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Abstract

We address in this study the problem of

modeling weighted networks through gener-

alized stochastic block models. Stochastic

block models, and their extensions through

mixed-membership versions, are indeed pop-

ular methods for network analysis as they can

account for the underlying classes/communi-

ties structuring real-world networks and can

be used for different applications. Our goal

is to develop such models to solve the weight

prediction problem that consists in predicting

weights on links in weighted networks. To

do so, we introduce new mixed-membership

stochastic block models that can efficiently be

learned through a coupling of collapsed and

stochastic variational inference. These mod-

els, that represent the first weighted mixed-

membership stochastic block models to our

knowledge, can be deployed on large networks

comprising millions of edges. The experi-

ments, conducted on diverse real-world net-

works, illustrate the good behavior of these

new models.

1 Introduction

Link prediction in networks is a well-known problem

that has been addressed by many studies. If knowing

that a link relates two nodes in a network is important,

the intensity of each link plays a major role in many sit-

uations. For example, in epidemiology, the number of

contacts between two persons is an important factor to

accurately estimate the probability of contagion between

two persons. Similarly, to understand the population dy-

namics between two cities, it is not sufficient to know

that there is a motorway or an airline relating them, it is
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also necessary to know the number of vehicles or passen-

gers that transit between them. In the fields of economy

and finance, to estimate whether a company will be con-

trolled by another company which has recently acquired

part of its shares, it is important to know the actual num-

ber of shares acquired. In all these examples, the rela-

tions between the entities involved (persons, cities, com-

panies) can be modeled by weighted graphs, in which

the weight on each link represents the intensity of the

relationship between the nodes. Inferring the values of

the weights between nodes in such graphs is known as

the weight prediction problem. In this paper, we are in-

terested in the exploration and analysis of weighted net-

works through the discovery of their latent structure and

through the possibility to predict, from such structures,

edge weights.

If weights in weighted graphs can sometimes take both

positive and negative values, as in signed social net-

works for representing approval/disapproval, like/dislike

or trust/distrust, most weighted networks rely on posi-

tive integers. The prevalence of this type of networks

may be explained by the fact that many weighted net-

works are the result of the superposition, over time, of

atomic, binary interactions. In communication networks

for example, as in email networks, edges are weighted

according to the number of exchanges between nodes,

the atomic interaction being a single exchange. Simi-

larly, in co-authorship networks, edges are weighted ac-

cording to the number of collaborations between authors

[New01], while in text mining and natural language pro-

cessing applications word graphs are weighted on the ba-

sis of the number of times the words co-occur (in a sen-

tence, a paragraph or a document).

Two main approaches have been proposed to solve the

weight prediction problem in networks. In the first type

of approaches, one finds methods that assume that the

weight of a link is correlated with the similarity be-

tween the nodes of the link, this similarity being based

on neighboring nodes [ZMY+15, ZXZ16]. If the as-



sumption ”a node behaves like its neighbors” is used, to

different extent, in network studies, it is however not suf-

ficient to explain all the observed interactions between

nodes. Several researchers have thus adopted a second

type of approaches, based on generative models within

well-defined probabilistic frameworks. Such models aim

at making explicit how links, and their weights, are pro-

duced. Among such generative models, stochastic block

models and their extensions through mixed-membership

stochastic block models have received particular atten-

tion [KN11, ABFX09, KER08, FCX15] as they can ac-

count for the underlying classes that structure real-world

networks. Nevertheless, most models proposed so far

have been devoted to unweighted networks and, to our

knowledge, only two models in the stochastic block

model family have been proposed for weighted graphs:

The latent block structure model of [AJC14] and the

weighted stochastic block model of [Pei18]. These two

models however suffer from the same drawback as stan-

dard stochastic block models, namely the fact that a node

can belong to only one class, which is not realistic for

many networks and can be corrected through mixed-

membership block models.

We thus propose in this study:

1. New mixed-membership block models that can

solve the weight prediction problem on networks in

which weights are positive integers;

2. A scalable inference method, based on a combina-

tion of collapsed and stochastic variational infer-

ence, for deploying the above models on large net-

works;

3. An experimental illustration of the behavior of these

models on several real-world networks.

The remainder of the paper is organized as follows: Sec-

tion 2 describes related work; Section 3 then presents

the weighted mixed-membership stochastic block mod-

els we retained while Section 4 details its inference. Sec-

tion 5 illustrates the behavior of the proposed models

on several real-world networks. Finally, Section 6 con-

cludes the study.

2 Related work

Weighted versions of the stochastic block model have

been introduced firstly in [MRV10] and then in [AJC14]

who proposed a model referred to as WSBM. WSBM can

be seen as a special case, in which nodes are constrained

to belong to only one latent class, of the weighted mixed-

membership stochastic block model we introduce in this

paper, as this latter model can assign nodes to several

classes. More recently, an extended version of WSBM

has been presented in which different kernels can be used

to model different types of weights [Pei18]. An effi-

cient Markov Chain Monte Carlo (MCMC) method is

used for inference. If this type of models is interest-

ing, it nevertheless relies again on the assumption that a

node belongs to only one class, which may be inappropri-

ate for real world networks. Furthermore, unlike mixed-

membership stochastic block models, the lack of a hier-

archical prior structure does not allow one to rely on effi-

cient non-parametric extensions (hence the use of costly

model selection techniques for non-parametric versions).

Similar to the model we introduce here, count processes

with Poisson distributions and Gamma conjugate pri-

ors have been previously studied, notably by Zhou et

al. [ZC12, ZC15]. The relation of such processes

with Negative Binomial processes is well-known and

has been highlighted by these authors who applied these

processes for topic modeling with the Beta-Gamma-

Gamma-Poisson model (EPM) ([ZHDC12]) that relies

on MCMC inference. They also applied them for

overlapping community detection and link prediction

[Zho15]. The main difference between this model and

the one we introduce in the next section is that in the

former weights are distributed as Poisson variables that

correspond to sums of class-dependent latent factors

(Eq. 1 of [ZHDC12]) while, in the latter, weights are

distributed as a sum of Poisson variables weighted by

class-membership factors (Eq. 1 below).

3 Mixed-membership stochastic block

models and (un)weighted graphs

As usual, we consider here that a network is represented

by a graph G = (V,E) where V is the set of nodes such

that N = |V | and E the set of edges. We furthermore

consider the matrix Y = (yij)1≤i,j≤N such that yij = 0
if (i, j) /∈ E and yij ∈ Z>0 otherwise. When the net-

work is unweighted, yij ∈ {0, 1} and Y is the adjacency

matrix.

3.1 Weighted version of MMSB (WMMSB)

Mixed-membership stochastic block models extend

stochastic block models [ABFX09] by allowing nodes to

”belong” to several blocks (or classes) through a given

(usually Dirichlet) probability distribution. Prior to gen-

erate a link between two nodes, a particular class is se-

lected for each node. The link is then generated ac-

cording to a probability distribution F , sometimes re-

ferred to as the kernel distribution, that depends on the

selected classes. The generative process behind such

models can be summarized as: (a) For each node i, draw



θi ∼ Dir(α), where θi and α are K-dimensional vec-

tors, K denoting the number of classes considered; (b)

Generate two sets of latent class memberships, Z→ =
{zi→j ∼ Cat(θi), 1 ≤ i, j ≤ N} and Z← = {zi←j ∼
Cat(θj), 1 ≤ i, j ≤ N}, with categorical draws; (c) Gen-

erate or not a link between two nodes (i, j) according to

yij ∼ F (φzi→jzi←j
), where F is a distribution in the ex-

ponential family and φzi→jzi←j
a variable, usually drawn

from a conjugate distribution, that represents the rela-

tions between classes. A standard choice for F is the

Bernoulli distribution, φ being the conjugate Beta distri-

bution: yij ∼ Bern(φzi→jzi←j
), φkk′ ∼ Beta(λ0, λ1).

We refer to this model as the MMSB model.

A natural way to model weights that correspond to posi-

tive integers is to use Poisson distributions. Considering

a conjugate Gamma distribution for φ, we define a first

weighted extension of MMSB, which we will refer to as

WMMSB, through:

θi ∼ Dir(α), zi→j ∼ Cat(θi), zi←j ∼ Cat(θj),

yij ∼ Poi(φzi→jzi←j
), φkk′ ∼ Gamma(r,

1− p

p
),

where r and 1−p
p

are the shape and rate parameters of the

Gamma distribution. Note that both directed and undi-

rected graphs can be considered with the above formula-

tion, the matrix Φ = (φkk′)k,k′∈{1,..,K}2 being symmet-

ric for undirected graphs.

The Poisson-Gamma combination in WMMSB is in-

teresting as it directly leads to: yij |Z ∼ NB(r, p),
where NB denotes the negative binomial distribution.

This latter distribution allows one to represent overdis-

persed count data and has been used in different con-

texts. Lastly, by marginalizing over the variables zi→j

and zi←j , which take values in {1, · · · ,K}, one obtains:

yij |Θ,Φ ∼
∑

1≤k,k′≤K

θikθjk′Poi(φkk′). (1)

3.2 A Beta-Gamma augmentation (WMMSB-bg)

The generative process for WMMSB defined above as-

sumes that the parameters of the Poisson distributions

used to generate links are drawn from the same Gamma

distribution. Having a unique prior over these parame-

ters however limits the ability of the model to capture the

variance in the relations between the latent classes. Hi-

erarchical extensions can be used here to have a better

representation of the classes and the relations between

them through class-dependent shape and rate parameters

in the above Gamma distribution. We propose here to

model the class-dependent shape parameter with another

Gamma distribution and the class-dependent rate param-

eter with a Beta prior:

rkk′ ∼ Gamma(c0r0, 1/c0), pkk′ ∼ Beta(cǫ, c(1− ǫ)).

The variable yij is again distributed according to a nega-

tive binomial distribution, of the form:

yij |Z ∼ NB(rzi→jzi←j
, pzi→jzi←j

). (2)

As one can note, and contrary to WMMSB, the param-

eters of the negative binomial distribution depend this

time on the classes selected for each node, meaning that

classes now play a prominent role in the model. We will

refer to this model as WMMSB-bg.

The above extension exploits again the conjugacy of

the distributions considered and is reminiscent of the

Beta-Gamma-Gamma-Poisson model [ZHDC12] and

the Gamma-Negative Binomial process [ZC15]. How-

ever, as for most hierarchical Bayesian models, exact in-

ference is intractable and one must resort to approximate

inference. The next section describes the variational in-

ference scheme we have followed for that.

4 Inference

Variational Inference (VI) and Markov Chain Monte

Carlo (MCMC) are two popular methods for learning the

parameters of Bayesian models that (roughly speaking)

realize a trade-off between time complexity (in particu-

lar wrt the size of the training set), one of the main ad-

vantages of VI, and accuracy in approximating the poste-

rior distribution, one of the main advantages of MCMC.

We have chosen the former as we are interested in a ver-

sion of our model that scales to large datasets. Several

studies have tried to scale MCMC to large datasets, us-

ing either, as far as we know, divide-and-conquer or sub-

sampling approaches. But, as noted in [RB17], divide-

and-conquer approaches have yet to solve a recombi-

nation method (on MCMC estimates computed on sub-

sets of the data), while subsampling approaches only

guarantee control of the approximation of the true pos-

terior distribution in few situations that are rarely sat-

isfied in practice, thus losing the main advantage of

MCMC methods. Collapsed variational Bayes inference

presents the advantage, over standard variational infer-

ence, to rely on weaker assumptions and has proven

to be efficient on the latent Dirichlet allocation model

[TNW07]. Recent advances in stochastic variational

inference [HBWP13], notably based on well-designed

sampling techniques [GB13, KGBS13], have further-

more shown that it is possible to speed-up (collapsed)

variational inference with online updates based on mini-

batches. Coupling collapsed and stochastic variational

inference thus leads here to an efficient inference method

that can be used on large networks.



We first provide below the results obtained through col-

lapsed variational inference for all the above models.

A detailed derivation of these results is given in Ap-

pendix A. We then describe how stochastic variational

inference is used on these models.

4.1 Collapsed variational inference

In the remainder, we use the notation n−ij to indicate

that the superscript ij is excluded from the underlying

count variable, and n
.

to indicate a sum over the dot-

ted subscript index. Furthermore, Π will denote the

model parameters : Π = (Θ,Φ, Z) for MMSB and

WMMSB, where Θ is a K ×N matrix, Φ a K ×K ma-

trix and Z an N × N matrix, and Π = (Θ,Φ, Z,R, P )
for WMMSB-bg, where R and P are K × K matri-

ces. Lastly, Ω will denote the hyperparameters (Ω =
(α, λ0, λ1) for MMSB, Ω = (α, r, p) for WMMSB and

Ω = (α, c0, r0, c, ǫ) for WMMSB-bg).

From Jensen’s inequality, for any distribution q, one has:

log p(Y |Ω) ≥ Eq[log p(Y,Π |Ω)] + H[q(Π)], where H

denotes the entropy. The goal of variational inference

is then to find q that maximizes the right-hand side of

the above inequality, usually referred to as the Evidence

Lower BOund (ELBO). In its collapsed version, follow-

ing [TNW07], one weakens the mean-field assumption

made over the variational distribution, leading to, for

MMSB and WMMSB: q(Π) = q(θ,Φ|Z)q(Z). For all

(i, j), q(zi→j , zi←j |γij) follows a multinomial distribu-

tion with parameters γijkk′ , (k, k
′) ∈ {1, · · · ,K}2. The

evidence is then lower bounded by:

log p(Y |Ω) ≥ Eq[log p(Y, Z)] + H[q(Z)]
︸ ︷︷ ︸

LZ

.

The derivation of the collapsed variational updates is ob-

tained by maximizing the ELBO w.r.t γijkk′ :

∂LZ

∂γijkk′
=

∂

∂γijkk′

(
∑

Z−ij

K∑

k1=1

K∑

k2=1

q(Z−ij)γijk1k2

(log p(Y, Z−ij , zi→j = k1, zi←j = k2|Ω)+

log q(Z−ij , zi→j = k1, zi←j = k2))
)

= Eq(Z−ij)[p(Y, Z
−ij , zi→j = k, zi←j = k′|Ω))]

+H[Z−ij ]− log(γijkk′) + 1.

By equating this derivative to zero, one obtains the fol-

lowing update:

γijkk′ ∝

expEq(Y −ij)[logP (zi→j = k, zi←j = k′|Y −ij , Y −ij ,Ω)],

(3)

with P (zi→j = k, zi←j = k′|Y −ij , Z−ij ,Ω) being the

collapsed Gibbs update of WMMSB. They take the form:

P (zi→j = k, zi←j = k′|Y −ij , Z−ij ,Ω)

∝ (nθ−j

→ik + αk)(n
θ−i

←jk + αk′)

NB

(

yij ;n
Y −ij

kk′ + r,
p

p nΦ−ij

.kk′ + 1

)

,

with count statistics given by:

nθ
→ik =

∑

j

δ(zi→j = k),

nY
kk′ =

∑

ij

yijδ(zi→j = k, zi←j = k′),

nΦ
.kk′ =

∑

ij

δ(zi→j = k, zi←j = k′).

By applying a first order Taylor expansion on Eq. (3),

following [TNW07], one obtains:

γijkk′ ∝(Eq(Z−ij)[n
θ−j

→ik] + αk)(Eq(Z−ij)[n
θ−i

←jk] + αk′)

NB
(

yij ;Eq(Z−ij)[n
Y −ij

kk′ ] + r, p′
)

,

with:

p′ =
p

pEq(Z−ij)[n
Φ−ij

.kk′ ] + 1
.

Finally, using a Gaussian approximation (as in e.g.

[AWST09]), one obtains, setting Eq(Z−ij)[n
θ−j

→ik] =

Nθ
→ik, Eq(Z−ij)[n

θ−i

←jk] = Nθ
←jk′ , Eq(Z−ij)[n

Φ−ij

.kk′ ] =

NΦ
xkk′ and q(Z−ij)[n

Y −ij

kk′ ] = NY
kk′ :

Nθ
→ik =

∑

j,k′

γijkk′ , Nθ
←jk′ =

∑

i,k

γijkk′ ,

NΦ
xkk′ =

∑

ij:yij=x

γijkk′ , E =
∑

ij

yijγijkk′ . (4)

In this inference scheme, the parameters γ.... are the lo-

cal parameters while the count statistics N .
... represent

the sufficient statistics and global counts. Finally, the

model parameters can be recovered from their estimates

as follows:

θ̂ik =
Nθ
→ik +Nθ

←ik + αk

2N + α
.

,

φ̂kk′ =







NΦ

1kk′
+λ1

NΦ

.kk′
+λ

.

for MMSB,

p(NY
kk′

+r)

NΦ

.kk′
−p+1

for WMMSB.

4.1.1 Beta-Gamma augmentation

For WMMSB-bg, the derivation is slightly more com-

plex and is fully detailed in Appendix A. We just provide

here the main steps of this derivation.



We consider the following collapsed varia-

tional distribution for WMMSB-bg: q(Π) =
q(θ,Φ|Z,R, P )q(Z)q(R)q(P ), with R = (rkk′), P =
(pkk′), 1 ≤ k, k′ ≤ K. As before, q(zi→j , zi←j |γij) is

multinomial with parameter γij .

The same development as above applies for the param-

eters γijkk′ , given here also by Eq. 3. Furthermore, the

predictive link probability and φ̂kk′ now take the form:

p(yij |Y
−ij , Z−ij , zi→j = k, zi←j = k′,Ω) ∼

NB

(

yij ;N
Y −ij

kk′ + Eq[rkk′ ],
Eq[pkk′ ]

Eq[pkk′ ]NΦ−ij

.kk′ + 1

)

,

and:

φ̂kk′ =
Eq[pkk′ ](N

Y
kk′ + Eq[rkk′ ])

NΦ
.kk′ − Eq[pkk′ ] + 1

.

Setting q(P ) = p(P |Y, Z,Ω) where p is the true dis-

tribution and exploiting the conjugacy of the Beta and

the negative binomial distributions leads to a Beta dis-

tribution for pkk′ : pkk′ ∼ Beta(cǫ + NY
kk′ , c(1 − ǫ) +

NΦ
kk′Eq[rkk′ ]), so that:

Eq[pkk′ ] =
cǫ+NY

kk′

cǫ+NY
kk′ + c(1− ǫ) +NΦ

kk′Eq[rkk′ ]
.

Lastly, as for its true distribution, the variational distri-

bution for rkk′ is taken in the Gamma family: q(rkk′) ∼
Gamma(akk′ , bkk′). Even though akk′ can not be esti-

mated explicitly, one only needs to have access to the

expectation of rkk′ , that takes the following form:

Eq[rkk′ ] =
r0c0 +NY

kk′

c0 −NΦ
kk′ log(1− pkk′)

.

4.2 Stochastic variational inference with stratified

sampling

Stochastic variational inference can then be used to

optimize the collapsed ELBO through unbiased, yet

noisy, estimates of its natural gradient computed on sam-

pled data points. Different sampling strategies [GB13,

KGBS13] have been proposed for that purpose. Follow-

ing the study in [GB13], we rely here on stratified sam-

pling that allows one to control the number of links and

non-links used in the inference process. For each node

i, 1 ≤ i ≤ N , one first constructs a set, denoted si1, con-

taining all the nodes to which i is connected to as well

as M sets of equal size, denoted si,m0 , 1 ≤ m ≤ M ,

each containing a sample of the nodes to which i is not

connected to1. We will denote by Si
0 the set of all si,m0

1The sampling is here uniform over the nodes not connected
to i with replacement; sampling without replacement led to
poorer results in our experiments.

sets. The sets thus obtained, for all nodes, constitute

minibatches that can be sampled and used to update the

global counts in Eq. 4. The combined scheme is summa-

rized below:

1. Sample a node i uniformly from all nodes in the

graph; with probability 1
2 , either select si1 or any set

from Si
0 (in the latter case, the selection is uniform

over the sets in Si
0). We will denote by si the set

selected and by |si| its cardinality.

2. For each node j ∈ si, compute γijkk′ through Eq. 3
and intermediate global counts according to:

N̂
θ
→ik +=

1

|si|

1

Cg(si)

∑

k′

γijkk′ , N̂
θ
←jk′ =

1

Cg(si)

∑

k

γijkk′ ,

N̂
Φ

xkk′ +=
1

|si|

1

Cg(si)
γijkk′ , N̂

Y
kk′ +=

1

|si|

1

Cg(si)
γijkk′yij

where C is a constant that is 2 for undirected graphs

and 1 for directed graphs and g(si) = 1
Nm

if si ∈
Si
0 and 1

N
otherwise.

3. Update of the global counts (online version of
Eq. 4):

N
θ
→ik ← (1− ρ

i,θ
t )N

θ
→ik + ρ

i,θ
t N̂

θ
→ik,

N
θ
←jk′ ← (1− ρ

i,θ
t )N

θ
←jk′ + ρ

i,θ
t N̂

θ
←jk′ ,

N
Φ

xkk′ ← (1− ρ
Φ

t )N
Φ

xkk′ + ρ
Φ

t N̂
Φ

xkk′ ,

N
Y
kk′ ← (1− ρ

Y
t )N

Y
kk′ + ρ

Y
t N̂

Y
kk′

4. ρ∗t = 1
(τ+t)κ with κ ∈ (0.5, 1].

5. Go back to step 1 till convergence.

As one can note, the intermediate global counts corre-

spond to a restriction, on minibatches, of the complete

computation given in Eq. 4. The value of C is due to the

fact that in undirected networks, each edge can be seen

twice. The terms 1
|si|

and 1
Cg(si)

serve as a normalization

in the gradient-like updates of the global counts (as there

are more non-links than links, each non-link minibatch,

representing a smaller fraction of the non-links, leads to

more conservative updates). The ”gradient steps” ρ∗ are

discussed below (Robbins-Monro condition).

Lastly, to be able to efficiently compute such quantities

as NΦ−ij

used for the computation of the link probabil-

ity, one needs to store in memory, for each pair of nodes

(i, j), a K × K matrix, which is not feasible for large

networks. Thus, following [FBD+13], we replace here

NΦ−ij

by NΦ, which amounts to assume that the contri-

bution of each individual pair of nodes is negligible com-

pared to all other pairs, a reasonable assumption when

the network is large.



Table 1: Network datasets used in the experiments. Type A is for co-authorship, type C is for communication (e.g.

email exchange), type H is for hyperlinks, type L is for lexical network and I for interaction network (e.g money loan).

Datasets Nodes Edges Density Directed Diameter Weights type

×10
−3 mean std max

astro-ph 16,706 121,251 0.87 False 14 1.8 3.3 306 A

hep-th 8,361 15,751 0.45 False 1 5.2 16 1226 A

moreno names 1,773 9,131 5.81 False 8 1.8 3.0 100 L

fb uc 1,899 20,296 5.63 True 4 2.8 4.7 98 C

digg reply 30,398 85,247 0.09 True 11 2.0 0.2 26 C

slashdot 51,083 130,370 0.05 True 11 2.1 0.3 18 C

enron 87,273 320,154 0.04 True 15 3.4 12.4 3904 C

wiki-link 100,312 887,426 0.09 True 14 1.7 3.0 185 H

prosper-loans 89,269 3,330,225 0.42 True 2 2.0 0.2 16 I

4.2.1 Robbins-Monro condition

The convergence of stochastic variational inference is

guaranteed under the Robbin-Monro condition [RM51]

that imposes constraints on the gradient step,
∑

ρt = ∞
and

∑
ρ2t < ∞ which can be obtained with ρt =

1
(τ+t)κ

with κ ∈ (0.5, 1]. Thus, we maintain a gradient step

for each of the global counts ρΦ and ρY accounting re-

spectively for NΦ and NY . For Nθ, we maintain in-

dividual gradient steps ρθi for 1 ≤ i ≤ N , following

[MJG09]; this improved both convergence and predic-

tion performance. Furthermore, to increase the speed

of the inference, we update the global count NΦ and

NY only after a minibatch round. For the global count

Nθ, we update it after a burn-in period Tburnin such

that Tburnin ≤ |S|. This heuristic provides a trade-

off between updating the global statistics after each ob-

servation, which slows down the inference and may re-

sult in bad local optima, and updating them only after

minibatches that are potentially large (proportional to the

number of nodes).

5 Experimental validation

We evaluated the performance of the above models on

several real world weighted networks, both directed and

undirected. Theirs characteristics and properties are

summarized in Table 1 and detailed descriptions are

available in the online Koblenz network collection2. For

both astro-ph and hep-ph datasets, we used the cleaned

versions available in the graph-tool framework. In most

large scale, real-life networks, the data is zero-inflated.

However, predicting links (and weights) on mostly inac-

tive regions of a network is usually not interesting, and

researchers and practitioners have focused on predicting

what’s happening in active regions of the network. A

2http://konect.uni-koblenz.de/networks/

standard way to focus on active regions without making

many assumptions is to consider a test set, balanced be-

tween links and non-links, as done in [KGBS13]. Thus,

for all the datasets, we built a test set by extracting ran-

domly 20 percent of the edges of the network and about

the same amount of non-linked pairs of nodes. The re-

maining data constitutes the training set. We repeated

this sampling 10 times with different seeds to cross val-

idate our results. The average values (and standard de-

viations) computed on the ten sets are reported. All our

experiments were designed using a Python environment

that facilitate reproducible research 3.

In the remainder, for the MMSB, WMMSB and

WMMSB-bg models, the gradient step parameters τ and

κ were fixed respectively to 1024 and 0.5, the burn-in

period to 150; for stratified sampling, M was set to 50,

the size of si,m0 , 1 ≤ m ≤ M being equal to the num-

ber of nodes to which i is not connected to divided by

M . For MMSB, the hyperparameters λ0 and λ1 were

set to 0.1. For WMMSB, r and p were set to 1 and 1/2
respectively, whereas for WMMSB-bg the hyperparame-

ters were set to c0 = 10, r0 = 1, c = 100 and ǫ = 10−6.

For all three models, the latent-class hyperparameters

αk, 1 ≤ k ≤ K are set to 1
K

. The implementation of

these models is available online4. For deciding when to

stop the inference process, 10% of the training set used

serves as a validation set on which the log-likelihood is

computed after each minibatch iteration. When the in-

crease of the log-likelihood, averaged over the last 20

measures, is less than 0.001, the inference is stopped.

The log-likelihood of a given set of observations Dset is

given by:

log p(Dset) =
∑

i,j∈Dset

log p(yij |φ̂kk′)p(k|θ̂i)p(k
′|θ̂j).

3https://github.com/dtrckd/pymake
4https://github.com/dtrckd/ml



Table 2: Comparison of MMSB, WMMSB-bg, SBM and WSBM in terms of AUC-ROC when using 10% and 100%

of the training data. Results are averaged over 10 runs ± standard deviation. Best results are in bold.

10% 100%

MMSB WMMSB WMMSB-bg SBM WSBM MMSB WMMSB WMMSB-bg SBM WSBM

astro-ph 708 ± 3 650 ± 15 700 ± 30 594 ± 16 586 ± 9 716 ± 11 702 ± 23 710 ± 18 701 ± 6 705 ± 5

hep-th 617 ± 11 588 ± 21 579 ± 12 480 ± 9 482 ± 26 675 ± 8 598 ± 23 676 ± 8 779 ± 10 714 ± 7

moreno names 680 ± 72 642 ± 30 707 ± 29 571 ± 29 594 ± 30 738 ± 33 662 ± 18 739 ± 7 862 ± 7 859 ± 11

fb uc 732 ± 127 586 ± 34 827 ± 8 726 ± 20 788 ± 18 784 ± 140 683 ± 36 850 ± 20 902 ± 2 896 ± 2

digg reply 485 ± 178 682 ± 16 651 ± 127 551 ± 47 582 ± 35 482 ± 204 680 ± 37 744 ± 15 728 ± 26 717 ± 17

slashdot 519 ± 193 766 ± 41 820 ± 6 721 ± 66 732 ± 81 634 ± 181 757 ± 24 791 ± 11 830 ± 16 834 ± 12

enron 459 ± 289 864 ± 20 875 ± 14 870 ± 80 923 ± 14 529 ± 256 841 ± 15 835 ± 8 799 ± 20 853 ± 63

wiki-link 491 ± 242 757 ± 56 739 ± 73 848 ± 4 850 ± 4 432 ± 185 784 ± 09 785 ± 8 925 ± 2 915 ± 3

prosper-loans 548 ± 284 727 ± 41 752 ± 11 466 ± 57 455 ± 44 434 ± 274 722 ± 37 727 ± 30 500 ± 4 504 ± 6

Predicting links and predicting weights on links are two

different tasks, and there is no guarantee that a model

performing well on one task will perform well on the

other. Even though we focus in this study on the weight

prediction problem, we still want, for completeness rea-

sons, to illustrate the behavior of the different models on

the link prediction task.

5.1 Link prediction

In addition to the proposed mixed-membership models,

we consider here two standard link prediction models,

the stochastic block model, referred to as SBM, and its

weighted extension, referred to as WSBM. We use the

most recent version of these two models, namely the mi-

crocanonical stochastic block model implementation of

[Pei18], which relies on an efficient MCMC inference

method. In all models, the number of classes is set to

K = 10 (as illustrated below, the choice of the number

of latent classes, in between 10 and 50, does not have an

important impact on these models).

As usual, the missing link prediction task is evaluated

with the AUC-ROC score. For weighted models, we

simply predict here a link through the probability that

an edge exists between two unobserved nodes (i, j) be-

longing to the test set, namely:

p(yij ≥ 1|Θ̂, Φ̂) = 1−
∑

1≤k,k′≤K

θ̂ikθ̂jk′e
−φ̂kk′

Table 2 summarizes the results obtained with the afore-

mentioned models when using 10% and 100% of the

training data to fit the model. As one can note, when the

complete training set is used (100 %), SBM outperforms

WSBM on 5 datasets and is overall the best performing

model. This can be attributed to the fact that SBM di-

rectly aims at predicting links, unlike the weighted mod-

els, and does so via MCMC inference, which is known to

yield accurate estimate when there is sufficient data. The

mixed-membership family does not yield good results in

this setting (100%) and is only interesting, in particular

via WMMSB-bg, on four datasets (astro ph, digg reply,

enron, and prosper loans). Within this family, WMMSB-

bg outperforms the other models on seven datasets (hep-

th, moreno names, fb uc, digg reply, slashdot, wiki-link

and prosper loans). For this reason, we will not use

its simpler version, WMMSB, in the remainder of this

study. Lastly, there is however an important degrada-

tion for SBM models when only 10% of the training set

is used. Mixed-membership stochastic block models are

more stable in this case (except on enron and wiki-link),

indicating that the stochastic variational inference used

in these models is appropriate with relatively few data.

5.2 Weight prediction

For this task, in addition to the previous models, we con-

sider three other stochastic block models from [AJC14],

among which two are weighted. These models are based

on a generic variational inference scheme with several

kernels: a Bernoulli kernel for the model referred to as

SBM-ai, a Normal kernel for the model referred to as

WSBM-ai-n, and a Poisson kernel for the model referred

to as WSBM-ai-p. Lastly, we also consider the Edge Par-

tition Model (EPM) proposed in [Zho15] (see Section 2),

the inference of which relies on MCMC.

For both WMMSB-bg and EPM, we used the inferred

posterior distribution to estimate the missing weights by:

ŷij |Θ̂, Φ̂ =
∑

1≤k,k′≤K

θ̂ikθ̂jk′ φ̂kk′ (5)

Since the stochastic block models have been primarily

designed for solving the link prediction task, we do not

have a posterior distribution adapted for weight predic-

tion. Therefore, we used an estimation of the average

weight value in each interaction based on the observed

data. More precisely, let Nk denote the number of nodes

assigned to class k by the model in the training set. The

prediction of the weight on the link between two nodes
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A Derivation of the collapsed variational

updates for WMMSB-bg

In the WMMSB-bg model, the collapsed variational dis-

tribution takes the form:

q(Π) = q(Θ,Φ|Z,R, P )q(Z)q(R)q(P )

The variational distribution for rkk′ is taken in the

Gamma family: q(rkk′) = Gamma(akk′ , bkk′) for 1 ≤
k, k′ ≤ K. The collapsed ELBO can thus be rewritten

as:

log p(Y ) ≥ LZ,R,P ,

with:

LZ,R,P = Eq[log p(Y, Z,R, P |Ω)] + H[q(Z)]

+ H[q(R)] + H[q(P )]

= Eq[log p(Y, Z)] + H[q(Z)]

+ Eq[log p(R|Y, Z, P )] + H[q(R)]

+ Eq[log p(P |Y, Z)] + H[q(P )].

Optimizing γijkk′ In the Beta-Gamma augmentation,

the parameters p and r are marginalized in the update

given by:

γijkk′ ∝

e
E

q(Z−ij)[logEq(r
kk′

)[Eq(p
kk′

)[P (zi→j=k,zi←j=k′|Y −ij ,Z−ij ,Ω)]]]

By using a first order Taylor expansion, one obtains:

γijkk′ ∝ (NΘ−j

→ik + αk)(N
Θ−i

←jk′ + αk′)

NB
(

yij ;N
Y −ij

kk′ + Eq[rkk′ ], p
′
)

,

with:

p′ =
Eq[pkk′ ]

Eq[pkk′ ]NΦ−ij

.kk′ + 1
.

Optimizing pkk′ In oder to maximize the collapsed

ELBO w.r.t pkk′ , one can let q(pkk′) = p(pkk′ |Y, Z) =
Eq(rkk′)[p(pkk′ |Y

(kk′), Z(kk′), rkk′)]. As the negative

binomial and Beta distributions are conjugate, a closed-

form expression can be obtained:

p(pkk′ |Y
(kk′), Z(kk′), rkk′) ∝ p(Y (kk′)|Z(kk′),rkk′p(rkk′)

∝ (1− pkk′)
rkk′N

Φ
kk′p

NY
kk′

kk′ pcǫ−1kk′ (1− pkk′)
c(1−ǫ)−1

∝ p
cǫ+NY

kk′
−1

kk′ (1− pkk′)
c(1−ǫ)+NΦ

kk′
rkk′−1

= Beta(cǫ+NY
kk′ , c(1− ǫ) +NΦ

kk′rkk′).

Finally, by resorting again to a first order Taylor expan-

sion, one obtains:

pkk′ ∼ Beta(cǫ+NY
kk′ , c(1− ǫ) +NΦ

kk′Eq[rkk′ ]),

so that:

Eq[pkk′ ] =
cǫ+NY

kk′

cǫ+NY
kk′ + c(1− ǫ) +NΦ

kk′Eq[rkk′ ]
.

Optimizing rkk′ To isolate the contribution, in the col-

lapsed ELBO, that depends on rkk′ (through akk′ and

bkk′ ), we only consider the links that have been gen-

erated within the classes k, k′, denoted by Y (kk′). As

yij ∼ NB(rkk′ , pkk′) if i is in class k and j in class k′,

one has:

L[rkk′ ]
=Eq(rkk′ )

[log p(rkk′ |Y
(kk′), Z(kk′), pkk′)]

+ H[q(rkk′)].

By applying Bayes rules and dropping the normalizing

term that does not depend on rkk′ , one gets:

L[rkk′ ]
= Eq(rkk′ )

[log
(

p(Y (kk′)|Z(kk′)
, rkk′ , pkk′)p(rkk′ ])

)

]

+ H[q(rkk′)]

= Eq(rkk′ )
[log





∏

ij∈Y (kk′)

(

rkk′ + yij − 1

yij

)

(1− pkk′)
rkk′ p

yij
k p(rkk′)

)

] + H[q(rkk′)]

= Eq(rkk′ )
[log

(

(1− pkk′)
rkk′N

Φ
kk′ p

NY
kk′

kk′
p(rkk′)

∏

ij∈Y (kk′)

Γ(rkk′ + yij)

Γ(rkk′)Γ(yij + 1)



] + H[q(rkk′)].

If yij = 0, then
Γ(rkk′+yij)

Γ(rkk′ )Γ(yij+1) = 1, whereas if yij 6= 0,

then
Γ(rkk′+yij)

Γ(rkk′ )Γ(yij+1) = 1
B(rkk′ ,yij)yij

. Furthermore, in

this latter case:

B(rkk′ , yij) =

∫ 1

0

trkk′−1(1− t)yij−1dt ≤
1

rk
,

so that:

log
∏

ij∈Y (kk′)

Γ(rkk′ + yij)

Γ(rkk′)Γ(yij + 1)
≥ NY

kk′ log(rkk′) + cst,

with NY
kk′ =

∑

ij∈Y (kk′) yij .

Furthermore, from the model definitions, one has:

log p(rkk′) = (r0c0 − 1) log(rkk′) − rkk′c0 + cst and




