}\left(X_{i}, X_{j}\right)=\boldsymbol{\operatorname { S e p s e t }}\left(X_{j}, X_{i}\right)\) to the smallest of
    \(\mathbf{M b}\left(X_{i}\right)\) and \(\mathbf{M b}\left(X_{j}\right)\) if \(X_{i} \notin \mathbf{M b}\left(X_{j}\right)\) and \(X_{j} \notin \mathbf{M b}\left(X_{i}\right)\);
    /* Phase 2: Skeleton Recovery */
4 Construct the undirected graph \(H=(V, E)\), where
    \(E=\left\{X_{i}-X_{j} \mid X_{j} \in \mathbf{M b}\left(X_{i}\right)\right.\) and \(\left.X_{i} \in \mathbf{M b}\left(X_{j}\right)\right\} ;\)
for \(i \leftarrow 0\) to \(\left|V_{H}\right|-2\) do
        while possible do
            Select any ordered pair of nodes \(u\) and \(v\) in \(H\) such
            that \(u \in a d_{H}(v)\) and \(\left|a d_{H}(u) \backslash v\right| \geq i\);
            /* \(a d_{H}(x):=\{y \in V \mid x-y \in E\} * /\)
            if there exists \(S \subseteq\left(a d_{H}(u) \backslash v\right)\) s.t. \(|S|=i\) and
                \(u \Perp_{p} v \mid S\) (i.e., \(u\) is independent of \(v\) given \(S\) in the
            probability distribution \(p\) ) then
                    Set \(S_{u v}=S_{v u}=S\);
                    Remove the edge \(u-v\) from \(H\);
            end
        end
end
/* Phase 3: Complex Recovery (Ma, Xie,
        and Geng, 2008) */
4 Initialize \(H^{*}=H\);
5 for each vertex pair \(\{u, v\}\) s.t. \(u\) and \(v\) are not adjacent in \(H\)
    do
        for each \(u-w\) in \(H^{*}\) do
            if \(u \not \bigsqcup_{p} v \mid\left(S_{u v} \cup\{w\}\right)\) then
                    Orient \(u-w\) as \(u \longrightarrow w\) in \(H^{*}\);
            end
        end
end
Take the pattern of \(H^{*}\);
```


5 LEARNING LWF CGs VIA MARKOV BLANKETS

Any sound algorithm for learning Markov blankets of LWF CGs can be employed and extended to a full LWF CG learning algorithm, as originally suggested in (Margaritis and Thrun, 1999) for Grow-Shrink Markov blanket algorithm (for Bayesian networks). Thanks to the proposed Markov blanket discovery algorithms listed in Theorem 3, we can now present a generic algorithm for learning LWF CGs. Algorithm 2 lists pseudocode for the three main phases of this approach.

Phase 1: Learning Markov blankets: This phase consists of learning the Markov blanket of each variable with feature selection to reduce the number of candidate structures early on. Any algorithm in Theorem 3 can be
plugged in Step 1. Once all Markov blankets have been learned, they are checked for consistency (Step 2) using their symmetry; by definition $X_{i} \in \mathbf{M b}\left(X_{j}\right) \leftrightarrow X_{j} \in$ $\mathbf{M b}\left(X_{i}\right)$. Asymmetries are corrected by treating them as false positives and removing those variables from each others Markov blankets. At the end of this phase, separator sets of X and Y set to the smallest of $\mathbf{M b}(X)$ and $\mathbf{M b}(Y)$ if $X \notin \mathbf{M b}(Y)$ and $Y \notin \mathbf{M b}(X)$.

Phase 2: Skeleton Recovery: First, we construct the moral graph of the LWF CG G that is an undirected graph in which each node of the original G is now connected to its Markov blanket (line 4 of Algorithm 2). Lines 5-13 learn the skeleton of the LWF CG by removing the spurious edges. In fact, we remove the added undirected edge(s) between each variable T and its complexspouses due to the fact that $\operatorname{csp}(T) \subseteq \mathbf{M b}(T)$. Separation sets are updated correspondingly.

Phase 3: Complex Recovery: We use an approach similar to the proposed algorithm by (Ma, Xie, and Geng, 2008) for complex recovery. To get the pattern of H^{*} in line 22 , at each step, we consider a pair of candidate complex arrows $u_{1} \rightarrow w_{1}$ and $u_{2} \rightarrow w_{2}$ with $u_{1} \neq u_{2}$, then we check whether there is an undirected path from w_{1} to w_{2} such that none of its intermediate vertices is adjacent to either u_{1} or u_{2}. If there exists such a path, then $u_{1} \rightarrow w_{1}$ and $u_{2} \rightarrow w_{2}$ are labeled (as complex arrows). We repeat this procedure until all possible candidate pairs are examined. The pattern is then obtained by removing directions of all unlabeled as complex arrows in H^{*} (Ma, Xie, and Geng, 2008). Note that one can use three basic rules, namely the transitivity rule, the necessity rule, and the double-cycle rule, for changing the obtained pattern in the previous phase into the corresponding largest CG (see Studený (1997) for details).

Computational Complexity Analysis of Algorithm 2 Assume that the "learning Markov blankets" phase uses the grow-shrink (GSMB) approach and $n=|V|, m=$ $|E|$, where $G=(V, E)$ is the true LWF CG. Since the Markov blanket algorithm involves $O(n)$ conditional independence (CI) tests, Phase 1 (learning Markov blankets) involves $O\left(n^{2}\right)$ tests. If $b=\max _{X}|\mathbf{M b}(X)|$, the skeleton recovery (line 5-13) does $O\left(n b 2^{b}\right)$ CI tests. In the worst case, i.e. when $b=O(n)$ and $m=O\left(n^{2}\right)$ i.e. the original graph is dense, the total complexity for these 2 phases becomes $O\left(n^{2}+n b 2^{b}\right)$ or $O\left(n^{2} 2^{n}\right)$. Under the assumption that b is bounded by a constant (the sparseness assumption), the complexity of Phase 1 and 2 together is $O\left(n^{2}\right)$ in the number of CI tests. As claimed in (Ma, Xie, and Geng, 2008), the total complexity of Phase 3 (complex recovery, lines 14-22) is $O(m n)$ in the number of CI tests. The total number of CI tests for the entire algorithm is therefore $O\left(n^{2}+n b 2^{b}+m n\right)$. Un-
der the assumption that b is bounded by a constant, this algorithm is $O\left(n^{2}+m n\right)$ in the number of CI tests.

6 Experimental Evaluation

We performed a large set of experiments on simulated data for contrasting: (1) our proposed Markov blanket discovery algorithm, MBC-CSP, against GS, IAMB, fastIAMB, interIAMB, and fdrIAMB for Markov blanket recovery only, due to their important role in causal discovery and classification; and (2) our proposed structure learning algorithms (GSLWF, IAMBLWF, interIAMBLWF, fastIAMBLWF, fdrIAMBLWF, and MBCCSPLWF) against the state-of-the-art algorithm LCD for LWF CG recovery. We implemented all algorithms in R by extending code from the bnlearn (Scutari, 2010) and pcalg (Kalisch et al., 2012) packages to LWF CGs. We run our algorithms and the LCD algorithm on randomly generated LWF CGs and we compare the results and report summary error measures.

Experimental Settings: Let $N=2$ or 3 denote the average degree of edges (including undirected, pointing out, and pointing in) for each vertex. We generated random LWF CGs with 30,40 , or 50 variables and $N=2$ or 3 , as described in (Ma, Xie, and Geng, 2008) (see Appendix B for details). Then, we generated Gaussian distributions of size 200 and 2000 on the resulting LWF CGs via the rnorm.cg function from the LCD R package, respectively. For each sample, two different significance levels ($\alpha=0.05,0.005$) are used to perform the hypothesis tests. The null hypothesis H_{0} is "two variables u and v are conditionally independent given a set C of variables" and alternative H_{1} is that H_{0} may not hold. We then compare the results to access the influence of the significance testing level on the performance of our algorithms.
Metrics for Evaluation: We evaluate the performance of the proposed algorithms in terms of the six measurements that are commonly used (Colombo and Maathuis, 2014, Tsamardinos et al., 2006) for constraint-based algorithms: (a) the true positive rate (TPR) (also known as recall), (b) the false positive rate (FPR), (c) the true discovery rate (TDR) (also known as precision), (d) accuracy (ACC) for the skeleton, (e) the Structural Hamming Distance (SHD), and (f) run-time. In principle, large values of TPR, TDR, and ACC, and small values of FPR and SHD indicate good performance.

6.1 Results and their Implications

Our experimental results for LWF CGs with 50 variables are partially (only for a few configurations of parameters) shown in Figures 3 and 4. The other results are in Appendix B. We did not test whether the faithfulness as-

Figure 3: Performance of Markov blanket recovery algorithms for randomly generated Gaussian chain graph models: over 30 repetitions with 50 variables correspond to $\mathrm{N}=3$. The green line in a box indicates the mean of that group.

Figure 4: Performance of LCD and MbLWF algorithms for randomly generated Gaussian chain graph models: over 30 repetitions with 50 variables correspond to $\mathrm{N}=3$. The green line in a box indicates the mean of that group.
sumption holds for any of the networks, thus the results are indicative of the performance of the algorithms on arbitrary LWF CGs.

Some highlights for Markov blanket discovery: (1) As shown in our experimental results, our proposed Markov blanket discovery algorithm, MBC-CSP, is as good as or even (slightly) better than others in many settings. (2) As expected, the recall of all algorithms increases with an increase in sample size. Surprisingly, however, the other error measures worsen with an increase in sample size. A possible explanation could be that the correlation test is too aggressive and rejects variables that are in fact related in the ground truth model. (3) The significance level (p-value or α parameter) has a notable impact on the performance of algorithms. Except for precision, the lower the significance level, the better the performance. (4) The fdrIAMB algorithm has the best precision, FPR, and ACC in small sample size settings, which is consistent with previously reported results (Peña, 2008). This comes at the expense, however, of much worse recall.

Some highlights for LWF CGs recovery: (1) As shown in our experimental results, our proposed Markov blanket based algorithm, MbLWF, is as good as or even (slightly) better than LCD in many settings. The reason is that both LCD and MbLWF algorithms take advantage of local computations that make them equally robust against the choice of learning parameters. (2) While our Markov blanket based algorithms have better precision and FPR, the LCD algorithm enjoys (slightly) better recall. The reason for this may be that the faithfulness assumption makes the LCD algorithm search for a CG that represents all the independencies that are detected in the sample set. However, such a CG may also represent many other independencies. Therefore, the LCD algorithm trades precision for recall. In other words, it seems that the faithfulness assumption makes the LCD algorithm overconfident and aggressive, whereas under this assumption MbLWF algorithms are more cautious, conservative, and more importantly more precise than the LCD algorithm. (3) Except for the fdrIAMB algorithm in small sample size, there is no meaningful difference among the performance of algorithms based on ACC. (4) The best SHD belongs to MBC-CSPLWF and LCD in small sample size settings, and to MBCCSPLWF, fdrIAMB, and LCD in large sample size settings. (5) Constraint-based learning algorithms always have been criticized for their relatively high structuralerror rate (Triantafillou, Tsamardinos, and Roumpelaki, 2014). However, as shown in our experimental results, the proposed Markov blanket based approach is, overall, as good as or even better than the state-of the-art algorithm, i.e., LCD. One of the most important implications of this work is that there is much room for improve-
ment to the constraint-based algorithms in general and Markov blanket based learning algorithms in particular, and hopefully this work will inspire other researchers to address this important class of algorithms. (6) Markov blankets of different variables can be learned independently from each other, and later merged and reconciled to produce a coherent LWF CG. This allows the parallel implementations for scaling up the task of learning chain graphs from data containing more than hundreds of variables, which is crucial for big data analysis tools. In fact, our proposed structure learning algorithms can be parallelized following (Scutari, 2017); see supplementary material for a detailed example.
With the use of our generic algorithm (Algorithm2), the problem of structure learning is reduced to finding an efficient algorithm for Markov blanket discovery in LWF CGs. This greatly simplifies the structure-learning task and makes a wide range of inference/learning problems computationally tractable because they exploit locality. In fact, due to the causal interpretation of LWF CGs (Richardson and Spirtes, 2002, Bhattacharya, Malinsky, and Shpitser, 2019), discovery of Markov blankets in LWF CGs is significant because it can play an important role for estimating causal effects under unit dependence induced by a network represented by a CG model, when there is uncertainty about the network structure.

7 DISCUSSION AND CONCLUSION

An important novelty of local methods in general and Markov blanket recovery algorithms in particular for structure learning is circumventing non-uniform graph connectivity. A chain graph may be non-uniformly dense/sparse. In a global learning framework, if a region is particularly dense, that region cannot be discovered quickly and many errors will result when learning with a small sample. These errors propagate to remote regions in the chain graph including those that are learnable accurately and fast with local methods. In contrast, local methods such as Markov blanket discovery algorithms are fast and accurate in the less dense regions. In addition, when the dataset has tens or hundreds of thousands of variables, applying global discovery algorithms that learn the full chain graph becomes impractical. In those cases, Markov blanket based approaches that take advantage of local computations can be used for learning full LWF CGs. For this purpose, we extended the concept of Markov blankets to LWF CGs and we proposed a new algorithm, called MBC-CSP, for Markov blanket discovery in LWF CGs. We proved that GSMB and IAMB and its variants are still sound for Markov blanket discovery in LWF CGs under the faithfulness and causal sufficiency assumptions. This, in turn, enabled us to ex-
tend these algorithms to a new family of global structure learning algorithms based on Markov blanket discovery. As we have shown for the MBC-CSP algorithm, having an effective strategy for Markov blanket recovery in LWF CGs improves the quality of the learned Markov blankets, and consequently the learned LWF CG.

As noticed by Li and Wang (2009), the choice of which performance parameter to optimize (equivalently, which error parameter to control) depends on the application, so we reported on several performance parameters in our experiments. We plan to address the multiple hypotheses testing problem in the small sample case in future work. An approach based on the theoretical work in Benjamini and Yekutieli, 2001) that uses explicit control of error rates was attempted and carried out in Wang, Liu, and Zhu, 2019).

Another interesting direction for future work is answering the following question: Can we relax the faithfulness assumption and develop a correct, scalable, and data efficient algorithm for learning Markov blankets in LWF CGs?

Acknowledgements

This work has been supported by AFRL and DARPA (FA8750-16-2-0042). This work is also partially supported by an ASPIRE grant from the Office of the Vice President for Research at the University of South Carolina. We appreciate the comments, suggestions, and questions from all anonymous reviewers and thank them for the careful reading of our paper.

References

Aliferis, C. F.; Statnikov, A.; Tsamardinos, I.; Mani, S.; and Koutsoukos, X. D. 2010. Local causal and Markov blanket induction for causal discovery and feature selection for classification part I: Algorithms and empirical evaluation. J. Mach. Learn. Res. 11:171-234.

Benjamini, Y., and Yekutieli, D. 2001. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29(4):1165-1188.
Bhattacharya, R.; Malinsky, D.; and Shpitser, I. 2019. Causal inference under interference and network uncertainty. In Proceedings of the UAI 2019.
Colombo, D., and Maathuis, M. H. 2014. Orderindependent constraint-based causal structure learning. J. Mach. Learn. Res. 15(1):3741-3782.

Drton, M. 2009. Discrete chain graph models. Bernoulli 15(3):736-753.

Frydenberg, M. 1990. The chain graph Markov property. Scandinavian Journal of Statistics 17(4):333-353.
Gao, T., and Ji, Q. 2016. Constrained local latent variable discovery. In Proceedings of IJCAI'16, 1490-1496.

Ibargüengoytla, P. H.; Sucar, L. E.; and Vadera, S. 1996. A probabilistic model for sensor validation. In Proceedings of the UAI96, 332-339.
Javidian, M. A., and Valtorta, M. 2018. Finding minimal separators in LWF chain graphs. In Proceedings of the PGM 2018, 193-200.

Kalisch, M.; Mchler, M.; Colombo, D.; Maathuis, M.; and Bühlmann, P. 2012. Causal inference using graphical models with the R package pcalg. Journal of Statistical Software, Articles 47(11):1-26.
Lauritzen, S., and Richardson, T. 2002. Chain graph models and their causal interpretations. Journal of the Royal Statistical Society. Series B, Statistical Methodology 64(3):321-348.
Lauritzen, S., and Wermuth, N. 1989. Graphical models for associations between variables, some of which are qualitative and some quantitative. The Annals of Statistics 17(1):31-57.
Lauritzen, S. 1996. Graphical Models. Oxford Science Publications.

Li, J., and Wang, Z. J. 2009. Controlling the false discovery rate of the association/causality structure learned with the PC algorithm. J. Mach. Learn. Res. 10:475514.
Ling, Z.; Yu, K.; Wang, H.; Liu, L.; Ding, W.; and Wu, X. 2019. Bamb: A balanced Markov blanket discovery approach to feature selection. ACM Trans. Intell. Syst. Technol. 10(5).

Liu, X., and Liu, X. 2016. Swamping and masking in Markov boundary discovery. Machine Learning 104(1):25-54.
Ma, Z.; Xie, X.; and Geng, Z. 2008. Structural learning of chain graphs via decomposition. Journal of Machine Learning Research 9:2847-2880.

Margaritis, D., and Thrun, S. 1999. Bayesian network induction via local neighborhoods. In Proceedings of the NIPS'99, 505-511.
Ogburn, E.; Shpitser, I.; and Lee, Y. 2018. Causal inference, social networks, and chain graphs.

Peña, J. M.; Sonntag, D.; and Nielsen, J. 2014. An inclusion optimal algorithm for chain graph structure learning. In Proceedings of the AISTATS 778-786.
Peña, J. M. 2007. Towards scalable and data efficient learning of Markov boundaries. International Journal of Approximate Reasoning 45(2):211-232.

Peña, J. M. 2008. Learning Gaussian graphical models of gene networks with false discovery rate control. In Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 165-176.
Richardson, T. S., and Spirtes, P. 2002. Ancestral graph Markov models. The Annals of Statistics 30(4).

Roverato, A., and Rocca, L. L. 2006. On block ordering of variables in graphical modelling. Scandinavian Journal of Statistics 33(1):65-81.
Roverato, A. 2005. A unified approach to the characterization of equivalence classes of DAGs, chain graphs with no flags and chain graphs. Scandinavian Journal of Statistics 32(2):295-312.
Scutari, M. 2010. Learning Bayesian networks with the bnlearn R Package. Journal of Statistical Software 35(3):1-22.
Scutari, M. 2017. Bayesian network constraint-based structure learning algorithms: Parallel and optimized implementations in the bnlearn R package. Journal of Statistical Software, Articles 77(2).
Shpitser, I.; Tchetgen, E. T.; and Andrews, R. 2017. Modeling interference via symmetric treatment decomposition.
Sonntag, D., and Peña, J. M. 2015. Chain graph interpretations and their relations revisited. International Journal of Approximate Reasoning 58:39 - 56.
Sonntag, D.; Jãrvisalo, M.; Peña, J. M.; and Hyttinen, A. 2015. Learning optimal chain graphs with answer set programming. In Proceedings of the UAI31, 822-831.
Studený, M.; Roverato, A.; and Štěpánová, Š. 2009. Two operations of merging and splitting components in a chain graph. Kybernetika 45(2):208-248.
Studený, M. 1997. A recovery algorithm for chain graphs. International Journal of Approximate Reasoning 17:265-293.

Studený, M. 1998. Bayesian networks from the point of view of chain graphs. In Proceedings of the UAI'98, 496-503.

Sucar, L. E. 2015. Probabilistic Graphical Models: Principles and Applications. Springer, London.

Triantafillou, S.; Tsamardinos, I.; and Roumpelaki, A. 2014. Learning neighborhoods of high confidence in constraint-based causal discovery. In van der Gaag, L. C., and Feelders, A. J., eds., Probabilistic Graphical Models, 487-502.
Tsamardinos, I.; Aliferis, C.; Statnikov, A.; and Statnikov, E. 2003. Algorithms for large scale Markov blanket discovery. In In The 16th International FLAIRS Conference, St, 376-380. AAAI Press.

Tsamardinos, I.; ; Brown, L. E.; and Aliferis, C. F. 2006. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 65(1).
Wang, J.; Liu, S.; and Zhu, M. 2019. Local structure learning of chain graphs with the false discovery rate control. Artif. Intell. Rev. 52(1):293321.
Yaramakala, S., and Margaritis, D. 2005. Speculative Markov blanket discovery for optimal feature selection. In Proceedings of the ICDM'05.
Yu, K.; Liu, L.; Li, J.; and Chen, H. 2018. Mining Markov blankets without causal sufficiency. IEEE Transactions on Neural Networks and Learning Systems 29(12):6333-6347.

Appendix A: Correctness of Algorithm 2

We prove the correctness of the Algorithm 2 with following lemmas.

Lemma 4 After line 13 of Algorithm 2, G and H have the same adjacencies.

Proof Consider any pair of nodes A and B in G. If $A \in a d_{G}(B)$, then $A \not \Perp B \mid S$ for all $S \subseteq V \backslash(A \cup$ $B)$ by the faithfulness assumption. Consequently, $A \in$ $a d_{H}(B)$ at all times. On the other hand, if $A \notin a d_{G}(B)$ (equivalently $B \notin a d_{G}(A)$), Algorithm 3 (Javidian and Valtorta, 2018) returns a set $Z \subseteq a d_{H}(A) \backslash B$ (or $Z \subseteq$ $a d_{H}(B) \backslash A$) such that $A \Perp_{p} B \mid Z$. This means there exist $0 \leq i \leq\left|V_{H}\right|-2$ such that the edge $A-B$ is removed from H in line 10. Consequently, $A \notin a d_{H}(B)$ after line 13.

```
Algorithm 3: Minimal separation
Input: Two non-adjacent nodes }A,B\mathrm{ in the LWF chain
    graph G.
Output: Set }Z\mathrm{ , that is a minimal separator for }A,B\mathrm{ .
Construct }\mp@subsup{G}{An(A\cupB)}{}\mathrm{ ;
Construct ( }\mp@subsup{G}{An(A\cupB)}{}\mp@subsup{)}{}{m}\mathrm{ ;
Set Z' to be ne(A) (or ne(B)) in ( (GAn(A\cupB)}\mp@subsup{)}{}{m}\mathrm{ ;
/* Z' is a separator because,
    according to the local Markov
    property of an undirected graph, a
    vertex is conditionally
    independent of all other vertices
    in the graph, given its neighbors
    (Lauritzen, 1996). */
```

4 Starting from A, run BFS. Whenever a node in Z^{\prime} is met, mark it if it is not already marked, and do not continue along that path. When BFS stops, let $Z^{\prime \prime}$ be the set of nodes which are marked. Remove all markings;
5 Starting from B, run BFS. Whenever a node in $Z^{\prime \prime}$ is met, mark it if it is not already marked, and do not continue along that path. When BFS stops, let Z be the set of nodes which are marked;
6 return Z;

Lemma $5 G$ and H^{*} have the same minimal complexes and adjacencies after line 22 of Algorithm 2 .

Proof G and H^{*} have the same adjacencies by Lemma 4. Now we show that any arrow that belongs to a minimal complex in G is correctly oriented in line 18 of Algorithm 2, in the sense that it is an arrow with the same
orientation in G. For this purpose, consider the following two cases:

Case 1: $u \rightarrow w \leftarrow v$ is an induced subgraph in G. So, u, v are not adjacent in H (by Lemma 4 ,,$u-w \in H^{*}$ (by Lemma 4 , and $u \not \ell_{p} v \mid\left(S_{u v} \cup\{w\}\right)$ by the faithfulness assumption. So, $u-w$ is oriented as $u \rightarrow w$ in H^{*} in line 15. Obviously, we will not orient it as $w \rightarrow u$.

Case 2: $u \rightarrow w-\cdots-z \leftarrow v$, where $w \neq z$ is a minimal complex in G. So, u, v are not adjacent in H (by Lemma 4), $u-w \in H^{*}$ (by Lemma 4), and $u \not \Perp_{p}$ $v \mid\left(S_{u v} \cup\{w\}\right)$ by the faithfulness assumption. So, $u-w$ is oriented as $u \rightarrow w$ in H^{*} in line 15. Since $u \in S_{v w}$ and $w \Perp_{p} v \mid\left(S_{w v} \cup\{u\}\right)$ by the faithfulness assumption so u, v, and w do not satisfy the conditions and hence we will not orient $u-w$ as $w \rightarrow u$.

(a)

(b)

(c)

(d)

Figure 5: (a) The LWF CG G, (b) the skeleton of G, (c) H^{*} before executing the line 22 in Algorithm 2 and (d) H^{*} after executing the line 22 in Algorithm 2

Consider the chain graph G in Figure 5(a). After applying the skeleton recovery of Algorithm 2, we obtain H, the skeleton of G, in Figure 5(b). In the execution of the complex recovery of Algorithm 2, when we pick A, B in line 15 and C in line 16, we have $A \Perp B \mid \varnothing$, that is, $S_{A B}=\varnothing$, and find that $A \not \perp B \mid C$. Hence we orient $B-C$ as $B \rightarrow C$ in line 18 , which is not a complex arrow in G. Note that we do not orient $C-B$ as $C \rightarrow B$: the only chance we might do so is when $u=C, v=A$, and $w=B$ in the inner loop of the complex recovery of Algorithm 2, but we have $B \in S_{A C}$ and the condition in line 17 is not satisfied. Hence, the graph we obtain before the last step of complex recovery in Algorithm 2 must be the one given in Figure 5(c), which differs from the recovered pattern in Figure 5 d). This illustrates the necessity of the last step of complex recovery in Algorithm 2. To see how the edge $B \rightarrow C$ is removed in the last step of complex recovery in Algorithm2, we observe that, if we follow the procedure described in the comment after line 22 of Algorithm 2 the only chance that $B \rightarrow C$ becomes one of the candidate complex arrow pair is when it is considered together with $A \rightarrow D$. However, the only undirected path between C and D is simply $C-D$ with D adjacent to B. Hence $B \rightarrow C$ stays unlabeled and will finally get removed in the last step of complex recovery in Algorithm 2 .

Consequently, G and H^{*} have the same minimal complexes and adjacencies after line 22.

Appendix B: More Experimental Results

Data Generation Procedure First we explain the way in which the random LWF CGs and random samples are generated. Given a vertex set V, let $p=|V|$ and N denote the average degree of edges (including undirected, pointing out, and pointing in) for each vertex. We generate a random LWF CG on V as follows:
(1) Order the p vertices and initialize a $p \times p$ adjacency matrix A with zeros;
(2) For each element in the lower triangle part of A, set it to be a random number generated from a Bernoulli distribution with probability of occurrence $s=N /(p-1)$;
(3) Symmetrize A according to its lower triangle;
(4) Select an integer k randomly from $\{1, \ldots, p\}$ as the number of chain components;
(5) Split the interval $[1, p]$ into k equal-length subintervals I_{1}, \ldots, I_{k} so that the set of variables falling into each subinterval I_{m} forms a chain component C_{m};
(6) Set $A_{i j}=0$ for any (i, j) pair such that $i \in I_{l}, j \in$ I_{m} with $l>m$.

This procedure yields an adjacency matrix A for a chain graph with $\left(A_{i j}=A_{j i}=1\right)$ representing an undirected edge between V_{i} and V_{j} and $\left(A_{i j}=1, A_{j i}=0\right)$ representing a directed edge from V_{i} to V_{j}. Moreover, it is not difficult to see that \mathbb{E} [vertex degree $]=N$, where an adjacent vertex can be linked by either an undirected or a directed edge.

Given a randomly generated chain graph G with ordered chain components C_{1}, \ldots, C_{k}, we generate a Gaussian distribution on it via the rnorm.cg function from the LCD R package.

Metrics for Evaluation We evaluate the performance of the proposed algorithms in terms of the six measurements that are commonly used (Colombo and Maathuis, 2014. Ma, Xie, and Geng, 2008; Tsamardinos et al. 2006) for constraint-based learning algorithms: (a) the true positive rate (TPR) (also known as sensitivity, recall, and hit rate), (b) the false positive rate (FPR) (also known as fall-out), (c) the true discovery rate (TDR) (also known as precision or positive predictive value), (d) accuracy (ACC) for the skeleton, (e) the structural Hamming distance (SHD) (this is the metric described in Tsamardinos et al. (2006) to compare the structure of the learned and the original graphs), and (f) run-time
for the pattern recovery algorithms. In short, $T P R=$ $\frac{\text { true positive }(T P)}{\text { the number of real positive cases in the data (Pos) }}$ is the ratio of the number of correctly identified edges over total number of edges, $F P R=\frac{\text { false positive }(F P)}{\text { the number of real negative cases in the data (Neg) }}$ is the ratio of the number of incorrectly identified edges over total number of gaps, $T D R=$ true positive $(T P)$ is the ratio of the number of correctly identified edges over total number of edges (both in estimated graph), $A C C=$ $\frac{\text { true positive }(T P)+\text { true negative }(T N)}{P o s+\text { Neg }}$, and $S H D$ is the number of legitimate operations needed to change the current resulting graph to the true CG, where legitimate operations are: (a) add or delete an edge and (b) insert, delete or reverse an edge orientation. In principle, a large TPR, TDR, and ACC, a small FPR and SHD indicate good performance.

Figure 6: Precision-Recall ROC curves (pathwise and stepwise) along several different alpha values ($\alpha \in$ $(0.005,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)$) for a randomly generated Gaussian CG model with 50 variables and $\mathrm{N}=3$; these curves show the precision-recall trade-off.

Figure 7: Performance of Markov blanket recovery algorithms for randomly generated Gaussian chain graph models: over 30 repetitions with 50 variables correspond to $\mathrm{N}=2$. The green line in a box indicates the mean of that group.

Figure 8: Performance of LCD and MbLWF algorithms for randomly generated Gaussian chain graph models: over 30 repetitions with 50 variables correspond to $\mathrm{N}=2$. The green line in a box indicates the mean of that group.

Figure 9: Performance of LCD and MbLWF algorithms for randomly generated Gaussian chain graph models: average over 30 repetitions with 50 variables correspond to $\mathrm{N}=2$.

Figure 10: Performance of LCD and MbLWF algorithms for randomly generated Gaussian chain graph models: average over 30 repetitions with 50 variables correspond to $\mathrm{N}=3$.

