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Abstract

Bayesian neural networks (BNNs) are flexi-
ble function priors well-suited to situations in
which data are scarce and uncertainty must
be quantified. Yet, common weight priors are
able to encode little functional knowledge and
can behave in undesirable ways. We present a
novel prior over radial basis function networks
(RBFNss) that allows for independent specifi-
cation of functional amplitude variance and
lengthscale (i.e., smoothness), where the in-
verse lengthscale corresponds to the concentra-
tion of radial basis functions. When the length-
scale is uniform over the input space, we prove
consistency and approximate variance stationar-
ity. This is in contrast to common BNN priors,
which are highly nonstationary. When the in-
put dependence of the lengthscale is unknown,
we show how it can be inferred. We compare
this model’s behavior to standard BNNs and
Gaussian processes using synthetic and real ex-
amples.

1 INTRODUCTION

Neural networks (NNs) are flexible universal function ap-
proximators that have been applied with success in many
domains. Bayesian neural networks (BNNs) capture func-
tion space uncertainty in a principled manner by placing
priors over network parameters ( , ).
Unfortunately, priors in parameter space often lead to un-
expected behavior in function space, making it difficult to
incorporate meaningful information about function space
properties (Lce, ). Two such properties of impor-
tance are amplitude variance and lengthscale, including
how they might vary over the input space.

While Gaussian processes (GPs) are function priors that
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can easily encode these properties via the covariance func-
tion, there are many situations in which we would prefer
BNNSs to GPs: BNNs may be computationally more scal-
able, especially at test time, and they have an explicit
parametric expression for posterior samples, which is
convenient when additional computation is needed on
the function (e.g., finding a minima) (

, )-

Therefore, a natural question arises: can we design BNN
priors that encode function space properties as in GPs
while retaining the benefits of BNNs? Some approaches
use sample-based methods to evaluate the discrepancy
between the function space distribution and a reference
distribution with desired properties ( ,

; s ). ( ) explores dif-
ferent BNN architectures to recover equivalent GP kernel
combinations in the infinite width limit. While promis-
ing, these approaches require challenging optimizations
or rely on infinite width assumptions.

As a first step towards more expressivity for BNNGs, this
work focuses on a particular type of NN called a ra-
dial basis function network (RBFN). RBFNs are widely
used across scientific disciplines ( , ) and
have received renewed interest recently, both from a the-
oretical ( , ) and inferential perspec-
tive ( s ; s ). Importantly,
each hidden unit has a center parameter corresponding to
a localized activation function, which enables controlling
where (over the input space) the hidden units contribute
to the complexity of the function.

In this work, we introduce Poisson Process Radial Basis
Function Networks (PoRB-Nets), an interpretable family
of RBFNs that employ a Poisson process (PP) prior over
the center parameters in an RBFN. The proposed formu-
lation enables direct specification of functional amplitude
variance and lengthscale, the latter of which can vary
over the input space. We show that these properties are
decoupled; that is, each can be specified independently



of the other. Intuitively, PORB-Nets work by trading off
between the concentration and scale of the radial basis
functions. Consider that a higher concentration of ba-
sis functions allows for a smaller lengthscale but also a
larger variance, since the basis functions add up. By mak-
ing the scale of the basis functions depend inversely on
their concentration, PORB-Nets undo the impact on the
variance.

PoRB-Nets have the additional benefit that the choice
of the lengthscale determines the network architecture
(width of the layer), since the expected number of hidden
units is equal to the integral of the PP intensity over the
input space. Hidden units are added or deleted from the
network during inference to adjust the overall lengthscale
to the data, and when the input dependence of the length-
scale is unknown, we show how it can be inferred using a
sigmoidal Gaussian Cox process as a prior ( ,

). As with GPs, and unlike networks that force a
specific property ( , ), these properties can
adjust given data. We focus on single-layer RBFNs since
our interest is in theoretical properties and examining the
true posterior.

Specifically, we make the following contributions: (i)
we introduce a novel, intuitive prior formulation for
RBFNs that encodes distributional knowledge in func-
tion space, decoupling notions of lengthscale and am-
plitude variance in the same way as a GP with a ra-
dial basis function (RBF) kernel; (ii) we prove impor-
tant theoretical properties of consistency and amplitude
stationarity; (iii) we provide an inference algorithm to
learn an input dependent lengthscale and (iv) we em-
pirically demonstrate the potential of PoRB-Nets on
synthetic and real examples. The code is available at
https://github.com/dtak/porbnet.

2 RELATED WORK

Early weight space priors for BNNs. Most classical
NN priors aim for regularization and model selection
while minimizing the amount of undesired inductive bi-
ases (Lee, ). ( ) proposes a hierarchi-
cal prior' combined with empirical Bayes. ( )
proposes an improper prior for NNs, which avoids the
injection of prior biases at the cost of higher sensitivity to
overfitting. ( ) proposes priors to alleviate
overparametrization of NN models. We build on classical
weight space priors but with the goal of obtaining specific
properties in function space.

"Hierarchical priors are convenient when there is limited
parameter interpretability. The addition of upper levels to the
prior reduces the influence of the choice made at the top level,
making the prior at the bottom level (the original parameters)
more diffuse (Lee, ).

Some works (

s ; s ) match BNN priors
to specific function space priors (e.g., GPs) but rely on
sampling function values at a collection of input points.
These approaches do not provide guarantees outside of the
sampled region, and even in that region, their enforcement
of properties is approximate. Neural processes (

, ) use meta-learning to identify functional prop-
erties that may be present in new functions, but they rely
on having many prior examples and do not allow the user
to specify basic properties directly. In contrast, we encode
functional properties via prior design, without relying on
function samples.

Function space priors for BNNs.

Bayesian formulations of RBFN models. Closest to
our work are Bayesian formulations of RBFNSs.

( ) consider a fixed number of hidden
units, fixed scale, and use a Gaussian approximation to the
posterior distribution, which is available in closed form
in this case. ( ) and

( ) propose fully Bayesian formulations that
employ homogeneous Poisson process priors on the center
parameters, but their focus is on inferring the number
of hidden units and their formulation does not decouple
amplitude variance and lengthscale.

3 BACKGROUND

Bayesian neural networks (BNNs). Let y =
f(z]w,b) + €, where € is a noise variable and w and
b refer to the weights and biases of a neural network f
respectively. In the Bayesian setting, we assume a prior
w,b ~ p(w,b). One common choice is i.i.d. normal
distributions over each parameter. For better compar-
ison to PoRB-Nets we focus on BNNs with Gaussian
#(2) = exp(—22) activations. We will refer to such a
model as a standard BNN ( s ).

Radial basis function networks (RBFNs). RBFNs are
classical shallow neural networks that approximate arbi-
trary nonlinear functions through a linear combination of
radial kernels ( , ). They are universal func-
tion approximators ( , ) and are
widely used across disciplines such as numerical analy-
sis, biology, finance, and classification in spatio-temporal
models ( s ). For an input z € RP, the
output of a single-hidden-layer RBFN of width K is given
by:

= 1
fz|0)=0b+ Zwk exp (—zsiﬂx - ck2> , (D

k=1

where 57 € R and ¢, € R are the scale and center
parameters, respectively, wy € R are the hidden-to-output
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weights, and b € R is the bias parameter. Each k-th
hidden unit can be interpreted as a local receptor centered
at ¢y, with radius of influence s;, and relative importance
wg ( , )-

Poisson process. A Poisson process (PP) on RP is a
stochastic process characterized by a positive real-valued
intensity function A(c). For any set C C RP, the number
of points in C follows a Poisson distribution with param-
eter [, A(c)de. The process is inhomogeneous if \(c)
is non-constant. We use a PP as a prior on the center
parameters of an RBFN.

Gaussian Cox process. A Bayesian model consisting
of a Poisson process likelihood and a log Gaussian pro-
cess prior g(c) on the intensity function A\(c) is called a
log Gaussian Cox Process ( R ).

( ) present an extension, called the sigmoidal
Gaussian Cox process, which passes the Gaussian pro-
cess through a scaled sigmoid function. To infer an input
dependent lengthscale of an RBFN, we use this process
as a model for the intensity function of the PP prior on
the center parameters of the RBFN.

4 MODEL

In this section we introduce Poisson Process Radial Basis
Function Networks (PoRB-Nets), which achieve two es-
sential desiderata for a functional prior. First, they enable
the user to encode the fundamental basic properties of
lengthscale (i.e., smoothness), amplitude variance (i.e.,
signal variance), and (non)stationarity. Second, PORB-
Nets adapt the complexity of the network based on the
inputs. For example, if the data suggests that the function
needs to be less smooth in a certain input region, then that
data can override the prior. Importantly, PORB-Nets fulfill
these desiderata while retaining appealing properties of
NN-based models, as discussed in Section 1.

Generative model. As in a standard BNN, we assume
a Gaussian likelihood centered on the network output,
and independent Gaussian priors on the weight and bias
parameters. Unique to the novel PORB-Net formulation is
a Poisson process prior over the set of center parameters
and a deterministic dependence of the scale parameters
on the Poisson process intensity. The generative model is

given by:
K
UL~ e (= [a@e) [T @
¢ k=1
sz|)\,ck = sg)\2(ck) 3)
wy ~ N(0,07) )
b ~ N(0,07) (5)
yn|xn70 ~ N(f(xn;0)702)7 (6)

where f(x,;0) is given by Eq. (1); A : C — R™ is the
(possibly non-constant) Poisson process intensity; @ is the
set of RBFN parameters, including the centers, weights,
bias, and intensity; and s? is a hyperparameter that defines
the scale of the radial basis function when the intensity is
one. In practice, sg allows the user to control the baseline
number of hidden units. For example, if computational
constraints limit the number of hidden units that can be
used, decreasing s3 allows the user to model a smaller
lengthscale without adding more units.

Different priors could be considered for the intensity func-
tion A. One simple case is to assume a uniform intensity
A(c) = X with A2 ~ Gamma(ay, By). Under this spe-
cific formulation, Section 5 proves that the amplitude
variance is stationary as the size of the region C tends to
infinity, and Section 6 proves that the posterior regression
function is consistent as the number of observations tends
to infinity; such amplitude variance only depends on the
variance of the hidden-to-output weights and output bias
V[f(x)] ~ of+52, where 62 is just o2 scaled by s. We
further show that the intensity A controls the lengthscale.

Hierarchical prior for unknown input dependence of
the lengthscale. In the case when the input-dependence
of the lengthscale is unknown, we further model the inten-
sity function A(c¢) of the Poisson process by a sigmoidal

Gaussian Cox process ( , ):
Ale) = Aa(g(e)), (®)

where \* is an upper bound parameter on the intensity
function and o(z) = (1+e~*) ! is the sigmoid function.
In the forward pass of the network, we use the posterior
mean of g to evaluate \(c).

Contrast to BNNs with Gaussian priors. In Sec-
tions 5 and 6, we prove that the proposed formulation
has the desired properties described above. However,
before doing so, we briefly emphasize that the i.i.d. Gaus-
sian weight space prior commonly used with BNNs does
not enjoy these properties. To see why, let us consider
a standard feed-forward NN layer with 1-dimensional
input and a Gaussian ¢(z) = exp(—2z2) activation func-
tion. We can rewrite the hidden units as ¢(wpx + by) =
¢(wg(z — (—by /wy))). This means that the correspond-
ing center of the k-th hidden unit is ¢, = —by/wy, and
the scale is s, = wy. If by, and wy, have i.i.d. Gaussian
priors with zero mean, as in standard BNNs, then the cen-
ter parameter has a Cauchy distribution centered around
zero. This is an important observation that motivates our
work: A standard BNN concentrates the center of hidden
units near the origin, resulting in nonstationary priors in
function space.
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Figure 1: PoRB-Net captures amplitude stationarity
while a standard BNN does not. Posterior predictive
distributions given 4 observations.

S VARIANCE AND LENGTHSCALE

‘We now return to the core desiderata: to specify a prior
that separately controls a function’s lengthscale and am-
plitude variance, as one could do using a GP with an RBF
kernel. To do so, we first derive the covariance of the pro-
posed PoRB-Net model. The full derivations supporting
this section are available in Appendix A.

( ) showed that the covariance function for a
single-layer BNN with a fixed number of hidden units
p(z;01),...,p(z;0x) and independent N'(0,02) and
N (0, 0?) priors on the hidden-to-output weights and out-
put bias takes the following general form:

Cov(f (1), [(x2)) = o} + 00, KB [p(1;0)p(22: 0)] -

We show that the covariance function for a BNN with
a distribution over the number of hidden units takes an
analogous form, replacing the fixed number of hidden
units K with its expectation:

Cov(f(x1), f(x2)) = of + oL E[K]Eg [p(21:0)p(2: 0) | K].

1:U(Il,z2)

In the PoRB-Net model, § = {A(),cx}, p(x;0) =
d(M(ck)sollz — cxl]) where ¢(z) = exp(—32?), and
E[K] = [, A(c) dc. By deriving the form of U (1, x2)
for the case of a homogeneous Poisson process, we next
show that the covariance becomes increasingly stationary
as the region C increases in size. We then illustrate how
the covariance is decoupled from the lengthscale.

A homogeneous PP yields stationarity. In the case of
constant intensity A(c) = X defined over C = [Cy, C1],
the expression of U (1, x2) can be derived in closed form:

a5

B((Ch — ) V252) — B((Co — zm)@)\)} )

U(xl,xQ) =

where s? = s2)\2, ® is the cumulative distribution func-
tion of a standard Gaussian, and x,,, = (z1 + 22)/2 is
the midpoint of the inputs. As the bounded region C
increases, the second term approaches one, and so the
covariance of a PORB-Net approaches a squared exponen-
tial kernel with inverse lengthscale s3\? and amplitude
variance 62 := \/m/s3 (defined for convenience):

Cov (f(z1), f(z2)) =

2
o2+ 52 eXp{—sgAQ (5”;“) } (10)

which is stationary since it only depends on the squared
difference between z; and x5. Notice that this result does
not rely on an infinite width limit of the network, but only
on the Poisson process region [Cy, C1] being relatively
large compared to the midpoint .,,. In practice, [Cy, C1]
can be set larger than the range of observed z values
to achieve covariance stationarity over the input domain.
Figure 2 shows that over the region [—5, 5] the analytical
covariance from Equation (9) is fairly constant with only
slight drops near the boundaries. In Appendix A we also
derive the covariance when A ~ Gamma(cvy, 3y ), which
results in a qualitatively similar shape. In contrast, the
covariance function of an RBFN with a Gaussian prior
on the center parameters is not approximately stationary.
Specifically, for ¢, ~ N(0,02) and a fixed scale s*> =
1/(202), (1997) shows that U (1, z2) takes the
following form, which Figure 2 shows is highly non-
stationary:

(21 — x2)? 22 + 23
—— | e ———].
2202 + 01/02) ) "\ 20202 1+ 0?)

Stationary

U(x1,22) x exp (—

Nonstationary

RBFN PoRB-Net
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Figure 2: PoRB-Net captures amplitude stationarity
while an RBFN with a Gaussian prior on the centers
does not. The lines are Cov(x—t/2, z+1t/2) for different
t. Wesetallof 02 = s2 =s2=X=1andC = [-5,5].

Decoupling of variance and lengthscale. From Equa-
tion 9, notice the variance is V[f(x)] ~ o7 + 52, which
has no dependence on the intensity )\, freeing it to act as
an inverse lengthscale. This is a point of differentiation



of PoRB-Nets. If the scale were fixed or independent of
the intensity, as is the case in previous priors over RBFNs
(e.g., ( )), the variance would
be V[f(z)] =~ of + A2, Intuitively this happens be-
cause a higher intensity implies a higher number of basis
functions, which implies a higher amplitude variance as
the basis functions add up. If we instead allow the scale
parameters s2 to increase as a function of the intensity,
thus making the radial basis functions more narrow, we
can counteract the impact of their concentration on the
amplitude.

To support the hypothesis that the intensity A controls the
lengthscale, we examine the average number of upcross-
ings of y = 0 of sample functions. For a GP with an
RBF kernel, the expected number of upcrossings u over
the unit interval is inversely related to the lengthscale [
viau = (27l)~!. Figure 3 shows a histogram of the up-
crossings from functions drawn from a PoRB-Net with
a stepwise intensity A(c) (greater above x = 0). Notice
the lengthscale is clearly smaller above x = 0 but the
amplitude variance V[f(z)] is approximately constant for
all .

An inhomogeneous PP yields non-stationarity.
When the intensity is a non-constant function A(c), then
Equation (9) does not hold. However, we find that setting
the scale parameter of each hidden unit to s7 = sZ\(cy)?,
where A(cg) is the intensity evaluated at the center
parameter cg, allows for an input dependent lengthscale
that is approximately decoupled from the variance.

Function samples Histogram of upcrossings

= VIfix)]

Figure 3: PoRB-Nets decouple lengthscale (as mea-
sured by the upcrossings) and variance.

6 CONSISTENCY

In this section, we study consistency of predictions. That
is, as the number of observations goes to infinity, whether
the posterior predictive concentrates around the true func-
tion. When dealing with priors that can produce an un-
bounded number of parameters, consistency is a basic but
important property. To our knowledge, we are the first to
provide consistency for RBFNs with a Poisson distributed

number of hidden units (no consistency guarantees were
derived by (2001)).

Define ro(x) to be the true regression function and
fn(z) =E; [V | X] to be the estimated regression func-
tion, where p,, is the estimated density in parameter space
based on n observations. The estimator #,,(x) is said to
be consistent with respect to the true regression function
ro(z) if, as n tends to infinity:

/(fn(:c) —ro(z))? de & 0. (11)

Doob’s theorem shows that Bayesian models are consis-
tent as long as the prior places positive mass on the true pa-
rameter ( , ). For finite dimensional parameter
spaces, one can ensure consistency by simply restricting
the set of zero prior probability to have arbitrarily small
or zero measure. Unfortunately, in infinite dimensional
parameter spaces, this set might be very large ( ,

). In our case where functions correspond to uncount-
ably infinite sets of parameters, we cannot restrict this set
of inconsistency to have measure zero.

Instead, we aim to show a strong form of consistency
called Hellinger consistency. We closely follow the ap-
proach of ( ), who shows consistency for standard
BNNs with normal priors on the parameters. Formally, let
(1,91), -+, (Tn,Yn) ~ po be the observed data drawn
from the ground truth density py and define the Hellinger
distance between joint densities p and pg over (X,Y") as:

Dis(p.po) = \/ ] (Vo) - Vi) e

The posterior is said to be consistent over Hellinger neigh-
borhoods if for all € > 0,

p({f : Dr(p.po) < €}) & 1.

( ) shows that Hellinger consistency of joint den-

sity functions implies frequentist consistency as described
in Equation (11). The following theorem describes an
analogous result for PORB-Nets with homogeneous inten-
sities.
Theorem 1. (Consistency of PORB-Nets) A radial basis
function network with a homogeneous Poisson process
prior on the location of hidden units is Hellinger consis-
tent as the number of observations goes to infinity.

Proof. Leveraging the results and proof techniques from

( ), we use bracketing entropy from empirical
process theory to bound the posterior probability outside
Hellinger neighborhoods. We need to check that this
model satisfies two key conditions. Informally, the first



condition is that the prior probability placed on parame-
ters larger in absolute value than a bound B,,, where B,, is
allowed to grow with the data, is asymptotically bounded
above by an exponential term exp(—nt), for some ¢ > 0.
The second condition is that the prior probability placed
on KL neighborhoods of the ground truth density function
po is asymptotically bounded below by an exponential
term exp(—nv), for some v > 0. The proof is in the
Appendix B. O

Note that consistency of predictions does not imply con-
centration of the posterior in weight space, since radial
basis function networks, like other deep neural models,
are not identifiable.

7 INFERENCE

We infer the posterior p(€ | D) over the network param-
eters @ with Markov-Chain Monte Carlo (MCMC) and
model predictions for new observations and their associ-
ated uncertainties with the posterior predictive distribu-
tion:

p(y*|e*, D) = / p(y*|*, 0)p(6]D)do

The inference algorithm can be broken down into three
steps. Step 1 updates the network weight, center, and bias
parameters ({wk, ck}szl, b) conditional on the network
width K and intensity function with Hamiltonian Monte-
Carlo (HMC) ( s ). Step 2 updates the network
width K conditional on the network parameters and in-
tensity function with birth and death Metropolis-Hastings
(MH) steps. Finally, Step 3 updates the Poisson process
intensity conditional on the other network parameters and
network width. In the case of a homogeneous intensity
with a Gamma prior, we use an MH step. In the case of
a inhomogeneous intensity defined by Equations 7 and 8
we follow the inference procedure of ( )
for a sigmoidal Gaussian Cox process, treating the cur-
rent center parameters {cy } as the observed events. This
involves introducing three auxiliary variables: a collec-
tion of “thinned” center parameters {¢,, }, the number of
thinned center parameters M, and the latent GP evaluated
at the thinned center parameters {g,, }. Step 3 requires
updating each of these auxiliary variables, along with
the latent GP values {g, } evaluated at the current center
parameters {cj}. For convenience we define gyr i as
vector concatenating { gy, }2_; and {gx}X_, and cpr4
as the vector concatenating {¢,, }»_, and {c; }< ;. We
also define L(0) as the likelihood of the data given all
network parameters. We next describe these steps in more
detail assuming a sigmoidal Gaussian Cox process prior
on an inhomogeneous intensity A(c), but the full details

of the inference procedure are available in the Appendix
C.

Step 1: Update network weights, bias, and centers.
The full conditional distribution of the weights, bias, and
centers can be written as:

p({wr}t, b, {ce} | K {em}, {Gm }, {9 })
K
2
—222“’1@}
W k=1
—1/2 L 7 “1
%] exp _§gM+K2 BM+K (>

where ¥ is the kernel matrix of the GP underlying the
intensity evaluated at all of the center parameters. We use
HMC, which requires tuning L leap-frog steps of size e,
to propose updates from this distribution.

Step 2: Update network width XK. We adapt the net-
work width with birth or death Metropolis-Hastings (MH)
steps chosen with equal probability. For a birth step, we
propose a weight w’ and a center ¢’ from their prior distri-
butions, and we propose a GP function value ¢’ (represent-
ing g(c’)) from the GP conditioned on the current function
values g+ i observed at ¢y . For the death step, we
propose to delete the &’th hidden unit by uniformly select-
ing among the existing hidden units. Therefore, we can
write the hidden unit birth and death proposal densities as
follows:

K = K+1) o N(w';0,02%)

p(gl | c, v+, 8M+k)/1(C)
g K—>K-1)=1/K

Note that since the GP has a zero mean function, we
propose ¢’ uniformly over 1(C), but for any fixed intensity
we propose from the density A(c)/A. The acceptance
rates work out to:

L) Xolgu(©)
birth L(G) K+1
L(G/) K
Qdeath =

~

(0) Ao (gr)n(C)

Step 3: Update Poisson process intensity \. We adopt
an inference procedure similar to ( s )
with two crucial differences: the “events” {c} (center
parameters in our case) are unobserved and the full con-
ditional of the function values gs+ x includes the like-
lihood L(8) of the data D, since the forward pass of the
network uses the posterior mean of g to evaluate the inten-
sity A(¢) = Mo (g(c)). We proceed as follows: i) update
the number M of thinned centers using birth and death
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Figure 4: PoORB-Net allows for easy specification of lengthscale and amplitude like a GP. We show prior samples

from PoRB-Net with a homogeneous intensity, a GP with RBF kernel, B-RBFN ( s

), and a BNN ( s

) with a Gaussian activation. Compared to the first row, the second row has lower lengthscale and similar amplitude,
while the third row has higher amplitude and similar lengthscale.

steps, analogous to updating the number of actual centers
K ii) update the thinned center parameters {c,, }2/_,
using MH steps with perturbative proposals; iii) update
the GP function values g+ x using HMC.

8 RESULTS

Next we empirically demonstrate desirable properties of
PoRB-Net. In particular, PORB-Net allows for (a) easy
specification of lengthscale and amplitude variance in-
formation (analogous to a GP), and (b) learning of an
input-dependent lengthscale. We report additional em-
pirical results on synthetic and real datasets in Appendix
D.

PoRB-Net allows for easy specification of stationary
lengthscale and signal variance. Figure 4 shows prior
function samples from different models (columns) with
different prior settings (rows). Compared to the top row,
the second row has a smaller overall lengthscale and the
bottom row has a higher overall variance. We plot 50 func-
tion samples (red lines) and the estimated variance based
on 10,000 function samples (black, dotted line). Like a
GP, the amplitude variance of PORB-Net is constant over
the input space and does not depend on the lengthscale.
On the other hand, the model of ( )
(B-RBFN), which effectively assumes a homogeneous

Poisson process prior on the center parameters but does
not rescale the basis functions based on the intensity, has
a variance that changes over the input space and does
depend on the lengthscale. For a standard BNN (last
column), the amplitude variance and lengthscale are con-
centrated near the origin and the variance increases as we
decrease the lengthscale (from st to 2nd row).

PoRB-Net can recover a known, input dependent
lengthscale. Figure 5 illustrates the capacity of PoORB-
Net to infer an input-dependent lengthscale. Here the true
function is a GP with a sinusoidal lengthscale (see kernel
in the Appendix D). The right panel shows the center pa-
rameter intensity, inferred from noisy (x, y) observations,
corresponds to the inverse of the true lengthscale.

PoRB-Nets exhibit competitive performance on syn-
thetic and real datasets. We compare the performance
of PoRB-Nets, GPs, and single-layer BNNs with Gaus-
sian activations, with the first two sets of models trained
with and without inferring the input dependence of the
lengthscale. For the GP models, to use a constant length-
scale we use a regular GP with an RBF kernel; to infer
an input dependent lengthscale we use the nonstationary
GP model of ( ), which we denote by
LGP.
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Figure 5: PoRB-Net is able to learn input-dependent
lengthscale information. The ground truth synthetic ex-
ample has been generated from a nonstationary GP with
a sinusoidal lengthscale function Iy, ().

At a high level, we see qualitative similarity between
PoRB-Nets and GPs that infer the lengthscale, and PoRB-
Nets and GPs that do not infer the lengthscale, but the
BNNs look different from the rest. This is due to the
nonstationarity of the prior, which has higher variability
near the origin. All models except the GP are inferred
using HMC (including the LGP).

We use four synthetic datasets — all drawn from GPs with
known lengthscale functions {(2) — and six real, nonsta-
tionary time series datasets — four from mimic (

s ), the CBOE volatility index over one year
starting in October 2018 (“finance”), and the motorcycle
dataset ( s ). The datasets drawn using a si-
nusoidal lengthscale /g, () and an increasing lengthscale
(from left to right) l;,c(2) can be seen in Figures 5 and 6,
respectively. lconst () is a constant lengthscale, on which
the GP with a stationary, RBF kernel not surprisingly
performs best (with PORB-Net coming in second).

To highlight differences in model behavior rather than
prior specification, we first identify the variance and
lengthscale parameters that optimize the log marginal
likelihood of the GP. We then match the overall variance
and lengthscale (as measured by the number of upcross-
ings mentioned in Section 5) of the BNN and PoRB-Net
to the GP by a grid search over the model parameters.
Note that the BNN will still have a different input depen-
dence of variance and upcrossings over the input space
(both concentrated near the origin). Since adjusting the
lengthscale of PORB-Net adjusts the prior expected num-
ber of hidden units, and during inference they can further
adapt to the data, we train BNNs with 25, 50, and 100
units, roughly corresponding to the range of units used by
PoRB-Net.

There are two main takeaways from these results:

e Examining the posterior predictives in Figure 6 qual-
itatively, both PoORB-Net and the LGP adapt the local

Table 1: Test Log Likelihoods. For the BNN, we show
the best(worst) performance among models of size 25, 50,
and 100 units.

PoRB-  PoRB-
Nett Net GP LGP BNN

sin* 0.77 0.82 0.73 0.81 0.79 (0.74)
inc* -0.40 0.00 -0.23 0.18 -0.15 (-0.28)
inc2* 0.66 0.75 0.54 0.18 0.68 (0.63)
const* 0.28 0.33 0.41 0.24 0.01 (-0.30)
mimicl 0.89 0.95 0.83 0.90 1.05 (0.91)
mimic2 0.53 0.60 0.56 0.54 0.47 (0.39)
mimic3 -0.63 -0.57 -0.67  -0.58  -0.59 (-0.65)
mimic4 -1.72 -1.53 -1.85  -1.44  -0.59(-1.38)
finance -1.41 -0.52 -1.97 0.03 -0.73 (-2.63)
motor. 0.18 0.16 0.17 0.14 0.16 (0.12)

*synthetic dataset tinfers homogeneous intensity

lengthscale to the smoothness of the data, though the
effect is more pronounced in the LGP. In contrast,
the BNN underestimates uncertainty near z ~ .2
in the synthetic dataset (top row) and overestimates
uncertainty near z ~ .8 in the real dataset (bottom
row).

o The test log likelihoods in Table 1 show PoRB-Net
exhibits strong performance across the datasets. In
contrast, the performance of the BNN varies greatly
by the number of hidden units. PORB-Nets remove
this choice by averaging over different numbers
of units, fully taking advantage of the Bayesian
paradigm.

Test RMSEs, posterior predictives, and inferred intensities
for all datasets are available in the Appendix D. Note that
HMC is a gold standard for posterior inference; the fact
that the standard BNN lacks desirable properties under
HMC demonstrates that its failings come from the model
and not the inference.

9 CONCLUSION

This work presents a novel Bayesian prior for neural net-
works called PoORB-Net that allows for easy encoding and
inference of two basic functional properties: amplitude
variance and lengthscale. We provide a principled infer-
ence scheme and future work can address how it can be
scaled.

Under standard BNN formulations, we show that it
is impossible to get such properties. The essential
pieces to achieve these properties were: i) a center-scale
parametrization (instead of classical weight-bias), ii) an
automatic adaptation of the number of hidden units, and
iii) a rescaling of the radial basis functions based on their
concentration.

We focused on Gaussian activations because they have
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Figure 6: PORB-Net posterior predictive captures non-stationary patterns in real scenarios, adapting the length-
scale locally as needed. Priors for all models have been matched to have about the same amplitude variance and
lengthscale. BNNs exhibit undesired uncertainty while PORB-Nets and LGPs adapt the local uncertainty to the data.
Gray points used for training and red points used for testing.

a limited region of effect, unlike other popular activa-
tions like tanh or ReLU. Exploring how to get desirable
properties for those activations seems challenging, and
remains an area for future exploration. That said, we em-
phasize that RBFNs are commonly used in many practical
applications, as surveyed in ( , ).

Finally, all of our work was developed in the context of
single-layer networks. From a theoretical perspective this
is not an overly restrictive assumption, as single layer
networks are still universal function approximators (

, ). However, deep RBFNs, where only
the last layer has a radial basis function parameterization,
have received renewed interest ( , ), so
exploring deep PoORB-Nets is an interesting area of future
work.

Given the popularity of NNs and the need for uncertainty
quantification in them, understanding prior assumptions—
which will govern how we will quantify uncertainty—is
essential. If prior assumptions are not well understood and
not properly specified, the Bayesian framework makes
little sense: the posteriors that we find may not be ones
that we expect or want. Though we focus on RBFNs, our
work provides an important step toward specifying NN
priors with desired basic functional properties.
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A COVARIANCE DERIVATION

In this section we derive the covariance function of a PORB-Net for one dimensional inputs. First we show our model
has a prior mean of zero. Note that b, {(wy, i)} |, and K are all random variables the scales s7 are fixed as a
function of the intensity: s? = s3\(cg)?.

K
E[f(2)] =E |b+ Y wpe(si(z - Ck))] Q)
k:lK
=E[p] +E | Y wrd(su(z - Ck))‘| 2)
; k=1
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In Equation (6) we drop the condition K = K since conditional on the network width K being fixed, the weights
wy, are independently normally distributed and the centers are independently distributed according to the normalized
intensity A(c)/A, so they do not depend on the actual value of the network width.

Next we consider the covariance:

Cov [f(z1), f(z2)] = E[f(z1) f(z2)]
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where 62 = 1/s3 /w02 is the prior variance for the weights. To actually evaluate the covariance we need to evaluate
the U(z1, z2) = E[o(s(x1 — ¢))d(s(z2 — ¢))] term. We next consider two cases. Case 1 is a homogeneous Poisson
process prior over ¢ and Case 3 is an inhomogeneous Poisson process prior over c. Note that in both cases. Note that in
both cases, the Poisson process prior over c is unconditional on the network width. Conditioned on the network width,
as in the expectation we are trying to evaluate, Case 1 is a uniform distribution over C and Case 3 has PDF A(c)/A.

A.1 CASE 1: HOMOGENEOUS POISSON PROCESS

First we consider the case where the intensity is fixed, i.e., A(¢) = A, meaning the center parameters are uniformly
distributed over C. Then we have:

U(l‘l,l‘g) (14)

1
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SE kernel uniform mixture of Gaussians

In Equation (20) we plug in s? = s3\(c)? = sZ\2. In equation (21) we point out we can write this term as the product
of an SE kernel and a mixture of Gaussians. Considering only the uniform mixture of Gaussian term we have:
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where ® is the cumulative distribution function (CDF) of a standard Gaussian. In Equation (23) we define )2 :=
1/(253)2) and &, := (x1 + 22)/2 as the midpoint. In Equation (24) we use the change of variables u = (¢ — z,,) /0.
Noting that E[K] = A * uC and plugging Equation (26) in Equation (21) and Equation (21) into Equation (13) we have:

— T3
2

2
Cov [7(a1), 1 (w2)] = o + 0% exp {—W (252) } (€1~ 2m)VEs0) ~ B((Co ~ 2)VEs0N)] 2D

This gives a closed form representation for the covariance (to the extent that the standard Gaussian CDF Phi is closed
form). If we further assume C and Cj, where C = [Cy, C4] is where the Poisson process intensity is defined, are large
in absolute value relative to the midpoint x,,,. In other words, the Poisson Process is defined over a larger region than
the data. Then the difference in error functions is approximately 1 (i.e., the integral over the tails of the Gaussian goes
to zero) and the covariance becomes:

2
Cov [f(21), f(x2)] = 0} + 0o exp {—30/\2 <x1 ;m) } (28)

Finally, notice that the variance depends only on the weight and bias variance parameters:

V[f(2)] = o + 0 (29)

A.2 CASE 2: HOMOGENEOUS POISSON PROCESS WITH GAMMA PRIOR
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In Equation 36 we recognize the form of the Gamma probability density function to solve the inner integral. We now
rewrite 8(c) as
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where we define x,,, := (21 +x2)/2 as the midpoint of z1 and 22, and u = s3(c—2y,)?, and 72 := 5§ ((x1 — 22)/2)% +

B to simplify the notation. Using this expression for 3(c), the integral in Equation 36 becomes:
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Before plugging the expression for V(z1, 22) into Equation 13, notice we can write the expected number of units E[K]
as the product of the expected intensity E[A] and the volume of the Poisson process region 1(C):

E[K] =E[E[K | Al | Al = EAu(C) | A] = p(C)E[A] (46)

Therefore, the covariance is:
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Note that E[\] ~ y/a/3. This is because A> ~ Gamma(c, ) implies A ~ Nakagami(m = a, Q = «/f3). Using the
approximation I'(av + 1) /I'(ar) & /e (follows from Sterling’s formula) we have:
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Figure 1 plots the exact functional covariance Cov(f(x — t/2), f(x + t/2)) with and without the Gamma prior on the
intensity (given by Equations 27 and 47, respectively) as a function of input x for different values of a fixed separation ¢
(so t = 0 corresponds to the variance). Also shown are empirical estimates based on 1000 samples drawn from the prior.

The covariance drops of sharply near the boundaries of C = [—1, 1] but is approximately constant within this region.
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Figure 1: True (solid line) and estimated (dots) functional covariance Cov(f(z — t/2), f(x + t/2)) of PoORB-Net with
a uniform intensity with and without a Gamma prior. For both models we set sg =1, ofﬂ =1, af =0,C=[-1,1],
and E[K] = 20.



B CONSISTENCY

We are interested in the posterior behavior of our model as the number of observations n — oo. For better comparison
with existing results, we use slightly different notation in this section. We want to show that the estimated regression
function g, (x) := E[Y | X = z] is asymptotically consistent for the true regression function go(x), i.e.:

/(gn(x) — go(x))*dx 20

To do this, we first show that the posterior probability assigned to all joint distribution functions f(X,Y") in any
Hellinger neighborhood of the true joint distribution function fo(X,Y’) approaches one as n — oo. That is, if
Ac={f | Du(f, fo) < e} defines a Hellinger neighborhood of the true distribution function, then Ve > 0:

P(A | (X1, Y1), (X, V) B 1

We assume that the marginal distribution of X is uniform on [0, 1] (i.e., f(X) = 1), so the joint distribution f(X,Y)
and the conditional distribution f(Y | X) are the same, since f(X,Y) = f(Y | X)f(X) = f(Y | X). The estimated

regression function is defined as g, (v) = E I3 [Y | X = z], where f,, is given by the posterior predictive density:
fa(X,Y) = /f(X, V) dP(f | (X1,Y1)), -+ s (X, Y2)).

After introducing a few definitions and notation, Section B.1 discusses the necessary conditions on the prior required for
any radial basis function network to achieve consistency, with many results taken or adapted from [Lee, ]. Section
B.2 checks that these necessary conditions are met by PORB-Net with a homogeneous Poisson process prior on the
number of hidden units. We first show asymptotic consistency when the number of hidden units is allowed to grow with
the data. This gives a sequence of models known as a sieve. We then extend this to the case when the number of hidden
units is inferred.

Definitions and notation

We begin by specifying our notation and definitions, which differs from other sections in this paper.

e D is the input dimension.
e K is the network width.

o I, I®) and I(®) are the number of total parameters, weight parameters, and center parameters, respectively.
I=1 410 41,

o 7,7 7(9) and T (\) are the index set of total parameters, weight parameters, center parameters, and intensity
respectively (e.g., Z = 1,2,...,1). I c 7,70 c 7,7 c 7,1 = [7], I™) = |T(®)|, I(©) = |T(9)|, and
1=|TC)],

e The subscript n always denotes the sample size dependence (applies to K,,, I,,, Z,,, I,(Lw), Iy(lw) s I,(f), L(f), Ch).
e Let 0, denote any parameter, ¢; denote a center parameter, and w; denote a weight parameter.

e (), is a bound on the absolute value of the parameters. For the sieves approach in we assume C,, < exp(n®~%),
where 0 < a < b < 1.

e Assume that the Poisson process intensity function A(c) is only defined on a bounded region C.

e Let f(z,y) denote a joint density of covariates X and label Y and let g(z) = E[Y | X = z] denote a regression
function.

e Let fo(z,y) and go(x) denote the true joint density and regression function, respectively.



e Weassume z € X = [0, 1]” and that the marginal density of  is uniform, i.e. f(X) = 1.
e Let Dy(fo, f) denote the Hellinger distance and let A = {f : Dy (fo, f) < €}.

o Let Dk (fo, f) denote the KL divergence and let K., denote a KL neighborhood of the true joint density: K., =
{f I D (fo, f) <v}=A{f: Dx(fo,[) <~}

e Let (z1,41),---,(Zn,yn) denote the n observations and m,, denote a prior probability distribution over the
parameters of a single hidden layer PORB-Net conditional on there being K,, nodes, where K, increases with n.
Let I,, denote the number of parameters for an RBFN network with K, nodes.

e Let F denote the space of all single-layer radial basis function networks RBFN(x; 0) — y, let F,, C F be its
restriction to networks with parameters less than C,, > 0 in absolute value, where C,, also increases with n;
let H,, C F be its restriction to networks with K,, nodes; and let G,, = F,, N G,, be the intersection of both
restrictions.

B.1 CONSISTENCY OF RBFNs WITH ARBITRARY PRIORS
B.1.1 Supporting results

The following theorems are used in proof of Lemma 2, which is adapted from [Lce, ]. Theorem 1 upper bounds the
bracketing number Nj( ) by the covering number N ( ). Define the Hellinger bracketing entropy by H7j( ) := log Npj( ).

Theorem 1. [ , ] Let s,t € F,, i.e., s andt are realizations of the parameter vector. Let
fi(x,y) € F* be a function of x and y with parameter vector equal to t. Suppose that:

|ft(lay) - fs(”cay” S d*(s,t)F(:c,y) (50)

Sor some metric d*, for some fixed function F, and for every s, t, and every (x,y). Then for any norm ||-

s

Nyl FIl, F7 (1) < N(e, F, d7). 5D
Theorem 2. [ , ] Define the ratio of joint likelihoods between the inferred density and the true
density as
- [z, yi)
R, (f)= — (52)
() 1111 o(Ti, yi)

For any € > 0 there exists constants a1, as, as, a4 such that if

N
/2/28 \/ Hyy(u/as) du < 2a4v/né?, (53)

then

pP* < sup  R,(f) > exp(—a1n62)> < 4exp(—agne?). (54)
feAenF,

Lemma 1. (Adaptation of Lemma 1 in [ 1) Suppose that Hy(u) < log[(a/n*C%" I, Ju)™], where I,, =
(D+ 1)K, +1, K, <n% d,a" >0, and C,, < exp(n®=) for0 < a < b < 1. Then for any fixed constants

a'’ e > 0 and for all sufficiently large n,
/ JH () < ev/ne. (55)
0

Proof. Leta, = a'n*C% I, so Hpj(u) < log[(an/u)™] = I,,1og(as, /u). Taking the square root and integrating each
side, we have:

| au= [ VI Togtan ) du (56)

'This lemma differs from [Lce, ] because they assume Hyj(u) < log[(Cal,/u)™]and I, = (D + 2)K, + 1.



= \/In/Z/ V2log(ay, /u) du
0
:\/In/2/ z du,
0
where we define the substitution z := /2 log(a,,/u). Then:
1 _ (—an/u?) o
= (21 12— dy = —2 1!
dv 2( og(an/u)) (2) —m dz 27w du

1
= du = —zudz = —apzu/a, dz = —anz exp (2 2log(an/u)> dz = —apzexp(—2z2/2) dz.
N—_—— ——

22

Thus:

/O6 \/ Hy(u) du < —M/ anz? exp(—v?/2) dz

= an\/ln/Q/ 22 exp(—v?/2) dz

where we define z. = /2log(a,, /). Next, integrate by parts (using u = z and dv = z exp(—22/2) dz), giving:

/OE \/m du = an\/T,/2 :—z eXp(—Zz/Q)‘C: + /:O exp(—2"/2) dz]

€

=an\/I./2 _ze exp(—22/2) + \/%/OO \/% exp(—22/2) dz}

< an /I /2 | zeexp(—22/2) + V QW(ZS(ZE)} Mill’s Ratio
Ze
5= oxp(—22/2)
an/In /22 [exp(—zf/Q) + vV 27r2"2]

Ze

an\/jn/2z€exp(—z§/2){14_'1}

2

9 1
an\/In/2zcexp(—27/2) |1+ —
N———— Ze

e/an

/I, )2z {1 + H .

€

Since a,, — oo as n — 0o, we have 22 = 2log(a,,/¢) — oo as well, so [1 + 1/22] < 2 for large n. Continuing:

/06  Hy(w) du < e/ 1, /22
= e\/I,,/2\/21og(ay, /€)
= ev/I,\/1og(an/e)

< ev/I\/log(amaCa" 1, /e)
< eV/I,\/log(a) + alog(n) + a"1og(Cy) + log(Z,.) — log(e)
<e/(D+ 1)n*+ 1\/10g(a’) + alog(n) + a’nb=2 +log((D + 1)n® + 1) — log(e)

where we plugin I,, = (D + 1)K,, + 1 < (D + 1)n® + 1 and C,, = exp(n®~9).

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)
(71)
(72)
(73)
(74)
(75)



Since 0 < a < b < 1, there exists a v such that a < v < band b — a < 1v. This follows from the fact that
since 0 < a < b < 1, there must exista § > O suchthata + 0 < band b+ § < 1. Now let v = ad to see that
b—a=b+6—(a+0)<1—(a+d)=1—~.Multiplying by 1/y/n = vn=7vVn=1=7) on each side:

\}ﬁ/(JE,/H[](u) du < evn=7\/(D+1)n*+1 (76)

Vn—(1=7) \/log(a//e) + alog(n) + a’nb=e +log((D + 1)n® + 1) (77)
= /(D4 Dn-6-0 40 (78)
\/n—(l—V) log(a’e) + an=(1=7) log(n) + a/n—((1=7=(=a)) + p=(1=N1og((D + 1)n* + 1)
(79)
— o00asn — 0o (80)
since each of v, 1 — v,y — a, and (1 — ) — (b — a) are positive. Thus, for any a’’, e > 0
Hpj(u) du < a”'é (81)
Vi / ot
O
Lemma 2. (Adaptation of Lemma 2 in [l ce, ] (same statement but particularized for RBFNs)) Define the ratio of
Jjoint likelihoods between the inferred density and the true density as
x’L? yZ
(82)
H fO L, yz
Under the assumptions of Lemma 1,
sup R, (f) < 4exp(—agne?) (83)
feANF,
almost surely for sufficiently large n, where as is the constant from Theorem 2.
Proof. Much of this proof is reproduced exactly as in Lemma 2 in [Lee, ], with only a few adaptations that we

mention along the way. We first bound the Hellinger bracketing entropy using Theorem 1 and then use Lemma 1 to
show the conditions of Theorem 2.

Since we are interested in computing the Hellinger bracketing entropy for neural networks, we need to use the Ly norm
on the square roots of the density function, f. Later, we compute the L, covering number of the parameter space, so
here d* = Lo,. We would like to apply Theorem 1 particularized for the Lo norm, i.e., |\/fi(z,y) — \/fs(z,y)| <
d*(s,y)F(x,y) for some I then Nj(2¢ || F|ly, F*, ||-|,) < N(€, Fy,d*). To show that the condition holds true, apply
the Fundamental Theorem of Integral Calculus. For particular vectors s and ¢, let g(u) = Ja—uw)s+ut(x,y). Let
v; = (1 — u)s; + ut; and denote the space of 6 by ;.

1
\\/ft(x,y>—\/fs(x,y)|=/ I qu (84)
dg 00;
/ 35 ou du ®5)
o (86)

a du (87)

<Zsup\t —sl|/ sup

0;€0;




1
‘ / du (88)
0

= sup\t - 52|Z sup

9 €O,
< sup |t; — s;| sup { sup 99 } (89)
7 7 0,€0; 861
= |t = sll Fz,y) (90)

where F(z,y) = Isup;[supy,ce, |0g/00;|]. Here 0g/d0; is the partial derivative of /f with respect to the ith
parameter. Recall that f(x,y) = f(y | ) f(x), where f(z) = 1 since X ~ U|0, 1] and f(y | ) is normal with mean
determined by the neural network and variance 1.

So far, this proof follows Lemma 2 in [Lee, ] exactly. Now we make a slight modification for an RBFN model. By
Lemma 3, [0g/00;| < (8me?)~1/42n2C3 = n®C3 /2, where a’ := 4(8me?)~'/4. Then set F(z,y) = a/n®C>1/2, so
||[F||2 = a'n®C31/2. Applying Theorem 1 to bound the bracketing number by the covering number we have:

N, - = Np (2 - 91
1071 = 3y (2 (g ) 1 e o1
< (gl k) ©2)
2/1F ]2’
Notice that the covering number of 7, is clearly less than ((2C,,)/(2¢) + 1)!. So, for any n > 0, we have:
20, \'_ (Cn T oo, +1\!
2n U U
Therefore,
Ny (u, 75,01 | ( ) (94)
AT
I
2||F
WELIEEER) .
a 3] 1
_ <a n®C3I,(Cpn + )) 96)
/na 4]
_ (an C’n n) ©7)
u
where C,, = C,, + 1. For notational convenience, we drop F* and || - ||o going forward. Taking the logarithm:
Hy(u) < log[(a'n"C%" I, /u)"]. 98)

The bound above holds for a fixed network size, but we can now let K,, grow such that K,, < n° forany 0 < a < 1.

Thus by Lemma 1, we have:
\/»/ \/ Hyp(u) du < a”é?, (99)

which shows the conditions of Lemma 1. Therefore, we have that for any a’”’, ¢ > 0,

/ ‘ \/ Hy(w) du < a”'v/neé?, (100)
0

With an eye on applying Theorem 2, notice that f; /28 1 /Hp(u) du < fos /Hjj(u) du. Substituting V/2¢ for ¢, we get

Je
< " 2
/62/28 \/Hy(w) du < 2a""\/ne®, (101)



letting a3 = 1 and a4 := 2a’”, where a3 and a4 are the constants required by Theorem 2. This gives the necessary

conditions for Theorem 2, which implies that

p* sup R, (f) > exp(—aine?) | < 4exp(—agne?). (102)
feANF,
Now apply the first Borel-Cantelli Lemma to get the desired result. O
B.1.2 Main theorems
The following theorem is proved by [ ] for single-layer feedforward networks with a logistic activation and

Gaussian priors. With a few modifications to the proof as described below, it can be applied to RBFNs. Here, the
number of units is allowed to grow with the number of observations but it is not inferred from the data. We call this a
sieves approach.

Theorem 3. (Consistency when width grows with data (sieves approach)) [Lee, ] Suppose the following conditions
hold:

(i) There exists anr > 0 and an Ny € N such that Vn > Ny, m, (FS) < exp(—nr).

(ii) Forally > 0 and v > 0, there exists an No € N such that ¥n > Ny, 7, (K,) > exp(—nv).

Then Ye > 0, the posterior is asymptotically consistent for fo over Hellinger neighborhoods, i.e.:
P(Ac | (@1,91), - (Tny yn)) 2 1 (103)

Proof. [ ] proves this result for single-layer feedforward networks with a logistic activation and Gaussian
priors (Theorem 1 in their paper). Their proof relies on their Lemmas 3 and 5. Their Lemma 5 needs no adaptation for
RBFNs but their Lemma 3 depends on their Lemma 2, which does need adaptation for RBFNs. Above we proved their
Lemma 2 for RBFNs, which we call Lemma 1. Thus their Lemma 3 holds, so their Theorem 1 holds, which gives the

results of this theorem. O
[ ] shows that Hellinger consistency gives asymptotic consistency.
Corollary B.1. (Hellinger consistency gives asymptotic consistency for sieves prior) [Lee, ] Under the conditions

of Theorem 3, §,, is asymptotically consistent for gy, i.e.:
[6ul@) oz 2. (104)

The following is an extension of Theorem 3 to when there is a prior over the number of units. The proof in [Lee, ]
assumes a feedforward network with a logistic activation and Gaussian priors, but these assumptions are not used
beyond their use in applying Theorem 3. Since we adapt Theorem 3 to our model, the proof of the following Theorem 4
needs no additional adaptation.

Theorem 4. (Consistency for prior on width) [Lee, ] Suppose the following conditions hold:

(i) Foreachi = 1,2,... there exists a real number r; > 0 and an integer N; > 0 such that ¥n > N;, m; (F¢) <
exp(—r;n).

(ii) For all v,v > O there exists an integer I > 0 such that for any © > I there exists an integer M; > 0 such that for
alln > M;, m(K,) > exp(—vn).

(iii) B, is a bound that grows with n such that for all v > 0 there exists a real number q > 1 and an integer N > 0
such that for alln > N, Z;ZB” Ai < exp(—rn?).

(iv) Foralli, \; > 0.



Then Ye > 0, the posterior is asymptotically consistent for fo over Hellinger neighborhoods, i.e.:

P(Ac | (z1,91)s -+ s (Tnsyn)) 2 1. (105)

Corollary B.2. (Hellinger consistency gives asymptotic consistency for prior on width). Under the conditions of
Theorem 4, G, is asymptotically consistent for gy, i.e.:

[ ot = ot o (106)
Proof. The conditions of Theorem 4 imply the conditions of Theorem 3, so then Corollary B.1 must hold. O
B.2 CONSISTENCY OF PORB-NET
B.2.1 Supporting results
Theorem 5. (RBFNs are universal function approximators) [ ] Define Sy as the set of all
functions of the form:
K
RBFN(x;0) = > wi (M — cx)), (107)
k=1

where X > 0, wi, € R, ¢, € RP and 0 = {{w} |, {ck} |, \} is the collection of network parameters. If
¢ : RY — R is an integrable bounded function such that ¢ is continuous almost everywhere and fRd ¢(2) dz # 0, then
the family Sy is dense in L,(R?) for every p € [1,0).

In our case, ¢(z) = exp(—z?), which clearly satisfies the conditions of Theorem 5. We will denote RBFN(z; §) the
expression in Equation (107) particularized for the squared exponential ¢ function.

Lemma 3. (Bound on network gradients)

0 fézvyve) < (87T€2)_1/48RBF;\;($’9) _ (87T€2)_1/427’La02 (108)

Proof. Applying the chain rule we have:

‘a‘/w = 5 ey oy /2 20 (109)
= %(2@—1/4 exp (—i(y — RBFN(z; 0))2> ly — RBEN(z; 0)| ’EM;W (110)

First we show that we can bound the middle terms by:
exp (—i(y — RBFN(x; 9))2> |y — RBEN(z; 0)| < exp(—1/2)2/2 (111)

To see this, rewrite the left-hand-side of Equation 111 as s(z) := exp(—(1/4)z?)|z|, where z = y — RBFN(z; ).
Taking the derivative we have:

0s(z) —12%exp(—32?) +exp(—12%) 2>0
=19, 1 1 (112)
0z 322 exp(—12%) — exp(—32° z2<0
exp(—222)(=3224+1) 22>0
_ [e43 s
exp(—327)(52°—1) 2<0

Setting to zero, we must have that 22 =1 = 2 = /2. Thus, a(z) < exp(—1/2)2!/2, as in Equation 111.



Next, consider the derivatives of the radial basis function network:

ORBF N (x;0;)
b

’WW _ exp(_%)ﬁ(m ) <1

8u)k

laRBFN(x;Gi)

1
wr, = |wg| exp(*i)\Q(I - Ck)2)>\2\l’ — |

< Jwe| A (k| + 1)
<C3(Cp+1)

<C3yC?
<203

since C2 = exp(2n’~%) < exp(3n®~2) = C3

DN | =

ORBF N (x;0;)
8wk

IN
DN =
it

B

T

=

+

—

e

IA

nCp(C% +2C, +1)

RN =N =N = N

n(C3 + 202 + C,,)

INA
|
3

YO 4203 +C3)
< 2meC3

Plugging everything in to Equation 110 we have the desired inequality.

(114)

(115)

(116)

(117)
(118)
(119)
(120)

(121)

(122)

(123)

(124)

(125)
(126)
(127)

(128)
(129)

O

Lemma 4. (Bounding sum of exponentially bounded terms). For two sequences {an }52 1 and {b, }°2, suppose there
exists real numbers v, > 0 and ry, > 0 as well as integers N, > 0 and Ny > 0 such that a,, < exp(—rqn) for all
n > N, and b, < exp(—ryn) for all n > Ny. Then there exists a real number r > 0 and an integer N > 0 such that

an + by, < exp(—rn) foralln > N.

Proof. Set 7 = min{r,,r,} and N = max{N,, Np}. Then we have:

an < exp(—rq.n), Vn> N >N,
<exp(—7n,) Vn> N

. Similarly, b,, < exp(—7n), Vn > N. Thus we have a,, + b, < 2exp(—7n), Vn > N.

(130)
(131)



Now set N = max{[*®62] + 1, N} and r = 7 — 101%2. Notice r > 0, since N > [M%Q] +1> 10%2 implies

T

r=7F— 101%[2 > 7 — log 2107;2 = 0. It follows that 2 exp(—rn) < exp(—rn), Vn > N, since:
2exp(—7rn) < exp(—rn) (132)
< log2 - < —rn (133)
log 2
— logQ—fnS—(f—c}%f)n (134)
- - nlog2
<~ log2—rn < —tn+ (135)
> N<n (136)
O

Lemma 5. (Useful equality) For all § < 1 and z € [0,1], if |¢ — ¢| < 6 and |\ — \| < §, then there exists a constant &
such that || < A(|c|, A)d and: B
N(z—8)? =Nz —c)?+¢, (137)

where A(|c|, \) = 2X(|c| + 1) (A + |e| +2) + (A + || + 2)?

Proof. Since |¢ — c[ < 0 and A — A| < & there exists constants &; and &, where |¢;| < & and |£,| < 6, such that
é:C—f—fl and)\:)\—i—fQ

Plugging ¢ = ¢ + € and A = \ + & into the left-hand-side of the desired inequality:

Mz —¢)=(A+&)(r—c—&) (138)
=AMz —c)+ (=X&1) +&(x—c) — && (139)

=€

Notice:

€3] = [(=A&1) + &2(x — ) — &1&2| (140)
< A&l + [l — o + [&1]]€2] (141)
<A+ 0(|e| + 1) + 62 (142)
< (A +d| +2)8 (143)

In Equation 142 we use |z — ¢| < (|¢| 4 1), which follows since we assume x € [0, 1], as well as & < 6 and &» < 4.
In Equation 143 we use 62 < 6, which follows since we assume § < 1. Squaring the left-hand-side of the desired
inequality:

Nz —3)? =Nz —¢))? (144)
=Mz —0)+&)° (145)
=Nz —c)? +2\z — )3+ €2 (146)
Notice:

€4 = [2M\(z — )& + &3 (147)
< 2Mz — c||&| + €] (148)
< 2A(le] + YA+ e +2)0 4+ (A + |¢| + 2)%63 (149)
< 2A(Jef + DA+ [e] +2) + (A + || +2)%) 6 (150)

=A(le|)

In Equation 149 we use [£3] < (X + |¢| + 2)d and |z — ¢| < (|¢| + 1) again and Equation 150 we use % < 4. This
proves the desired inequality for & := &4. O



Lemma 6. (Proximity in parameter space leads to proximity in function space). Let g be an RBFN with K nodes and
parameters (01, ...,05) and let g, be an RBFN with K,, nodes and parameters (91, ... Gl(n)) where K,, grows with

n. Define 0; = 0 for i > T, 0; = 0 for i > 1, and Mj, for any § > 0, as the set of all networks § that are close in
parameter space to g:

Ms(g) ={gn | 10: = 0:ili=1,...} (151)
Then for any g € Ms and sufficiently large n,
~ 2 g 2 2
sup (§(2) — 9(x))” < (3K,) 6 (152)
reX
Proof.
sup (§(x) — g(x))” (153)
TEX
N 2
K, K
=sup | b+ Zwk exp(—A\3(z — &)%) — b — Zwk exp(—A\2(z — c1)?) (154)
zeX k=1 k=1
_ 2
~ Kn ~
=sup | (b—0b) + Zwk exp(—A*(x — &)%) — Zwk exp(—A%(x — cx)?) (155)
rEX k=1 k=1
N 2
K,
=sup | (b—b)+ Wy exp(—A2(z — &,)2) — wy, exp(=A2(x — ci)?) (156)
rEX —1
_ . 2
<sup [ |b—b] + Z Wy exp(—=A2(x — &)%) — wy, exp(=A\2(z — ci)?) (157)
reX =1
- i
= sup ||b— b2 +2[b—b| Zwk exp(=A%(z — &)%) — wy exp(—=A2(z — cx)?) (158)
TeEX 1
. 2
Z by, exp(—=A(z — é)?) — wp exp(—A%(z — cx)?) (159)
K
< |b—b? +2|b—b| sup Z Wy exp(—A2(z — &)%) — wi exp(=A2(z — ¢1,)?) (160)
zeX 1
N 2
i
+ sup Zwk exp(=A2(z — &)%) — wi exp(=A%(z — ¢;)?) (161)
zeX |
i
=|b—b>+2|b— b| sup Z W exp(—A2(z — &)%) — wi exp(=A2(z — ¢;)?) (162)
zeEX |, _
i 2
+ [ sup Z Wy exp(—A2 (@ — &)%) — wy exp(=A2(z — c)?) (163)
TEX | p=1
< |b— b +2|b— 0| (=X2(z — &)?) — wi exp(=A2(x — ¢x)?) (164)

xeX



[ *

+ [ sup Z W, exp(—S\Q(x — &)%) — wy exp(=A(z — cx)?) (165)
zeXk:l
< |b—b* +2|b— 0| Z sup ’u?k exp(—A2(z — &)%) — wy exp(=A%(z — cx)?) (166)
k=17EX
N 2
K
+ Z sup [y exp(—=A2(z — &)%) — wi, exp(=A*(x — cx)?) (167)
kzlaze
K K 2
=[b—b+2(b—bY Ti+ > Tk (168)
k=1 k=1
K K 2
<6720 Te+ (D Tw| (169)
k=1 k=1
where: -~
T := sup | exp(—\2(z — &)?) — wy, exp(=A\(z — cx)?) (170)
rzeX

Let u(z)? := A2(z — ¢x)? and @(z)? = A3(x — &)? and pick any 2 € X. By Lemma 5 there exists a constant 7 such
that |n| < A(|¢|, A\)d and
a(z)? = u(z)?® + 1. 171)

Now define £ = +/|n| and consider two cases.

o If @i(x)? > u(x)?, then Equation 171 is equivalent to @(z)? = u(x)? + £2. Then I';, becomes:

Iy = sup |y, exp(—0*(x)) — wi exp(—u®(2))] (172)
= !; exp(—u®(x) — €) — wg exp(—u?(2)?)| (173)
= sup exp(—u(@)?) | @y, exp(—€?) — wy| (174)
= |k exp(—¢?) —wk|21€1§exp(—U(x)2) (175)
< | exp(—€2) — wy (176)

Since |wy, — wy| < 6, there exists 7, where |7| < ¢, such that W, = wy, + 7. Plugging this in:

Ty, < |(wg + 7) exp(—€%) — wy| 177)
< |wp(exp(—€%) — 1) + 7| (178)
< |wy || exp(=€%) = 1| + |7] (179)
< fwg|€* + 6, (180)

where we use the result that 1 — ¢2 < exp(—£2) in Equation 179.

o If @i(x)? < u(x)?, then Equation 171 is equivalent to u(z)? = @(x)? + £2. Then T';, becomes:

Iy, = sup |1I1k exp(—a2(m)) — Wy, exp(—uQ(:lc))f (181)
TeEX

= sup |@y, exp(—a°(x) — wg exp(—a*(x) — £?)] (182)
reX

= sup exp(—a?(z)) \wk — wy, exp(f£2)| (183)

reX



= | — wi exp(—€?)| sup exp(—i*(z))
reX

< |1I};C — wy, exp(—fQ)‘

Using the same 7 as above:

S‘wk—i—T )exp(—£%) — wkf
§| (1 —exp( f +T|

< Jwg|[1 — exp(=€)| + |7|

= |wi|lexp(=€?) — 1| + |7|
< |wi|€® + 6.

In either of the two cases, we have I'y, < |wy, |§2 + §. Proceeding:

Iy < |wg|€® 46
< fwi|A(le[, A)d + 9
= (Jwr]A(le[, ) + 1)8

Now consider

I < Ty for large n

= 20K, for large n

(184)

(185)

(186)
(187)
(188)
(189)
(190)

(191)
(192)
(193)

(194)

(195)

(196)

(197)
(198)

Equation 197 follows because for k > K, wy, = 0 by definition, so 2521 |wi|A(|el, ) is a constant and thus less than

K, for large n.
Plugging Equation 198 into Equation 169:

sup (§(z) — g(2))? < 62 + 2(20K,,) + (20 K,)>

- (1 122K, + (2Kn)2) 52
1+ 2&))2 52

(3 n)2§2

Il
/N

IN

B.2.2 Main theorems for PoORB-Net

(199)
(200)

(201)
(202)

Recall the generative model for PORB-Net in the case of a uniform intensity function with a Gamma prior on its level.
For simplicity and w.l.0.g, we consider the case where the hyperparameter s3 and the observation variance are fixed to

1.



We first consider the case where the width of the network is allowed to grow with the data but is fixed in the prior. We
call the estimated regression function g,,, with width K, and prior 7,,, where n is the number of observations. The
following theorem gives consistency for this model.

Note that the following proof uses [ , ] to show the existence of a neural network that approximates
any square integrable function. We assume that the center parameters of this network are contained in the bounded
region over which the Poisson process is defined, which can be made arbitrarily large.

Theorem 6. (PoRB-Net consistency with fixed width that grows with the number of observations). If there exists a
constant a € (0,1) such that K,, < n% and K,, — 00 as n — oo, then for any square integrable ground truth
regression function go, g is asymptotically consistent for g as n — o0, i.e.

/ (Gn(x) — go(x))*dz 5 0. (203)

Proof.

Proof outline
e Show Condition (i) of Theorem 3 is met

— Write prior probability of large parameters as a sum of integrals over each parameter
— Bound each set of parameters:

* Bound weights (as in [ D
+ Bound centers (trivial since parameter space bounded)
* Bound \? with Chernoff bound

— Bound sum using Lemma 4

e Show Condition (ii) of Theorem 3 is met.

Assume true regression function g is Lo

Use Theorem 5 to find an RBEN g that approximates gg

Define Ms as RBFNs close in parameter space to g
Show M5 C K., using Lemmas 5 and 6.
Show 7, (Ms) > exp(—rn):
* Show you can write as a product of integrals over parameters
* Bound each term separately:
- Bound weights as in [ ]
- Bound centers and \?

Condition (i) We want to show that there exists an > 0 and an N; € N such that Vn > Ny:

7 (Fy,) < exp(—nr).

Write prior probability of large parameters as a sum of integrals over each parameter. The prior 7,, assigns
zero probability to RBFNs with anything but K, nodes, so there is no issue writing 7, (F,,) and its value is equivalent
to 7, (Gy ), even though G,, C F,.

Notice that 7, (G ) requires evaluating a multiple integral over a subset of the product space of I,, parameters. Notice
G,, can be written as an intersection of sets:

I'n
G = [{RBFN € ,, | |6:| < C}.

i=1



Therefore we have:

Tn (Fr) = mn (Gy)

I’!L

[{RBEN € 7, | 6:] < Cn}
1=1

c
. )

I

T <U{RBFN € Ha | 6] < On}6> De Morgan
=1
I

RBFN € H,, | |0;] > On}>

~

n

< 7 ({RBFN € H,, | 16;| > Cy}) Union bound. (204)

i=1

Next, independence in the prior will allow us to write each term in Equation 204 as an integral over a single parameter.
Define the following sets:

Ci(n) :=0;\ [-C, Cy)
RL(TL) = @1 X ... X @1‘_1 X Ct(n) X @’H—l X ... X @]n
where ©; is the parameter space corresponding to parameter 6; (either R or R™). Notice that because R;(n) is a union

of two rectangular sets (one where 6; is less than —C', and one where 6; is greater than C',), we can apply Fubini’s
theorem. Thus, each term in Equation 204 can be written as:

7n ({RBEN € H,, | |6;| > Cp}) (205)
/ / n(01,...,01,)d(0,...,05,) (206)

R (n
/del /dGI Tn 91, .. .791”) (207)

/d/\z/dwl.../dwlgf /dcl.../dwlz Wn()\Q)Hﬂ'n(Cj | )\Q)Hﬂ'n(w]’) (208)
J J
/d)\Q 7Tn()\2)/dcl.../d013 Hﬂn(cj | A?) /d’LU1...-/dw[#) Hﬂn(wj) (209)
J J

/ dx? wn(V)H / dej ma(c; | A%) H / dw; T (w;) (210)

Jo AX2 m,(A2) i =18
=9 Jo, dw T (w) iez™ @11)

S AN T, (N2) [, de; ma(ci | X?) i€ I

In Equation 206 we apply Fubini’s theorem, which allows us to write a multiple integral as an interated integral. It is
understood that the ith integral is over the restricted parameters space [—C,,, C,,] while the remaining integrals are over
the entire parameter space, meaning they integrate to 1. This allows us to write the result in Equation 211.

Therefore, by Equations 204 and 211 we have:

T (Fj) < / AN T, (A + / dw 7, (w § / dN? 7, (A?) / de; 7o (ci | A2) 212)
Cn R+
—_

izl 7

A2 term
W term C'term



Bound each term in the sum. We will deal with each of these terms separately.

o W term. With some minor difference for the dependence of the number of weight parameters on the network
width (DK, in our case compared to (D + 2)K,, + 1), equations 119-128 in [Lee, ] show for all n > N,, for

some N,,:
Z / n(w;) dw; < exp(—nr)
Cs

I(w) (n)

e ( term. Since the parameter bound C,, — oo as n — oo and since the prior over the center parameters is defined
over a bounded region, as n — oo the bounded region will be contained in [—C,,, C,;] and thus disjoint from
Ci(n) := ©; \ [-C,, Cy]. Thus, for all n greater than some N, fCr(n) 7n(c;) de; = 0 for all center parameters.

o )2 term.
/wn()\Q)d}\: NG ETONEY ) exp(—B2N)dA? (213)
o, Tlan)
ﬂ)\Cn “
< —=—— ] exp(ar—LF\Cr) Chernoff Bound (214)
Q) A
5)\6 “ b—a b—a b—a
<[ == ] explayn’™%)exp(—pByexp(n’~*)) Cpn<n (215)
ax

Taking the negative log we have:

—log </ 7rn()\2)d)\2> > —alog <ﬂ > +Bexp(n®~®) — anbt~® (216)
=A
=A+3 _ —anb® (217)
7=0
> b a
=A+B|1+n b“+2n2<b “)+Z]) —an®™® (218)
j=3 ’
=(A+B8)+(B—an’+ %ﬂnﬂb*“) +8Y (n (219)
:=h(n) 7=
Sl b—a\j
n)+B8> ("]')J (220)
Jj=3 '

Now pick k* € {3,4,...} such that (b — a)k* > 1, so n(®=%*¥" > n_ and pick any r € (0, 3/(k*!)). Then, since
every term in the sum is positive, we have:

plb—a)k*
—log (/ 7rn()\2)d/\2> > h(n) + ﬂT (221)
> h(n) + kﬁ*'n (222)
> h(n) +rn (223)
>rn Vn > Ny, (224)

where the last inequality holds because 8 > 0 and (b — a) € (0, 1) clearly implies there exists an Ny > 0 such
that for all n > N, h(n) > 0. Negating and exponentiating each side we have:

/wn(/\Q)d)\2 < exp(—rn) Vn > Ny. (225)



Bound sum. For any n > N,, since the C term is zero in this case, we have:

Z / T (w;) dw; + / Tn(A?) dA? (226)
) Ci(n)

< exp(—rn) Vn > N (227)

where the last inequality follows from Lemma 4 applied to the sequences:

Qp 1= Z / 7 (W;) dw; (228)
iez(™ Ci(n)

b, = / T (A?) dN? (229)
Ci(n)

which we already showed to be exponentially bounded above for large n.

Condition (ii) Let~y,v > 0.

Assume true regression function. Assume gy € Lo is the true regression function

Find RBFN near ground truth function. Set e = /7/2. By Theorem 5 there exists an RBFN ¢ such that
llg — goll2 < e. We assume the center parameters of g are contained in the bounded region C over which the Poisson
process is defined, which can be made arbitrarily large.

Define Ms. Setd = €/(3n%) and let M be defined as in Lemma 6. Then by Lemma 6, for any § € M; we have:

sup (§(2) — 9(a))* < (38K,0) =& (230)

reX

Next we show that M; C K for all v > 0 and appropriately chosen . This means we only need to show 7, (Ms) >
exp(—nv), since M5 C K., implies 7, (K) > m, (M5).

Show M; contained in /,. Next we show that for any § € Ms, D ( fo, f) < ~vie. Ms C K,. The following are
exactly equations 129-132 and then 147-151 from [ ].

k(fo. f) =//fo x,y) log ~( 5)) dy dx (231)
-5// [(yﬁ(w)) (= o)) Sy | ) ola) dy o)
=5 [ [ 200+ 50? + 200(0) — 9o@)?] Sy | 2) o) dy (233)
— 5 [6@ - o) fo(a) 234)
= %/(9(%) —9(x) + 9(2) — go(2))* fo(w) dz (235)
S% /jgg(é(z) — g(x))? fo(x) dx+/Mfo(x) dz (236)

Theorem 5

Lemma 6



Show mass on ) is greater than exponential

01+0 an-‘ré B B 5
L (M;) / / ralBr, . B ) dy ... db;
9 N _ L n
01+0 an+5 _ - ~
/ / 7 (O2) T (@ | X2) [ o) i .. d6;.
61 05, — i i
2245
fos
2245
four

2245
)\2 d\2 x /
fop o 0]

I.°

H/ W (@i | A2) dé; dA? x H/
c;i—0 i=1 Jwi—4d

(e)
n Cq
—1 /C

(e

+d

i—0

A2 term

(C)l[c ec) d&; dX2 x H/

[ls

= go()| fo(x)dx

Theorem 5

I(:w) w;+0

I() w;+6

n(W;) dw;

7 I ts
1[c,€C] dCZ H / 7Tn(’u~}2) d?I)Z
i=1 Jwi—d
C term W term

e W term. The following correspond to equations 138-145 from [

W term =

v

\%

17(#)) /1117-,+5
i—1 wi—04
)

1
inf om02) "1/ exp (—
J&Hﬁ( ) 207,

1
Flw
— j(w)
exp( 5 %UCIn )
s e
6t Dexp(—Q S (I
[ 3n0 To2 1 .-
Pwl o~ rf(w)
€ 2 ] 201204 " )

s

Ci = max{(@i — 1)2

¢ :=max{(,...

,(0: +1)%}

G}

(237)

(238)
(239)

(240)

(241)

(242)

(243)

(244)

(245)
(246)

(247)



~w 97T02
= exp <—I7(1 ) alogn — log 92 202 ]) (248)
_ fw) 1
=exp | =1, |2alogn + =—C forlarge n  (249)
202,
> exp (—Dn D I < Dn®  (250)
> exp(—vn) for large n  (251)
Let N,, denote the integer large enough so that Equations 249 and 251 hold for v/3.
e Cterm.
(o) i)
111[/0#6 L 1z, ecy dé; > ﬁ 0 (252)
M ss we) =™ = )
i
> (5) (253)
= exp ( Dn%log { )]> (254)
= exp( Dn%log { wCn }) (255)
€
3u(C
= exp ( [alogn — log ( Al )H) (256)
€
xp (—Dn® [2alogn]) for large n (257)
= eXp( 2aDn*logn) (258)
> exp(—vn) for large n (259)
Let N, denote the integer large enough so that Equations 257 and 259 hold for v/3.
o )2 term.
PR _ ~ B ~a-1 - -
/ o (R2) dX2 = / 2% exp(—BA2) AN (260)
A2—5 =5 a2 4s)nr+ L(c)
ﬁa ~ a—l ~
>4 inf exp(—LFA?) (261)
XZE[A2—5,A246]NR+ F(a)
>0 inf { b - exp(—ﬂ)@)} for large n (262)
XZE[A2—1, A2+ 1]NR+ F(Oé)
=A
=46A (263)
Ae
= 264
T (264)
> exp(—vn) for large n (265)
In Equation 261 we note that the length of the interval [\ — §, A% + §] N R* is at least §, since A> € RT. In

Equation 262 we note that 6 < 1 for large n, allowing us to define the quantity A that does not depend on n. Let

N denote the integer large enough so that Equations 262 and 265 hold for v/3.



Bound product Set No = max{N,,, N., Nx}. Then for all n > No:

T (My) > expl(—nv/3) exp(—nv/3) exp(—nv/3)
= exp(—nv)

This shows condition (ii). Thus, the conditions of Theorem 3 are met, so the model is Hellinger consistent. By Corollary
B.1 this gives asymptotic consistency.

O

Now we consider the case where the number of hidden units K of the network is a parameter of the model. Since the
center parameters follow a Poisson process prior with intensity A over the region C, then conditional on A, K follows a
Poisson distribution with parameter p(C)\, where p is the measure of C. We again denote the estimated regression
function by g,, with the understanding that the number of hidden units not fixed.

Theorem 7. (PoRB-Net consistency for homogeneous intensity). For any square integrable ground truth regression
function go, gy, is asymptotically consistent for g as n — oo, i.e.

/ (Gn () — go(2))%dz 5 0. (266)

Proof. Since the number of hidden units follows a Poisson prior, the proof of this result is exactly as in Theorem 7 of

[ ]. Their result relies on their Theorem 8, but we have adapted this result in Theorem 4 to our model and the
remainder of the proof requires no additional assumptions regarding the model. Asymptotic consistency follows from
Corollary B.2. O



C MODEL SPECIFICATION AND MCMC ALGORITHM

C.1 HOMOGENEOUS INTENSITY

C.2 Notation

name symbol domain
centers {er ), creRP
weights {wi b, wi eR
bias b R
intensity A R
number of hidden units K K

Table 1: Overview of all parameters in the PORB-Net with homogeneous intensity.

When the meaning is clear, we suppress the subscript and superscripts outside the bracket. For example, {c} denotes
K
{erti=-

C.3 Likelihood

N
L(8) = p({yn} [ {zn},0) = [ N (f(20:6).07) (267)
n=1
where 8 = {{wy},b, {cx.}, K, A2} and:
X 1
flz;0) =b+ Z W €Xp <25(2))\2(w — )T (x — ck)> (268)
k=1
is the network output.
C4 Prior
wp| K"K ON(0,62), k=1...,K (269)
b~  N(0,69) (270)
K
(o A~ exp(—A) [[ Aex), where A = / Au)du. @71
k=1 ¢

where 52, = \/s2/ma?. If the intensity function is uniform, we use a Gamma prior:

A~ Gamma(a, ) (272)

A note regarding the Poisson process prior. If you do not condition on the number of centers K, the on the centers prior
is:

K
p({ex} i |N) = exp(—A) H Acg), where A = / Au)du. (273)
k=1 ¢

If you do condition on K, the prior on the centers is:

p{enion [ K, = K!HA(X’“) (274)

k=1




Notice you can relate this to the prior when you do not condition on K, since K has a Poisson distribution with
parameter A.

p{erlici [N = p({ertiz: | K, A)p(K, A) (275)
B K Aek) exp(—A)XK
= (erl;[l X ( o > (276)
K
= exp(=A) [] Mex) 277)
k=1

Joint distribution

p({yn}v{xn}’{wk}vbv {Ck}va /\2)
= p({yn} l {xn}v {wk}vbv {Ck}ﬂKv )‘2) X p({xn}’ {wk}vb7 {Ck}ﬂKv >‘2)
X p({yn} | {x7b}7 {wk}v b, K, /\2) X p({wk}’ b, {Ck’}7K’ A? |M) XM
—_—— ——

6 1
o p({yn} | {2}, 8) x p({wi}, b, {en}, K, A2)
o p({yn} | {za}, ) % p(b| {2t Ler. K XE) x p({wi}, {ex}, K, A2)
o p({yn} [ {2}, 8) x p(0) x p({wi} | LerT, K, X0) x p({ex}, K, A2)
o p({yn} [ {2}, 8) x p(b) x p({wr} | K) x p({ex}, K,A2)
o p({yn} [ {2}, 8) x p(0) x p({wr} | K) x p({er}, K | X?) x p(A2)

N K K
o (H N (yn; f(2n; 0), o§)> N (b;0,57) <H N (w0, &i)) (exp S| A(ck>> Gamma()\*; a, 3)
k=1 k=1

n=1
al 1 1 i 1

& (H exp {_%‘g(yn — f@n; 9))2}> exp {—%‘552} <H(27TU12U)_1/2 exp {_202 wl%})
n=1 k=1 w

K
<exp 0] A(cw) (A2)"~! exp{—BA%)
k=1

| K K
52 Zw,%} exp(—A) (H )\(ck)> (A Lexp{—pA?}
k=1

W p=1

x L(0) exp {—Z;ﬁ} (2n02) K2 exp {—
b

C.5 Gibbs steps

There are 3 steps:
1. Update {wy }2_,, b, {cx }E | with HMC
2. Update K with birth or death MH steps

3. Update A\? with an MH step (only if intensity is uniform)

Updating {wy } 2|, b, {cx}2<, with HMC The full conditional distribution of the weight, bias, and center parameters
is given by:
p({wrt b, {en} )
X p({yn}7 {J)n}, {wk}a b7 {Ck}7 Ka )\2)

1 1 K K
< 10)exp {5} (2503 2exp{—02wz}M<HA<m>Wex ]

b



1 | XK K
x L(0) exp {%‘ng} exp {W Zw,ﬁ} H Alek).
k=1

W k=1

We update the weight, bias, and center parameters using HMC with — log p({wy.}, b, {ci} | __) as the potential energy
function.

Updating K We update the network width K with birth or death MH steps of hidden units. Each iteration of the
sampler, we perform either a birth or death step with equal probability. The full conditional distribution of the network
width is given by:

p(K[__) ocp({yn}s {on}, {wi}, b, {cr }, K, >‘2)

1
x L(B)exp  =—=0b" ¢ (2m02,)~ K/Qexp{ }
ki

Mw

20 202

)

k=1

K K
_ 1
x L(0)(2m02) K/ exp {_W Zwi} H Ae

W =1 k=1

Birth step

A proposal for a birth consists of two parameter proposals:

e Sample i, ~ N(wk41;0,02)

e Sample cf; ~ A(c)/A (i.e., from the prior intensity conditioned on the number of units k).

Therefore the proposal density is:

2\ Alck 1)
A

A proposal for a death consists only of sampling a unit uniformly at random. The proposal density for a birth is
therefore:

(K = K +1) = N(wg41;0,02) (278)

K —-K-1)=1/K (279)
The ratio of proposal densities is therefore:

gK+1—=K) A
q(K — K+ ].) B (K + 1))\(CK+1)N(1UK+1;0703))

(280)

To derive the acceptance ratio, we next derive the ratio of posterior probabilities, letting 8’ = {{wy},b, {cx }, K+1,\%}:

p(K+1]_)
(281)
p(K|_)
L(8")(2mo3) "/ exp { 52 Yt wi } T Mew)
; - (282)
L(0")N (wi+150, 0% )A(cx+1)
w 2
x L(0) (283)
The acceptance rate is then:
K+1 K+1—-K

p(K|_) q(K—K+1)

L(6")N (wiesri0705) Meri) A (285)
7(0) (K + DMerT TN (w005




L) A (286)

Death step
Now letting 8’ = {{wy},b, {cx.}, K — 1, A2}, the acceptance probability for a death step can be derived analogously to
the birth step discussed above:

p(K—1]__)q(K—= K-1)

Qdeath = p(K|_) qK—-1-K) =
) L) (K + DMerTN (w6752 ) (288)
L(O)N (16,62 e A
_LO)K+1
s (289)

Updating A2 We only update the intensity function when it is uniform (i.e., A(c) = A for any ¢). Therefore, the
integral of the intensity is given by A := [, A ¢ Mc)de = p(C)A. The full conditional distribution is therefore:

POV | ) o< p({yn} {za}, {w}, b, {er}, K, A%)

K
MM /{/Q{/} exp(~ ( A(cw) ()2 exp{ A}
w k=1 k=1

L(0) exp(— MAE (A2 Lexp{— A%}
<0>AK+2<“ ” exp{w( JA = BX%)
To update \? we use a Metropolis-Hastings step with a normal proposal distribution centered around the current value

of A2, Since this distribution is symmetric, the proposal distributions cancel out in the acceptance ratio. Letting (\')?
denote the proposed value of A\? and 8’ = {{wy},b, {cx}, K, (\')?} , the acceptance rate is therefore:

L)
POV ) 0
L8N expl - p(€)) — BV} o)
LONTT T exp{ (N — 53]
’  K+2(a-1)
o< S e {nlO ~ ) exp -5 - 33 () 9

C.6  INHOMOGENEOUS INTENSITY

C.7 Notation

name symbol domain

centers {ep}E, c eRP

weights {we},  wpeR
bias b R

thinned centers {p}M_, &, eRP

GP function values {3, GgmeR

thinned GP function values  {gx}M_, §n. €R
intensity upper bound ¥ R
number of hidden units K K
number of thinned centers M N

Table 2: Overview of all parameters in PORB-Net when an input dependent intensity is inferred.



When the meaning is clear, we suppress the subscript and superscripts outside the bracket. For example, {c } denotes
{ck}f:l. For convenience we also use the following notation (also applied analogously to the centers):

symbol meaning
37 vector of {gm } 2L,
gK vector of {gi }< |
BMAK vector of {g,n }1L, and {gr}i,
gM+K+1 Em+x With one additional component
SM+K—i g+ k Without component ¢

Table 3: Alternative notation for convenience. The same subscripts are also applied to the centers.

C.8 Likelihood

N
L(0) = p({yn} | {zn}.0) = [[ N(f(2n; 0),02) (293)

n=1

where 0 = {{wy},b, {ck}, {9}, \*} and:

K
flz;0) =b+ Z wy, exp(—si(x — cx) T (x — cx)) (294)
k=1
52 = (s0A(c))? = (50X (h(cx))? (295)

is the network, where o (-) is the sigmoid (logistic) function and / is a GP.

C.9 Prior
wp | K "R N(0,62), k=1...,K (296)
b~  N(0,57) (297)
A"~ Gamma(a, 3) (298)
p({ck}7{5m}a{gk}?{gm}7KaM|A*) (299)

=

K
oc (W) M exp (=3 w(€)) [T o(gr) TT o(=Gm) x GPUgi} {Gm} [ {ex}, {Em) (300)
k=1

m=1

where (1(C) is the measure of C and 62 = \/s2/m02,.
Note can write the GP prior in a few ways (just different notation):
GP{gr}{gm} [ {ex}, {em}) = plemix |emix) (301)
_ - 1 _

where ¥ = kernel(cpsy i, Cp4x) is the M + K x M + K kernel matrix evaluated on all of the center parameters
CM+K-

Joint distribution

p({yn} {zn s {wr}, 0, {ck}, {Gn}, {gk}, {Gm}, K, M, A7)
= p({yn} ‘ {xn}v {wk}’, b, {Ck}7%7 {Wc}v% K»M7 )\*) X p({.%‘n}, {wk}a b, {Ck}a {Em}a {gk}” {gm}v K, M, )‘*)



X p({yn} ‘ {xn}7 {wk}> b, {Ck}7 {gk}u K, >‘*) X p({wk}7 b, {ck}> {ém}7 {gk}ﬂ {gm}7K7 M, \* |/{/%}/) XM

] 1
) X p({luk}abv{Ck}7{&ﬂl}v{gk}a{§ﬂ1}7}(vﬂ47A*)
) x p(b ‘%7%7%’%%,KM>m x p({we}, {exts {m}s {gr} {Gm }, K ML AT)
p({yn} [{zn},0) x p(b) x p({wy} |%7%7M7% K5M7X() x p({erts {em b {9} {Gm )}, K, M, AY)
) % p(
) % p(

p({yn} {70}, 0
p({yn}[{zn}, 0

pP({yn}[{zn}, 0 b) x p({wi} | K) x p({ck}, {Gm}, {gn}s {Gm}, K, M, A")
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C.10 Gibbs steps

There are 6 steps:

1. Update {wy }2_,, b, {cx }E | with HMC
. Update K with birth or death MH steps

. Update A* with an MH step (optional)

2
3
4. Update M with birth or death MH steps
5. Update {¢,, }M_, with a MH step

6

. Update {g;}}-_; and {g,, }27_, with HMC

Updating {wy, } | b, {c,}_, with HMC The full conditional distribution of the weight, center
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=1
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Updating K

p(K|7) X p({yn}ﬂ {xn}7 {wk}> b, {Ck}a {ém}7 {gk}7 {gm}ﬂ K, M, /\*)

1 1 <
x L(08)exp —205 (2m02)~K/2 exp {—mkl wi}
K M
O ) ] o) o450 e o)
k=1 =1
K K
o L(6)(27a7},) K72 exp {—2 Z wi} (A H o(gk) X p(8M+K | CM+K)
Wk=1 k=1
Birth step
A proposal for a birth consists of three steps:
e Sample e, ~ N(0,02)
e Sample cf_ ; ~ 1/p(C) uniformly
e Sample g% ~ P(9r+1 | Cxi1> CMK, EMAK)
Therefore the proposal density is:
¢(K = K +1) oc N(wk1150,05)p(gkc 11 | €1y Carirc 8ar+5)/1(C) (303)

A proposal for a death consists only of sampling a unit uniformly at random, so the proposal density for a death is:

K —-K-1)= % (304)

The ratio of proposal densities is therefore:

(K +1—=K) (C)

A(K— K+1) (K DN(ureri0.080( 1 | o1 CnrsoEarer) oo

Ratio of posterior probabilities:
p(zfi;("l |)) (306)
L) Crod) 2 exp { -t S wi O T olgpl@acs i | enrvici) on

LW)WWMMF(%AHK lerm+k)

L(8")(2r0%) Y/ exp { gz w1 | NGk PGk | s Car s Bar P(Bar k¢ | ety aric)

L(O)p(gnm+k |emik)

(308)

L(0")(2m02) /2 exp {—ﬁwiﬂl} N0 (i 1)1 | Cegrs Cre i, 84+ )P(Brirr i) (309
B L(@)p MAK)
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The acceptance rate:
o p(K+1]_ ) q(K+1— K) G11)
p(K|_ ) q(K—-K+1)
L(6"\N MA (951 1)P(9k 1 |C TK>SMAK ) 312)
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Death step
The acceptance rate:
K 1] )g(K—15K)
a = (314)
p(K[_) qK—K-1)
L(0)(K)N (wgs6702 )p(9K | € 1K 8M+K) 315)
L(6")N (w675, )N 0 (9x)p(9K | ¢ 7%, 8Mm+x)I(C)
_Le) K (316)

L(6) A o(gr)u(C)
Updating \* We use MH. Here is the full conditional:
p(>\* ‘ 7) X p({yn}7 {ZL'n}, {wk}a ba {Ck}7 {&m}, {gk}a {gTYL}? K? M)

K
1 1
w02 2exp { — w,%
205 v

(W) exp (= (8 + (€ MM x GP({g ). (en})
=1

o LB)N) ™V exp (<N (5 + plC

x L(0)exp

To propose a new intensity upper bound A*" we use a normal distribution centered on the current value of \*. Since this
distribution is symmetric, the proposal distributions cancel out in the acceptance ratio. The acceptance rate is therefore:

)
=) 1D
L(OYN )M e (<07 (84 4(C)))
= - (318)
L(@) (A )t KHM=Lexp (=A*(8 + p(C)))
L) [ x at+M+K—1 ,
= 7() (A*) €xp (‘(A* _)\*)(54'#(6))) (319)
Updating M
p(M|__) < p({yn}: {zn} {wr}, b, {ck} {Cm}, {9k} {gm}allg? M, \")
x L(0)exp —2(175 2102 Zexp —2; w?

W =1
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Birth step A proposal for a birth consists of two parameter proposals:

e Sample &, ~ 1/p(C) uniformly over C.

e Sample 3y, 1 ~ P(Grr+1 | Evr1s CMv K, BM A K)

The proposal probability for a birth is therefore:

(gfuﬂ | CM+1, C'M+K> gM+K)
w(C)

A proposal for a death consists only of sampling a hidden unit uniformly at random. The proposal proability for a death
is therefore:

oMMy =" (320)

1
M—->M-1)=— 321
q(M — )= (321)
The ratio of proposal densities is:
a(M +1- M) _ #(C) a2
q(M — M+1) (M +1)p(Gyg1 | Em+1, €y i M4 K)
The ratio of posterior probabilities is:
p(M+1|_) _ L(O")(\)M+ Hn]\fill 0(=gm) X p(@M+K+1|CMtK+1) (323)
p(M|__) L(O)WMX p(gm+k [Cmtk)
_ LO)N o (=Frri1) X PGrria [ Errgrs Crirc, 8Mt k) X P(8M 4K | E37T, Car1 k) (324)
L(@)p(gm+k | em+k)
_ L0 )N\ 0(—Ghri1) X P(Garia | Erryrs Crv i, 8M1 k) X Pl M+K) (325)
L(6)p M+K)
_ L0 0 (=Ghrs1) X P(Grri1 [ Crrgrs MK BM 1K) (326)
L(0)
The acceptance rate is therefore:
:p(M+1|7)q(M—|-1—>M) (327)

p(M|_) ¢M—M+1)

_ L(O)N o (=g 14) X p(ﬁMW 1(C) (328)

L(O N -
() (M + )p(Fhy 1 | Erpareeri i Ba 1K)

_ L(0)A*u(C)
T LO) + 1)1+ exp(@hrer) (329)

Death step

We sample a thinned center to be deleted uniformely at random. For notational simplicity, assume element M is deleted.
The acceptance rate for deleting this unit follows analogously to the birth step above.
_p(M—1]__)q(M —1 - M)
p(M|__) qM—M-1)

(330)
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L)Y u(e)
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Updating {¢,,}}_, with MH Thinned center parameters and thinned GP function values are proposed jointly and
accepted based on MH. The full conditional is:

p(Cisgi | ek —ir 8MyK—is )
X p({yn}’ {xn}v {wk}v b, {Ck}’ {ém}v {gk}’ {gm}allg? M, )‘*)

1
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7 M3I\i
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The proposal probability ratio is then:
P& il e —ir8mvk—i,_) _ L(0")o(=gi;) X p(g;| & M1k —ir Crrric—i) (333)
p(Gi, gi ek —ir 8k —in ) L(0)o(—gi) X p(gi | Ci, v+ K—is Crt K —i)
The proposal distribution for thinned unit ¢ consists of two steps:
e Sample & ~ N (&;é;,02.)
e Sample g ~ p(§'| &, ey Kk —i, M+ K —i)
Therefore, the proposal probability from the current state to the proposed state is:
q((@,Gi) = (&, 3)) = N(&;8,02.) x p(§' | &, errsrx—ir 8r+k—i) (334)
The proposal probability ratio is then:
Q((&"ng;) — (E’ia gl)) _ W X p(gl ‘ E’ia CM+K—i, gM+K—'i) _ p(g’t ‘ Ei? CM+K—i, gJVI"!‘K—'i) (335)
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The acceptance ratio is then:

_ (¢, Gi | ek —i, 8k —ir ) q((C}, §7) —
(¢, gil ek —is &My —ir ) q((Giy §s) —

(

(

L(0')7(~30) x P3| & BarerrOar sk 1) PG | P exrer=rBr o) o)
 LO)o () x P00 @i ar i) PUGE| G Crrrrer B i)

(
~ L(0') 1+ exp(:)
g;)

(336)

~ L(0) 1+ exp( (338)



Updating {g; }2_ | and {g,, }2_, with HMC The full conditional distribution of the GP function values is given by:
p({gk}v {gm} ‘ 7) X p({yn}7 {xﬂ}v {wk}a b, {Ck}7 {Em}a {gk}a {gm}7 I}gv M, >‘*)

1
= w52 2exp wi
2 w 2 k
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K M 1
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To update the GP function values, we use HMC with — log p({gx }, {gm } | __) as the potential energy function.



D ADDITIONAL EXPERIMENTS AND DETAILS OF EXPERIMENTAL SETUP

D.1 EXPERIMENTS ILLUSTRATING PROPERTIES OF PORB-NETS

D.1.1 PoRB-Nets decouple amplitude variance and lengthscale

Here we examine the dependence of the variance and lengthscale (as measured by the upcrossings of y = 0) for three
different models: a standard BNN (in this case a single layer neural network with a Gaussian activation) (Figure 2), an
RBFN with a homogeneous Poisson process prior on the number of hidden units but without scaling the hidden units by
the intensity, as in PORB-Net (Figure 3), and PoRB-Net with a homogeneous intensity (Figure 4). We compute the
average variance and upcrossings over 2000 function samples drawn from each over the interval z € [—0.5,0.5]. The
goal is to examine how each of these two properties scales with the model parameters.
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Figure 2: Average variance and upcrossings of a BNN. Dotted line: 20 hidden units, solid line: 100 hidden units.
Generally the input-to-hidden weights variance o2, , controls the upcrossings while the hidden-to-output weights
variance 07201 controls the variance, but notice how aful impacts both properties (and in a nonlinear way). This shows
that these properties cannot be controlled independently .



—e— 20 —o— 80
40 —o— 320

Upcrossings

—o— 2.0 —e— 8.0
- 4.0 1 —o— 32.0

N
o

Variance

20 40 60 2 4 6 8

Figure 3: Average variance and upcrossings of an RBFN with homogeneous Poisson process prior on the centers but
without scaling the hidden units by the intensity. Notice the intensity A impacts both the upcrossings and the variance,
since a higher intensity implies more radial basis functions, which continue to add up if their width is not scaled. The
panels on the right show the hidden-to-output weights variance.
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Figure 4: Average variance and upcrossings of PORB-Net. The intensity A and hidden-to-output weights variance o2,

independently control the upcrossings and variance .

Now consider an inhomogenous Poisson process prior on the center parameters with an arbitrary intensity function
A(c). Recall in PoORB-Net we set the scale parameters of each unit to s? = s3\(cy). Figure 5 shows different function
samples for a single fixed intensity sampled from the prior. On the left, the s2 is constant for each unit while on the
right s7 = s3\(ck). The top row shows the true intensity, the middle row shows the amplitude variance, and the bottom
row show a histogram of the number of function upcrossings of y = 0. We see that setting the scales based on the
intensity results in approximately constant function variance and increased upcrossings.
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Figure 5: Setting s7 = s2\(cy)? results in approximately stationary amplitude variance

D.1.2 PoRB-Nets can use prior information to adjust uncertainty in gaps in the training data

If prior information is available about a function’s lengthscale, this can be incorporated into the PORB-Net prior by
adjusting a fixed Poisson process intensity. Figure 6 shows an example with input data  sampled uniformly while
Figure 7 shows an example where there is a large gap in the = data.

True intensity = 2.5 N True intensity = 2.5
Model intensity = 2.5 Model intensity = 1.5

(a) True LS low, Model LS low (b) True LS low, Model LS high
True intensity = 0.5 25 » True intensity = 0.5
2 Model intensity = 1.5 Model intensity = 0.5

(c) True LS high, Model LS low (d) True LS high, Model LS high

Figure 6: Left-to-right: increased lengthscale (LS) for the PORB-Net model. Top-to-bottom: increased lengthscale for
the true function (drawn from a PoRB-Net prior)
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Figure 7: By adjusting the Poisson process intensity a gap in the data (note that green points are test observations), the
out of sample uncertainty can be adjusted. Higher intensity results in a smaller length scale.

D.1.3 PoRB-Nets can be used for classification

We focus on one-dimensional regression examples in this paper, since our primary interest is theoretical. However,
PoRB-Nets can easily be extended to higher dimensional inputs and outputs. Figure 8 the posterior predictive distribution
on a simple two dimensional XOR classification dataset.
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(a) Data (b) PoRB-Net posterior predictive.

Figure 8: PoRB-Nets can do classification. We fit a PORB-Net to a simple, two-dimensional XOR classification
dataset.

D.2 COMPARISON WITH OTHER MODELS

D.2.1 Details on experimental setup

Data

e sin, inc, inc2, const. We create four synthetic datasets of 100 observations each by adding i.i.d. A'(0,0.02) noise
to functions from Gaussian process priors with the following nonstationary kernel [Gibbs, 1997]:

, , 20(x)l(z’ r—a')?
Y(z,2") = o(x)o(z") m exp (—m) (339)

Each dataset corresponds to a different lengthscale function, I(z). leonst(z) = 1 is a constant function, lg, (2) =
sin(x) + 1.1 is a sine function shifted above zero, and li,c(x) is a function that increases from left to right (see
plots below). Note that “inc” and “inc2” have the same lengthscale, the former just has gaps in the = data while the
latter has = data sampled uniformly.



e mimic. Each of the four datasets from the Mimic Critical Care Database [ ] shows patient heart
rate over time.

e motorcycle. The motorcycle accident dataset [ s ] tracks the acceleration force on the head of a
motorcycle rider in the first moments after impact.

e finance. Chicago Board Options Exchange (CBOE) volatility index (VIX), downloaded from https://fred.
stlouisfed.org/series/VIXCLS. For testing data, we create two large, artificial gaps in the data. The
remaining observations are downsampled by 25%, leaving 25 training observations

144 train 60 test

Matching priors To highlight differences between the models, we attempt to approximately match the priors in
amplitude variance and lengthscale. We choose these these properties since they are the focus of this paper. For each
dataset, we start by selecting the variance parameter o2 and lengthscale parameter [ of a GP with an RBF kernel by
optimizing the log marginal likelihood of the data, where an RBF kernel is given by:

WAV
Shf(z, 2') = 0% exp ((lef)> . (340)

Since some of the datasets contain gaps in x space, we constrain the lengthscale to be larger than l,;, = 1/(27 - 5) =~
0.032, which implies the expected number of upcrossings u of y = 0 over x € [0, 1] is 5, since u = 1/(2xl) [

, ]. It is also difficult to model very small lengthscales with networks of small capacity, which
we needed to limit because we wished to perform full HMC inference. The observational noise variance is assumed
fixed and and set to a reasonable value for each dataset (or the ground truth, if available). Once these parameters were
selected for each dataset, we matched the BNN and PoRB-Net to this prior by a searching over a 25 x 25 grid of two
model parameters. To measure lengthscale and amplitude variance of each model, we used the average upcrossings and
average variance over x € [0, 1].

For the BNN (single layer), we controlled the overall lengthscale by adjusting the input-to-hidden weights variance
from 10 to 15,000 and we controlled the the overall amplitude variance by adjusting the hidden-to-output weights
variance from .01 to 1.0. We included the variance of the bias parameters in this search. Note that both the upcrossings
and the amplitude variance are concentrated near the origin for a BNN.

For PoRB-Net, we controlled the lengthscale by adjusting the intensity A (in the case of a homogeneous Poisson
process) from 5 to 40? and the intensity upper bound A\* (in the case of an inhomogeneous Poisson process) from 2 x 5
to 2 x 40 (we multiply by 2 because the mean intensity under a sigmoidal Gaussian Cox process is 1/2A* because
the GP, assumed have zero mean, is squashed through the sigmoid function); we controlled the amplitude variance by
adjusting the hidden-to-output weights variance from .01 to 1.0. Note that both the upcrossings and amplitude variance
are approximately constant over x € [0, 1].

Model implementations

e PoRB-Net. The code is available on our GitHub: https://github.com/dtak/porbnet. For a homo-
geneous intensity A (PoRB-Netf in the figures and tables), we assumed a Gamma(ay, 8) prior on the inten-
sity. For an inhomogenous intensity we assumed used a sigmoidal Gaussian Cox process defined by intensity
A(e) = Mo(g(c)), where g is a GP with an RBF kernel ¢ of lengthscale .25 and variance 5. We set the variance
of the GP to be fairly large since we did not place a prior on \*. We set s3 = 2. For inference we use HMC with
5000 burn in samples and 5000 recorded samples. During the first half of the burn in, we find it is advantageous to
not do any birth or death steps of (unthinned) hidden units. During all of burn in, dynamically adjust the HMC
leapfrog step size € to target an acceptance rate of 65%. Since the Poisson process is defined over a region C, we
implement Roll-back HMC [ , ], which introduces a sharp sigmoid factor in the potential
energy to approximate the probability drop at the boundaries of C.

o GP. We use the GPy package, available at https://sheffieldml.github.io/GPy/. We use an RBF
kernel.

’Technically we adjusted a: and set 3y = 1 so that E[\] ranged from 5 to 40.
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o LGP. We use the Matlab code made publicly available by the authors [ , ] at https:
//github.com/markusheinonen/adaptivegp. We modified the code slightly to ensure that the obser-
vational noise variance was fixed that only the input dependence of the lengthscale was inferred (and not the
input dependence of the amplitude variance or observational noise variance, for which this model allows). For
inference we used HMC with 1000 samples, since it seems to converge faster than a BNN or PORB-Net. We set
the lengthscale parameter [3; of the GP prior on the log lengthscale function to be .25, the same as value as used in
the GP defining the sigmoidal Gaussian Cox process used by PoORB-Net.

e BNN. We use our own implementation, also available on our GitHub. We use a Gaussian activation function
¢(z) = exp(—%s32?) for all experiments for better comparison to PORB-Net (we add the scale parameter s3 = 2
so the activation function is the same as in PoORB-Net). For inference we the same HMC implementation with the
same number of samples (5000 burn in and 5000 for recorded) as for PORB-Net.

D.2.2 Results

Numerical results Tables 4 and 5 show the test log likelihoods and root mean squared errors (RMSEs) for all datasets
and all models. We evaluate the test log likelihood of the neural networks as:

Ep(z*,y*) [logp(y*\m*,’D)] = Ep(z*,y*) {log/p(yﬂx*,@)p(el))d@ 9 (341)

where 6 are the model parameters.

Table 4: Test Log Likelihoods. The number next to the BNN indicates the number of hidden units.

PoRB- PoRB- BNN BNN BNN
Netf Net GP LGP (25) (50) (100)

sin* | 0.767 0817 0.728 0.814 0.755 0.742 0.789
inc* | -0.401  0.001 -0.227  0.183 -0.153 -0.284 -0.160
inc-gap* | 0.656  0.747 0543 0.183 0.631 0.627 0.678
const-gap* | 0.277  0.330 0.413 0.239 0.009 -0.295 -0.133
mimicl | 0.887 0947 0.827 0.897 1.047 0952 0912
mimic2 | 0.534  0.603 0.564 0.540 0441 0389 0472
mimic3 | -0.634 -0.571 -0.671 -0.583 -0.648 -0.626 -0.594
mimic4 | -1.719 -1.531 -1.848 -1439 -1.383 -1.084 -1.362
finance | -1.410 -0.521 -1975 0.033 -2.629 -0.754 -0.734
motorcycle | 0.184 0.155 0.167 0.141  0.159 0.125 0.127

*synthetic dataset  finfers homogeneous intensity
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Table 5: Test RMSEs. The number next to the BNN indicates the number of hidden units.

PoRB- PoRB- BNN BNN BNN
Nett  Net OF LGP o5 500 (100)

sin* | 0.075  0.068  0.089 0.067 0.077 0.083 0.073

inc* | 0.394  0.356  0.348 0.346 0.345 0.399 0.349
inc-gap* | 0.114  0.099  0.137 0.346 0.122 0.120 0.111
const-gap* | 0.174  0.168 0.159 0.260 0.304 0.326 0.327
mimicl | 0.084 0.078  0.081 0.086 0.064 0.071 0.078
mimic2 | 0.187  0.163 0.171 0.165 0.240 0.246 0.220
mimic3 | 0.204  0.201  0.205 0.203 0.204 0.203 0.202
mimic4 | 0.280 0275 0.281 0.278 0.262 0.265 0.269
finance | 0.586  0.403  0.628 0.254 0.429 0.333 0.399
motorcycle | 0.200 0.206  0.201 0.205 0.212 0.217 0.212

*synthetic dataset tinfers homogeneous intensity




Posterior predictive plots
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Figure 9: Each dataset is drawn from a GP with the nonstationary kernel given in Equation 339 with a different input
dependent lengthscale function /() (see Figure 12). We see qualitative similarity (especially in the gaps in the data
along the z-axis) between PoORB-Nett and the GP (both stationary) and PoORB-Net and the LGP (both nonstationary).
The BNN looks different from the other models (e.g., it has small uncertainty in both gaps in the sin dataset). Training
points are gray; test points are red.
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Figure 10: Posterior predictive distributions. The mimic1l dataset shows the largest qualitiative differences between
models, with PORB-Net and LGP learning a smooth function for > 0.5. Meanwhile, PoORB-Netf, which has a
homogeneous intensity, more closely resembles a stationary GP than a BNN, which places relatively high uncertainty
near the origin and relatively less away from it. Training points are gray; test points are red.
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Figure 11: Posterior predictive distributions. The nonstationary models exhibit better generalization on the finance
dataset. All models look fairly similar on the motorcycle dataset. Training points are gray; test points are red.



Intensity and lengthscale plots Here we compare the inhomogeneous Poisson process intensities inferred by PoRB-
Net and the inverse of the input dependent lengthscales inferred by the LGP. In both cases, higher values indicate less
smooth functions.

sin inc inc2 const

150 - —— inferred A(c) T —— inferred A(c) T —— inferred A(c) T —— inferred A(c)

true I5}(x) true /;1(x) true I;5,(x) true I ke (x)

PoRB-Net
intensity
~
w
1
1
1
1

T T T T T T T T T T T T T T T T T T T T

150 + inferred I71(x) | T inferred /=3(x) | ] inferred I71(x) | inferred 1=1(x)

125 - true I5}(x) i true /;1(x) true /55 (x) true Iz ke (x)

75 e e e

LGP
inverse lengthcale

25 A - - -

0 - - - -
T T T T T T T T T T T T T T T T T T T T

0.00 0.25 0.50 0.75 1.00 0.00 0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 12: Each dataset is drawn from a GP with the nonstationary kernel given in Equation 339, with the inverse of the
ground truth input dependent lengthscale function [(x) shown in each plot. Both models pick up on the patterns in the
ground truth data. Note that the LGP uses the same kernel as in the ground truth (but it infers /() with another GP as a
prior).

mimicl mimic2 mimic3 mimic4

PoRB-Net
intensity

150 - - -

LGP
inverse lengthcale

100 - - -

50 - - -

0 - - - -
T T T T T T T T T T T T T T T T T T T T

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 13: PoRB-Net and LGP pick up on similar lengthscale patterns in the mimic data.
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Figure 14: For the finance dataset, both models infer a smaller lengthscale near the beginning and end of the time
period, where the VIX was clearly more volatile. This resulted in better uncertainty in the gaps in the data as compared
to stationary models (GP and PoRB-Net with a homogeneous intensity). For the motorcycle dataset, both models infer a
fairly homogeneous lengthscale, which makes sense because the motorcycle dataset is typically considered an example
of input dependent amplitude variance rather than input dependent lengthscale [ , ].
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