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Abstract

Bayesian neural networks (BNNs) are flexi-
ble function priors well-suited to situations in
which data are scarce and uncertainty must
be quantified. Yet, common weight priors are
able to encode little functional knowledge and
can behave in undesirable ways. We present a
novel prior over radial basis function networks
(RBFNs) that allows for independent specifi-
cation of functional amplitude variance and
lengthscale (i.e., smoothness), where the in-
verse lengthscale corresponds to the concentra-
tion of radial basis functions. When the length-
scale is uniform over the input space, we prove
consistency and approximate variance stationar-
ity. This is in contrast to common BNN priors,
which are highly nonstationary. When the in-
put dependence of the lengthscale is unknown,
we show how it can be inferred. We compare
this model’s behavior to standard BNNs and
Gaussian processes using synthetic and real ex-
amples.

1 INTRODUCTION

Neural networks (NNs) are flexible universal function ap-
proximators that have been applied with success in many
domains. Bayesian neural networks (BNNs) capture func-
tion space uncertainty in a principled manner by placing
priors over network parameters (Hinton and Neal, 1995).
Unfortunately, priors in parameter space often lead to un-
expected behavior in function space, making it difficult to
incorporate meaningful information about function space
properties (Lee, 2004). Two such properties of impor-
tance are amplitude variance and lengthscale, including
how they might vary over the input space.

While Gaussian processes (GPs) are function priors that
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can easily encode these properties via the covariance func-
tion, there are many situations in which we would prefer
BNNs to GPs: BNNs may be computationally more scal-
able, especially at test time, and they have an explicit
parametric expression for posterior samples, which is
convenient when additional computation is needed on
the function (e.g., finding a minima) (Hernández-Lobato
et al., 2014).

Therefore, a natural question arises: can we design BNN
priors that encode function space properties as in GPs
while retaining the benefits of BNNs? Some approaches
use sample-based methods to evaluate the discrepancy
between the function space distribution and a reference
distribution with desired properties (Flam-Shepherd et al.,
2017; Sun et al., 2019). Pearce et al. (2019) explores dif-
ferent BNN architectures to recover equivalent GP kernel
combinations in the infinite width limit. While promis-
ing, these approaches require challenging optimizations
or rely on infinite width assumptions.

As a first step towards more expressivity for BNNs, this
work focuses on a particular type of NN called a ra-
dial basis function network (RBFN). RBFNs are widely
used across scientific disciplines (Dash et al., 2016) and
have received renewed interest recently, both from a the-
oretical (Que and Belkin, 2016) and inferential perspec-
tive (Zadeh et al., 2018; Asadi et al., 2020). Importantly,
each hidden unit has a center parameter corresponding to
a localized activation function, which enables controlling
where (over the input space) the hidden units contribute
to the complexity of the function.

In this work, we introduce Poisson Process Radial Basis
Function Networks (PoRB-Nets), an interpretable family
of RBFNs that employ a Poisson process (PP) prior over
the center parameters in an RBFN. The proposed formu-
lation enables direct specification of functional amplitude
variance and lengthscale, the latter of which can vary
over the input space. We show that these properties are
decoupled; that is, each can be specified independently



of the other. Intuitively, PoRB-Nets work by trading off
between the concentration and scale of the radial basis
functions. Consider that a higher concentration of ba-
sis functions allows for a smaller lengthscale but also a
larger variance, since the basis functions add up. By mak-
ing the scale of the basis functions depend inversely on
their concentration, PoRB-Nets undo the impact on the
variance.

PoRB-Nets have the additional benefit that the choice
of the lengthscale determines the network architecture
(width of the layer), since the expected number of hidden
units is equal to the integral of the PP intensity over the
input space. Hidden units are added or deleted from the
network during inference to adjust the overall lengthscale
to the data, and when the input dependence of the length-
scale is unknown, we show how it can be inferred using a
sigmoidal Gaussian Cox process as a prior (Adams et al.,
2009). As with GPs, and unlike networks that force a
specific property (Anil et al., 2018), these properties can
adjust given data. We focus on single-layer RBFNs since
our interest is in theoretical properties and examining the
true posterior.

Specifically, we make the following contributions: (i)
we introduce a novel, intuitive prior formulation for
RBFNs that encodes distributional knowledge in func-
tion space, decoupling notions of lengthscale and am-
plitude variance in the same way as a GP with a ra-
dial basis function (RBF) kernel; (ii) we prove impor-
tant theoretical properties of consistency and amplitude
stationarity; (iii) we provide an inference algorithm to
learn an input dependent lengthscale and (iv) we em-
pirically demonstrate the potential of PoRB-Nets on
synthetic and real examples. The code is available at
https://github.com/dtak/porbnet.

2 RELATED WORK

Early weight space priors for BNNs. Most classical
NN priors aim for regularization and model selection
while minimizing the amount of undesired inductive bi-
ases (Lee, 2004). MacKay (1992) proposes a hierarchi-
cal prior1 combined with empirical Bayes. Lee (2003)
proposes an improper prior for NNs, which avoids the
injection of prior biases at the cost of higher sensitivity to
overfitting. Robinson (2001) proposes priors to alleviate
overparametrization of NN models. We build on classical
weight space priors but with the goal of obtaining specific
properties in function space.

1Hierarchical priors are convenient when there is limited
parameter interpretability. The addition of upper levels to the
prior reduces the influence of the choice made at the top level,
making the prior at the bottom level (the original parameters)
more diffuse (Lee, 2004).

Function space priors for BNNs. Some works (Flam-
Shepherd et al., 2017; Sun et al., 2019) match BNN priors
to specific function space priors (e.g., GPs) but rely on
sampling function values at a collection of input points.
These approaches do not provide guarantees outside of the
sampled region, and even in that region, their enforcement
of properties is approximate. Neural processes (Garnelo
et al., 2018) use meta-learning to identify functional prop-
erties that may be present in new functions, but they rely
on having many prior examples and do not allow the user
to specify basic properties directly. In contrast, we encode
functional properties via prior design, without relying on
function samples.

Bayesian formulations of RBFN models. Closest to
our work are Bayesian formulations of RBFNs. Barber
and Schottky (1998) consider a fixed number of hidden
units, fixed scale, and use a Gaussian approximation to the
posterior distribution, which is available in closed form
in this case. Holmes and Mallick (1998) and Andrieu
et al. (2001) propose fully Bayesian formulations that
employ homogeneous Poisson process priors on the center
parameters, but their focus is on inferring the number
of hidden units and their formulation does not decouple
amplitude variance and lengthscale.

3 BACKGROUND

Bayesian neural networks (BNNs). Let y =
f(x |w, b) + ε, where ε is a noise variable and w and
b refer to the weights and biases of a neural network f
respectively. In the Bayesian setting, we assume a prior
w, b ∼ p(w, b). One common choice is i.i.d. normal
distributions over each parameter. For better compar-
ison to PoRB-Nets we focus on BNNs with Gaussian
φ(z) = exp(−z2) activations. We will refer to such a
model as a standard BNN (Neal, 1996).

Radial basis function networks (RBFNs). RBFNs are
classical shallow neural networks that approximate arbi-
trary nonlinear functions through a linear combination of
radial kernels (Powell, 1987). They are universal func-
tion approximators (Park and Sandberg, 1991) and are
widely used across disciplines such as numerical analy-
sis, biology, finance, and classification in spatio-temporal
models (Dash et al., 2016). For an input x ∈ RD, the
output of a single-hidden-layer RBFN of widthK is given
by:

f(x |θ) = b+

K∑
k=1

wk exp

(
−1

2
s2k‖x− ck‖2

)
, (1)

where s2k ∈ R and ck ∈ RD are the scale and center
parameters, respectively,wk ∈ R are the hidden-to-output
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weights, and b ∈ R is the bias parameter. Each k-th
hidden unit can be interpreted as a local receptor centered
at ck, with radius of influence sk and relative importance
wk (Powell, 1987).

Poisson process. A Poisson process (PP) on RD is a
stochastic process characterized by a positive real-valued
intensity function λ(c). For any set C ⊂ RD, the number
of points in C follows a Poisson distribution with param-
eter

∫
C λ(c)dc. The process is inhomogeneous if λ(c)

is non-constant. We use a PP as a prior on the center
parameters of an RBFN.

Gaussian Cox process. A Bayesian model consisting
of a Poisson process likelihood and a log Gaussian pro-
cess prior g(c) on the intensity function λ(c) is called a
log Gaussian Cox Process (Møller et al., 1998). Adams
et al. (2009) present an extension, called the sigmoidal
Gaussian Cox process, which passes the Gaussian pro-
cess through a scaled sigmoid function. To infer an input
dependent lengthscale of an RBFN, we use this process
as a model for the intensity function of the PP prior on
the center parameters of the RBFN.

4 MODEL
In this section we introduce Poisson Process Radial Basis
Function Networks (PoRB-Nets), which achieve two es-
sential desiderata for a functional prior. First, they enable
the user to encode the fundamental basic properties of
lengthscale (i.e., smoothness), amplitude variance (i.e.,
signal variance), and (non)stationarity. Second, PoRB-
Nets adapt the complexity of the network based on the
inputs. For example, if the data suggests that the function
needs to be less smooth in a certain input region, then that
data can override the prior. Importantly, PoRB-Nets fulfill
these desiderata while retaining appealing properties of
NN-based models, as discussed in Section 1.

Generative model. As in a standard BNN, we assume
a Gaussian likelihood centered on the network output,
and independent Gaussian priors on the weight and bias
parameters. Unique to the novel PoRB-Net formulation is
a Poisson process prior over the set of center parameters
and a deterministic dependence of the scale parameters
on the Poisson process intensity. The generative model is
given by:

{ck}Kk=1 |λ ∼ exp

(
−
∫
C
λ(c)dc

) K∏
k=1

λ(ck) (2)

s2k |λ, ck = s20λ
2(ck) (3)

wk ∼ N
(
0, σ2

w

)
(4)

b ∼ N
(
0, σ2

b

)
(5)

yn |xn,θ ∼ N
(
f(xn;θ), σ2

)
, (6)

where f(xn;θ) is given by Eq. (1); λ : C → R+ is the
(possibly non-constant) Poisson process intensity; θ is the
set of RBFN parameters, including the centers, weights,
bias, and intensity; and s20 is a hyperparameter that defines
the scale of the radial basis function when the intensity is
one. In practice, s20 allows the user to control the baseline
number of hidden units. For example, if computational
constraints limit the number of hidden units that can be
used, decreasing s20 allows the user to model a smaller
lengthscale without adding more units.

Different priors could be considered for the intensity func-
tion λ. One simple case is to assume a uniform intensity
λ(c) = λ with λ2 ∼ Gamma(αλ, βλ). Under this spe-
cific formulation, Section 5 proves that the amplitude
variance is stationary as the size of the region C tends to
infinity, and Section 6 proves that the posterior regression
function is consistent as the number of observations tends
to infinity; such amplitude variance only depends on the
variance of the hidden-to-output weights and output bias
V[f(x)] ≈ σ2

b+σ̃2
w, where σ̃2

w is just σ2
w scaled by s0. We

further show that the intensity λ controls the lengthscale.

Hierarchical prior for unknown input dependence of
the lengthscale. In the case when the input-dependence
of the lengthscale is unknown, we further model the inten-
sity function λ(c) of the Poisson process by a sigmoidal
Gaussian Cox process (Adams et al., 2009):

g ∼ GP(0,Σ(·, ·)) (7)
λ(c) = λ∗σ(g(c)), (8)

where λ∗ is an upper bound parameter on the intensity
function and σ(z) = (1 + e−z)−1 is the sigmoid function.
In the forward pass of the network, we use the posterior
mean of g to evaluate λ(c).

Contrast to BNNs with Gaussian priors. In Sec-
tions 5 and 6, we prove that the proposed formulation
has the desired properties described above. However,
before doing so, we briefly emphasize that the i.i.d. Gaus-
sian weight space prior commonly used with BNNs does
not enjoy these properties. To see why, let us consider
a standard feed-forward NN layer with 1-dimensional
input and a Gaussian φ(z) = exp(−z2) activation func-
tion. We can rewrite the hidden units as φ(wkx+ bk) =
φ(wk(x− (−bk/wk))). This means that the correspond-
ing center of the k-th hidden unit is ck = −bk/wk and
the scale is sk = wk. If bk and wk have i.i.d. Gaussian
priors with zero mean, as in standard BNNs, then the cen-
ter parameter has a Cauchy distribution centered around
zero. This is an important observation that motivates our
work: A standard BNN concentrates the center of hidden
units near the origin, resulting in nonstationary priors in
function space.
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Figure 1: PoRB-Net captures amplitude stationarity
while a standard BNN does not. Posterior predictive
distributions given 4 observations.

5 VARIANCE AND LENGTHSCALE

We now return to the core desiderata: to specify a prior
that separately controls a function’s lengthscale and am-
plitude variance, as one could do using a GP with an RBF
kernel. To do so, we first derive the covariance of the pro-
posed PoRB-Net model. The full derivations supporting
this section are available in Appendix A.

Neal (1996) showed that the covariance function for a
single-layer BNN with a fixed number of hidden units
ρ(x; θ1), . . . , ρ(x; θK) and independent N (0, σ2

w) and
N (0, σ2

b ) priors on the hidden-to-output weights and out-
put bias takes the following general form:

Cov(f(x1), f(x2)) = σ2
b + σ2

wKEθ [ρ(x1; θ)ρ(x2; θ)] .

We show that the covariance function for a BNN with
a distribution over the number of hidden units takes an
analogous form, replacing the fixed number of hidden
units K with its expectation:

Cov(f(x1), f(x2)) = σ2
b + σ2

wE [K]Eθ [ρ(x1; θ)ρ(x2; θ) |K]︸ ︷︷ ︸
:=U(x1,x2)

.

In the PoRB-Net model, θ = {λ(·), ck}, ρ(x; θk) =
φ(λ(ck)s0‖x − ck‖) where φ(z) = exp(− 1

2z
2), and

E [K] =
∫
C λ(c) dc. By deriving the form of U(x1, x2)

for the case of a homogeneous Poisson process, we next
show that the covariance becomes increasingly stationary
as the region C increases in size. We then illustrate how
the covariance is decoupled from the lengthscale.

A homogeneous PP yields stationarity. In the case of
constant intensity λ(c) = λ defined over C = [C0, C1],
the expression of U(x1, x2) can be derived in closed form:

U(x1, x2) =
1

µ(C)

√
π

s2
exp

{
−s2

(
x1 − x2

2

)2
}

[
Φ((C1 − xm)

√
2s2)− Φ((C0 − xm)

√
2s2λ)

]
, (9)

where s2 = s20λ
2, Φ is the cumulative distribution func-

tion of a standard Gaussian, and xm = (x1 + x2)/2 is
the midpoint of the inputs. As the bounded region C
increases, the second term approaches one, and so the
covariance of a PoRB-Net approaches a squared exponen-
tial kernel with inverse lengthscale s20λ

2 and amplitude
variance σ̃2

w :=
√
π/s20 (defined for convenience):

Cov (f(x1), f(x2)) ≈

σ2
b + σ̃2

w exp

{
−s20λ2

(
x1 − x2

2

)2
}
, (10)

which is stationary since it only depends on the squared
difference between x1 and x2. Notice that this result does
not rely on an infinite width limit of the network, but only
on the Poisson process region [C0, C1] being relatively
large compared to the midpoint xm. In practice, [C0, C1]
can be set larger than the range of observed x values
to achieve covariance stationarity over the input domain.
Figure 2 shows that over the region [−5, 5] the analytical
covariance from Equation (9) is fairly constant with only
slight drops near the boundaries. In Appendix A we also
derive the covariance when λ2 ∼ Gamma(αλ, βλ), which
results in a qualitatively similar shape. In contrast, the
covariance function of an RBFN with a Gaussian prior
on the center parameters is not approximately stationary.
Specifically, for ck ∼ N (0, σ2

c ) and a fixed scale s2 =
1/(2σ2

s), Williams (1997) shows that U(x1, x2) takes the
following form, which Figure 2 shows is highly non-
stationary:

U(x1, x2) ∝ exp

(
− (x1 − x2)2

2(2σ2
s + σ4

s/σ
2
c )

)
︸ ︷︷ ︸

Stationary

exp

(
− x21 + x22

2(2σ2
c + σ2

s)

)
︸ ︷︷ ︸

Nonstationary

.
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Figure 2: PoRB-Net captures amplitude stationarity
while an RBFN with a Gaussian prior on the centers
does not. The lines are Cov(x−t/2, x+t/2) for different
t. We set all of σ2

w = s20 = s2 = λ = 1 and C = [−5, 5].

Decoupling of variance and lengthscale. From Equa-
tion 9, notice the variance is V[f(x)] ≈ σ2

b + σ̃2
w, which

has no dependence on the intensity λ, freeing it to act as
an inverse lengthscale. This is a point of differentiation



of PoRB-Nets. If the scale were fixed or independent of
the intensity, as is the case in previous priors over RBFNs
(e.g., Holmes and Mallick (1998)), the variance would
be V[f(x)] ≈ σ2

b + λσ̃2
w. Intuitively this happens be-

cause a higher intensity implies a higher number of basis
functions, which implies a higher amplitude variance as
the basis functions add up. If we instead allow the scale
parameters s2 to increase as a function of the intensity,
thus making the radial basis functions more narrow, we
can counteract the impact of their concentration on the
amplitude.

To support the hypothesis that the intensity λ controls the
lengthscale, we examine the average number of upcross-
ings of y = 0 of sample functions. For a GP with an
RBF kernel, the expected number of upcrossings u over
the unit interval is inversely related to the lengthscale l
via u = (2πl)−1. Figure 3 shows a histogram of the up-
crossings from functions drawn from a PoRB-Net with
a stepwise intensity λ(c) (greater above x = 0). Notice
the lengthscale is clearly smaller above x = 0 but the
amplitude variance V[f(x)] is approximately constant for
all x.

An inhomogeneous PP yields non-stationarity.
When the intensity is a non-constant function λ(c), then
Equation (9) does not hold. However, we find that setting
the scale parameter of each hidden unit to s2k = s20λ(ck)2,
where λ(ck) is the intensity evaluated at the center
parameter ck, allows for an input dependent lengthscale
that is approximately decoupled from the variance.
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Figure 3: PoRB-Nets decouple lengthscale (as mea-
sured by the upcrossings) and variance.

6 CONSISTENCY

In this section, we study consistency of predictions. That
is, as the number of observations goes to infinity, whether
the posterior predictive concentrates around the true func-
tion. When dealing with priors that can produce an un-
bounded number of parameters, consistency is a basic but
important property. To our knowledge, we are the first to
provide consistency for RBFNs with a Poisson distributed

number of hidden units (no consistency guarantees were
derived by Andrieu et al. (2001)).

Define r0(x) to be the true regression function and
r̂n(x) = Ef̂n [Y | X] to be the estimated regression func-
tion, where p̂n is the estimated density in parameter space
based on n observations. The estimator r̂n(x) is said to
be consistent with respect to the true regression function
r0(x) if, as n tends to infinity:∫

(r̂n(x)− r0(x))2 dx
p−→ 0. (11)

Doob’s theorem shows that Bayesian models are consis-
tent as long as the prior places positive mass on the true pa-
rameter (Miller, 2018). For finite dimensional parameter
spaces, one can ensure consistency by simply restricting
the set of zero prior probability to have arbitrarily small
or zero measure. Unfortunately, in infinite dimensional
parameter spaces, this set might be very large (Freedman,
1963). In our case where functions correspond to uncount-
ably infinite sets of parameters, we cannot restrict this set
of inconsistency to have measure zero.

Instead, we aim to show a strong form of consistency
called Hellinger consistency. We closely follow the ap-
proach of Lee (2000), who shows consistency for standard
BNNs with normal priors on the parameters. Formally, let
(x1, y1), . . . , (xn, yn) ∼ p0 be the observed data drawn
from the ground truth density p0 and define the Hellinger
distance between joint densities p and p0 over (X,Y ) as:

DH(p, p0) =

√∫∫ (√
p(x, y)−

√
p0(x, y)

)2
dx dy.

The posterior is said to be consistent over Hellinger neigh-
borhoods if for all ε > 0,

p({f : DH(p, p0) ≤ ε}) p−→ 1.

Lee (2000) shows that Hellinger consistency of joint den-
sity functions implies frequentist consistency as described
in Equation (11). The following theorem describes an
analogous result for PoRB-Nets with homogeneous inten-
sities.

Theorem 1. (Consistency of PoRB-Nets) A radial basis
function network with a homogeneous Poisson process
prior on the location of hidden units is Hellinger consis-
tent as the number of observations goes to infinity.

Proof. Leveraging the results and proof techniques from
Lee (2000), we use bracketing entropy from empirical
process theory to bound the posterior probability outside
Hellinger neighborhoods. We need to check that this
model satisfies two key conditions. Informally, the first



condition is that the prior probability placed on parame-
ters larger in absolute value than a boundBn, whereBn is
allowed to grow with the data, is asymptotically bounded
above by an exponential term exp(−nt), for some t > 0.
The second condition is that the prior probability placed
on KL neighborhoods of the ground truth density function
p0 is asymptotically bounded below by an exponential
term exp(−nν), for some ν > 0. The proof is in the
Appendix B.

Note that consistency of predictions does not imply con-
centration of the posterior in weight space, since radial
basis function networks, like other deep neural models,
are not identifiable.

7 INFERENCE

We infer the posterior p(θ | D) over the network param-
eters θ with Markov-Chain Monte Carlo (MCMC) and
model predictions for new observations and their associ-
ated uncertainties with the posterior predictive distribu-
tion:

p(y?|x?,D) =

∫
p(y?|x?,θ)p(θ|D)dθ.

The inference algorithm can be broken down into three
steps. Step 1 updates the network weight, center, and bias
parameters

(
{wk, ck}Kk=1, b

)
conditional on the network

width K and intensity function with Hamiltonian Monte-
Carlo (HMC) (Neal, 1996). Step 2 updates the network
width K conditional on the network parameters and in-
tensity function with birth and death Metropolis-Hastings
(MH) steps. Finally, Step 3 updates the Poisson process
intensity conditional on the other network parameters and
network width. In the case of a homogeneous intensity
with a Gamma prior, we use an MH step. In the case of
a inhomogeneous intensity defined by Equations 7 and 8
we follow the inference procedure of Adams et al. (2009)
for a sigmoidal Gaussian Cox process, treating the cur-
rent center parameters {ck} as the observed events. This
involves introducing three auxiliary variables: a collec-
tion of “thinned” center parameters {c̃m}, the number of
thinned center parameters M , and the latent GP evaluated
at the thinned center parameters {g̃m}. Step 3 requires
updating each of these auxiliary variables, along with
the latent GP values {gk} evaluated at the current center
parameters {ck}. For convenience we define gM+K as
vector concatenating {g̃m}Mm=1 and {gk}Kk=1 and cM+K

as the vector concatenating {c̃m}Mm=1 and {ck}Kk=1. We
also define L(θ) as the likelihood of the data given all
network parameters. We next describe these steps in more
detail assuming a sigmoidal Gaussian Cox process prior
on an inhomogeneous intensity λ(c), but the full details

of the inference procedure are available in the Appendix
C.

Step 1: Update network weights, bias, and centers.
The full conditional distribution of the weights, bias, and
centers can be written as:

p({wk}, b, {ck} |K, {cm}, {g̃m}, {g̃k})

∝ L(θ) exp

{
− 1

2σ2
b

b2
}

exp

{
− 1

2σ2
w

K∑
k=1

w2
k

}

|Σ|−1/2 exp

{
−1

2
gTM+KΣ−1gM+K

}
,

where Σ is the kernel matrix of the GP underlying the
intensity evaluated at all of the center parameters. We use
HMC, which requires tuning L leap-frog steps of size ε,
to propose updates from this distribution.

Step 2: Update network width K. We adapt the net-
work width with birth or death Metropolis-Hastings (MH)
steps chosen with equal probability. For a birth step, we
propose a weight w′ and a center c′ from their prior distri-
butions, and we propose a GP function value g′ (represent-
ing g(c′)) from the GP conditioned on the current function
values gM+K observed at cM+K . For the death step, we
propose to delete the k′th hidden unit by uniformly select-
ing among the existing hidden units. Therefore, we can
write the hidden unit birth and death proposal densities as
follows:

q(K → K + 1) ∝ N (w′; 0, σ2
w)

p(g′ | c′, cM+K ,gM+K)/µ(C)
q(K → K − 1) = 1/K

Note that since the GP has a zero mean function, we
propose c′ uniformly over µ(C), but for any fixed intensity
we propose from the density λ(c)/Λ. The acceptance
rates work out to:

abirth =
L(θ′)

L(θ)

λ∗σ(g′)µ(C)
K + 1

adeath =
L(θ′)

L(θ)

K

λ∗σ(gk′)µ(C)
.

Step 3: Update Poisson process intensity λ. We adopt
an inference procedure similar to (Adams et al., 2009)
with two crucial differences: the “events” {ck} (center
parameters in our case) are unobserved and the full con-
ditional of the function values gM+K includes the like-
lihood L(θ) of the data D, since the forward pass of the
network uses the posterior mean of g to evaluate the inten-
sity λ(c) = λ∗σ(g(c)). We proceed as follows: i) update
the number M of thinned centers using birth and death



−2

0

2

PoRB-Net
 [f(x)]
f(x)

GP B-RBFN BNN

−2

0

2

−1.0 −0.5 0.0 0.5 1.0
x

−2

0

2

−1.0 −0.5 0.0 0.5 1.0
x

−1.0 −0.5 0.0 0.5 1.0
x

−1.0 −0.5 0.0 0.5 1.0
x

Figure 4: PoRB-Net allows for easy specification of lengthscale and amplitude like a GP. We show prior samples
from PoRB-Net with a homogeneous intensity, a GP with RBF kernel, B-RBFN (Andrieu et al., 2001), and a BNN (Neal,
1996) with a Gaussian activation. Compared to the first row, the second row has lower lengthscale and similar amplitude,
while the third row has higher amplitude and similar lengthscale.

steps, analogous to updating the number of actual centers
K; ii) update the thinned center parameters {cm}Mm=1

using MH steps with perturbative proposals; iii) update
the GP function values gM+K using HMC.

8 RESULTS

Next we empirically demonstrate desirable properties of
PoRB-Net. In particular, PoRB-Net allows for (a) easy
specification of lengthscale and amplitude variance in-
formation (analogous to a GP), and (b) learning of an
input-dependent lengthscale. We report additional em-
pirical results on synthetic and real datasets in Appendix
D.

PoRB-Net allows for easy specification of stationary
lengthscale and signal variance. Figure 4 shows prior
function samples from different models (columns) with
different prior settings (rows). Compared to the top row,
the second row has a smaller overall lengthscale and the
bottom row has a higher overall variance. We plot 50 func-
tion samples (red lines) and the estimated variance based
on 10,000 function samples (black, dotted line). Like a
GP, the amplitude variance of PoRB-Net is constant over
the input space and does not depend on the lengthscale.
On the other hand, the model of Andrieu et al. (2001)
(B-RBFN), which effectively assumes a homogeneous

Poisson process prior on the center parameters but does
not rescale the basis functions based on the intensity, has
a variance that changes over the input space and does
depend on the lengthscale. For a standard BNN (last
column), the amplitude variance and lengthscale are con-
centrated near the origin and the variance increases as we
decrease the lengthscale (from 1st to 2nd row).

PoRB-Net can recover a known, input dependent
lengthscale. Figure 5 illustrates the capacity of PoRB-
Net to infer an input-dependent lengthscale. Here the true
function is a GP with a sinusoidal lengthscale (see kernel
in the Appendix D). The right panel shows the center pa-
rameter intensity, inferred from noisy (x, y) observations,
corresponds to the inverse of the true lengthscale.

PoRB-Nets exhibit competitive performance on syn-
thetic and real datasets. We compare the performance
of PoRB-Nets, GPs, and single-layer BNNs with Gaus-
sian activations, with the first two sets of models trained
with and without inferring the input dependence of the
lengthscale. For the GP models, to use a constant length-
scale we use a regular GP with an RBF kernel; to infer
an input dependent lengthscale we use the nonstationary
GP model of Heinonen et al. (2016), which we denote by
LGP.
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Figure 5: PoRB-Net is able to learn input-dependent
lengthscale information. The ground truth synthetic ex-
ample has been generated from a nonstationary GP with
a sinusoidal lengthscale function lsin(x).

At a high level, we see qualitative similarity between
PoRB-Nets and GPs that infer the lengthscale, and PoRB-
Nets and GPs that do not infer the lengthscale, but the
BNNs look different from the rest. This is due to the
nonstationarity of the prior, which has higher variability
near the origin. All models except the GP are inferred
using HMC (including the LGP).

We use four synthetic datasets — all drawn from GPs with
known lengthscale functions l(x) — and six real, nonsta-
tionary time series datasets – four from mimic (Johnson
et al., 2016), the CBOE volatility index over one year
starting in October 2018 (“finance”), and the motorcycle
dataset (Silverman, 1985). The datasets drawn using a si-
nusoidal lengthscale lsin(x) and an increasing lengthscale
(from left to right) linc(x) can be seen in Figures 5 and 6,
respectively. lconst(x) is a constant lengthscale, on which
the GP with a stationary, RBF kernel not surprisingly
performs best (with PoRB-Net coming in second).

To highlight differences in model behavior rather than
prior specification, we first identify the variance and
lengthscale parameters that optimize the log marginal
likelihood of the GP. We then match the overall variance
and lengthscale (as measured by the number of upcross-
ings mentioned in Section 5) of the BNN and PoRB-Net
to the GP by a grid search over the model parameters.
Note that the BNN will still have a different input depen-
dence of variance and upcrossings over the input space
(both concentrated near the origin). Since adjusting the
lengthscale of PoRB-Net adjusts the prior expected num-
ber of hidden units, and during inference they can further
adapt to the data, we train BNNs with 25, 50, and 100
units, roughly corresponding to the range of units used by
PoRB-Net.

There are two main takeaways from these results:

• Examining the posterior predictives in Figure 6 qual-
itatively, both PoRB-Net and the LGP adapt the local

Table 1: Test Log Likelihoods. For the BNN, we show
the best(worst) performance among models of size 25, 50,
and 100 units.

PoRB-
Net†

PoRB-
Net GP LGP BNN

sin* 0.77 0.82 0.73 0.81 0.79 (0.74)
inc* -0.40 0.00 -0.23 0.18 -0.15 (-0.28)

inc2* 0.66 0.75 0.54 0.18 0.68 (0.63)
const* 0.28 0.33 0.41 0.24 0.01 (-0.30)

mimic1 0.89 0.95 0.83 0.90 1.05 (0.91)
mimic2 0.53 0.60 0.56 0.54 0.47 (0.39)
mimic3 -0.63 -0.57 -0.67 -0.58 -0.59 (-0.65)
mimic4 -1.72 -1.53 -1.85 -1.44 -0.59 (-1.38)
finance -1.41 -0.52 -1.97 0.03 -0.73 (-2.63)
motor. 0.18 0.16 0.17 0.14 0.16 (0.12)

*synthetic dataset †infers homogeneous intensity

lengthscale to the smoothness of the data, though the
effect is more pronounced in the LGP. In contrast,
the BNN underestimates uncertainty near x ≈ .2
in the synthetic dataset (top row) and overestimates
uncertainty near x ≈ .8 in the real dataset (bottom
row).

• The test log likelihoods in Table 1 show PoRB-Net
exhibits strong performance across the datasets. In
contrast, the performance of the BNN varies greatly
by the number of hidden units. PoRB-Nets remove
this choice by averaging over different numbers
of units, fully taking advantage of the Bayesian
paradigm.

Test RMSEs, posterior predictives, and inferred intensities
for all datasets are available in the Appendix D. Note that
HMC is a gold standard for posterior inference; the fact
that the standard BNN lacks desirable properties under
HMC demonstrates that its failings come from the model
and not the inference.

9 CONCLUSION

This work presents a novel Bayesian prior for neural net-
works called PoRB-Net that allows for easy encoding and
inference of two basic functional properties: amplitude
variance and lengthscale. We provide a principled infer-
ence scheme and future work can address how it can be
scaled.

Under standard BNN formulations, we show that it
is impossible to get such properties. The essential
pieces to achieve these properties were: i) a center-scale
parametrization (instead of classical weight-bias), ii) an
automatic adaptation of the number of hidden units, and
iii) a rescaling of the radial basis functions based on their
concentration.

We focused on Gaussian activations because they have
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Figure 6: PoRB-Net posterior predictive captures non-stationary patterns in real scenarios, adapting the length-
scale locally as needed. Priors for all models have been matched to have about the same amplitude variance and
lengthscale. BNNs exhibit undesired uncertainty while PoRB-Nets and LGPs adapt the local uncertainty to the data.
Gray points used for training and red points used for testing.

a limited region of effect, unlike other popular activa-
tions like tanh or ReLU. Exploring how to get desirable
properties for those activations seems challenging, and
remains an area for future exploration. That said, we em-
phasize that RBFNs are commonly used in many practical
applications, as surveyed in (Dash et al., 2016).

Finally, all of our work was developed in the context of
single-layer networks. From a theoretical perspective this
is not an overly restrictive assumption, as single layer
networks are still universal function approximators (Park
and Sandberg, 1991). However, deep RBFNs, where only
the last layer has a radial basis function parameterization,
have received renewed interest (Zadeh et al., 2018), so
exploring deep PoRB-Nets is an interesting area of future
work.

Given the popularity of NNs and the need for uncertainty
quantification in them, understanding prior assumptions—
which will govern how we will quantify uncertainty—is
essential. If prior assumptions are not well understood and
not properly specified, the Bayesian framework makes
little sense: the posteriors that we find may not be ones
that we expect or want. Though we focus on RBFNs, our
work provides an important step toward specifying NN
priors with desired basic functional properties.
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