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A DERIVING THE MAXIMUM
LIKELIHOOD ESTIMATES

In our model, we assume that the data is generated from
the following linear structural equation model:

U := εU

Gj := εGj

X :=
∑
j

γjGj + κXU + εX

Y :=
∑
j

αjGj + κY U + βX + εY

. (1)

In order to avoid any scaling issues, we first divide each
structural equation in (1) by the scale of the noise term.
We then define priors on the scale-free interactions. The
scaled structural parameters are

γ̃j = σGj
σ−1
X γj ; α̃j = σGj

σ−1
Y αj ;

β̃ = σXσ
−1
Y β; κ̃X = σ−1

X κX ; κ̃Y = σ−1
Y κY .

We assume that the data consists of N i.i.d. observations
D = (Gi, Xi, Yi)1≤i≤N . The conditional Gaussian ob-
served data likelihood reads

L
([

X
Y

]∣∣∣∣G) = (4π2|Σ|)−N
2 exp

{
−N

2
tr(Σ−1S)

}
,

(2)
with

S =
1

N

N∑
i=1

{[
Xi

Yi

]
− µ(Gi)

}{[
Xi

Yi

]
− µ(Gi)

}ᵀ

and

µ(G) =
[
γ βγ +α

]ᵀ
G =

[
γ Γ

]ᵀ
G.

The maximum of the conditional likelihood function oc-
curs at S = Σ. Our model has 2J + 5 (scaled) param-
eters, Θ̃ = (γ̃, α̃, β̃, log σX , log σY , κ̃X , κ̃Y ), which is

more than the number of independent constraints (2J+3)
imposed by maximizing the likelihood. This makes the
problem of finding the maximum likelihood estimate un-
determined, but if we fix the values of C̃ = (κ̃X , κ̃Y ),
we can analytically derive the other parameters (B̃) such
that the likelihood is maximized.

We have as input sufficient statistics the first and second-
order empirical (raw) moments of the data:

G =
1

N

N∑
i=1

Gi → E [G] ;

X =
1

N

N∑
i=1

Xi → E [X] ;

Y =
1

N

N∑
i=1

Yi → E [Y ] ;

GGᵀ =
1

N

N∑
i=1

GiG
ᵀ
i → E [GGᵀ] ;

GX =
1

N

N∑
i=1

GiXi → E [GX] ;

GY =
1

N

N∑
i=1

GiYi → E [GY ] ;

X2 =
1

N

N∑
i=1

X2
i → E

[
X2
]

;

Y 2 =
1

N

N∑
i=1

Y 2
i → E

[
Y 2
]

;

XY =
1

N

N∑
i=1

XiYi → E [XY ] .

The maximum likelihood estimator here coincides with
the method of moments estimator, so we will derive the



ML estimates using moment matching, which is straight-
forward. The conditional moments relate to the parame-
ters as follows:

E [X|G] = γᵀG

E [Y |G] = ΓᵀG

Var [X|G] = σ2
X + κ2

X

Cov [X,Y |G] = β(σ2
X + κ2

X) + κXκY

Var [Y |G] = σ2
Y + β2σ2

X + (κY + βκX)2.

We now relate the previous statements to the uncondi-
tional moments:

E [GX] = E [GE [X|G]] = E [GGᵀ]γ

E [GY ] = E [GE [Y |G]] = E [GGᵀ] Γ

E
[
X2
]

= γᵀE [GGᵀ]γ + σ2
X + κ2

X

E [XY ] = γᵀE [GGᵀ] Γ + β(σ2
X + κ2

X) + κXκY

E
[
Y 2
]

= ΓᵀE [GGᵀ] Γ + σ2
Y + β2σ2

X + (κY + βκX)2.

We therefore obtain the constraints

γ = (GGᵀ)−1GX

βγ +α = (GGᵀ)−1GY

σ2
X + κ2

X = V̂ar [X|G]

= X2 −XGᵀ(GGᵀ)−1GX

β(σ2
X + κ2

X) + κXκY = Ĉov [X,Y |G]

= XY −XGᵀ(GGᵀ)−1GY

σ2
Y + β2σ2

X + (κY + βκX)2 = V̂ar [Y |G]

= Y 2 − YGᵀ(GGᵀ)−1GY .

The next step is to express the above constraints in terms
of the scaled parameters:

Var [G] γ̃σ−1
X = (GGᵀ)−1GX

Var [G] (β̃γ̃ + α̃)σ−1
Y = (GGᵀ)−1GY

σ2
X(1 + κ̃2

X) = V̂ar [X|G]

= X2 −XGᵀ(GGᵀ)−1GX

σXσY
[
β̃(1 + κ̃2

X) + κ̃X κ̃Y
]

= Ĉov [X,Y |G]

= XY −XGᵀ(GGᵀ)−1GY

σ2
Y

[
1 + β̃2 + (κ̃Y + β̃κ̃X)2

]
= V̂ar [Y |G]

= Y 2 − YGᵀ(GGᵀ)−1GY .

From the above constraints, given fixed values for κ̃X
and κ̃Y , we obtain the following (scaled) parameter val-
ues that maximize the likelihood in (2):

(σML
X )2 =

V̂ar [X|G]

1 + κ̃2
X

(σML
Y )2 =

(
V̂ar [Y |G]− (Ĉov [X,Y |G])2

V̂ar [X|G]

)
1 + κ̃2

X

1 + κ̃2
X + κ̃2

Y

β̃ML =
Ĉov [X,Y |G] (σML

X σML
Y )−1 − κ̃X κ̃Y

1 + κ̃2
X

γ̃ML =

√
V̂ar [G](Ê [GGᵀ])−1Ê [GX] (σML

X )−1

α̃ML =

√
V̂ar [G](Ê [GGᵀ])−1Ê [GY ] (σML

Y )−1 − β̃MLγ̃ML

.

(3)

B USING SUMMARY STATISTICS AS
INPUT

To run MASSIVE, we must provide the first and second-
order moments of the observed data Z = (G, X, Y ) as
input to plug into the data likelihood from Equation (2).
If we have access to the whole data set, then the mo-
ments can immediately be derived. Much more often,
however, individual-level data is unavailable and instead
we have to rely on published GWAS results, which typi-
cally come in the form of regression coefficients together
with their standard errors. In this section we show how
the first and second-order moments can be derived from
this summary data, thereby making MASSIVE applicable
on a much broader set of data sources.

To obtain all the necessary input sufficient statistics, we
require the following summary data:

• p̂j : the effect allele frequency (EAF) of Gj

• m: the number of allele copies (almost always equal
to two, since humans are diploid organisms)

• γ̂j , σ̂γ̂j , Nγ̂j : for the gene-exposure associations,
we require the coefficient obtained by regressing X
on Gj , its standard error and the sample size

• Γ̂j , σ̂Γ̂j
, NΓ̂j

: for the gene-outcome associations,
we require the coefficient obtained by regressing Y
on Gj , its standard error and the sample size

• β̂: the coefficient obtained by regressing X on Y
(observational exposure-outcome association)

Summary data on gene-exposure and gene-outcome as-
sociations from GWAS is widely available, so we can
typically get estimates for γ̂j , Γ̂j together with the asso-
ciated standard errors and sample sizes. The effect allele
frequency p̂j is usually also reported. In addition, we re-
quire a measure of the association between the exposure



and the outcome (β̂) to derive an estimate of Cov [X,Y ].
This estimate can be obtained from observational studies
for determining potential risk factors for the outcome.

To estimate the second-order moments, we employ the
following well-known approximations from simple lin-
ear regression:

γ̂j ≈
Cov [Gj , X]

Var [Gj ]

Γ̂j ≈
Cov [Gj , Y ]

Var [Gj ]

β̂ ≈ Cov [X,Y ]

Var [X]

σ̂2
γ̂j ≈

1

Nγ

(
Var [X]

Var [Gj ]
− γ̂2

)
σ̂2

Γ̂j
≈ 1

NΓ

(
Var [Y ]

Var [Gj ]
− Γ̂2

)
.

Note that these approximations also apply in a multivari-
ate setting when the regressors are independent. More-
over, to compute the expected values and variances for
the genetic variants, we assume a binomial distribution,
so we plug in the EAF as the estimated success proba-
bility and then use the appropriate formulas. We use all
these approximations to finally derive the following esti-
mates for the moments from summary statistics:

E [Gj ] ≈ m · p̂j (= Ê [Gj ])

E [X] ≈
∑
j

Ê [Gj ] · γ̂j

E [Y ] ≈
∑
j

Ê [Gj ] · Γ̂j

Var [Gj ] ≈ m · p̂j · (1− p̂j) (= V̂ar [Gj ])

Cov [Gj , X] ≈ V̂ar [Gj ] · γ̂j

Cov [Gj , Y ] ≈ V̂ar [Gj ] · Γ̂j

Var [X] ≈ V̂ar [Gj ] · (γ̂2
j +Nγ̂j · σ̂

2
γ̂j ) (= V̂ar [X])

Var [Y ] ≈ V̂ar [Gj ] · (Γ̂2
j +NΓ̂j

· σ̂2
Γ̂j

)

Cov [X,Y ] ≈ V̂ar [X] · β̂

.

(4)
When we have information on multiple genetic variants,
we obtain multiple estimates of Var [X] and Var [Y ]
in (4), in which case we take the median over the esti-
mates. Our approach also requires specifying a sample
size. Since the summary statistics are likely to be com-
puted from different samples, we conservatively choose
the minimum of their sizes as input to MASSIVE in or-
der not to overestimate the precision of the data. If the
sample size for the exposure-outcome association mea-
sure is also available, we take it into consideration when
calculating the minimum of the sample sizes.

C SMART INITIALIZATION
PROCEDURE FOR THE
POSTERIOR OPTIMIZATION

We propose to start the search for posterior local optima
from the bivariate maximum likelihood manifold. Since
we are looking for sparse parameter solutions, we also
start from points on the manifold that exhibit some de-
gree of sparsity.

The first starting point corresponds to the no confounding
sparse solution, where we fix κ̃X = κ̃Y = 0. The other
parameters can be derived using (3):

(σML
X )2 = V̂ar [X|G]

(σML
Y )2 = V̂ar [Y |G]− (Ĉov [X,Y |G])2

V̂ar [X|G]

β̃ML = Ĉov [X,Y |G] (σML
X σML

Y )−1

γ̃ML = V̂ar [G] (Ê [GGᵀ])−1Ê [GX] (σML
X )−1

α̃ML = V̂ar [G] (Ê [GGᵀ])−1Ê [GY ] (σML
Y )−1 − β̃MLγ̃ML.

The second starting point corresponds to the no causal
effect solution, where we fix β̃ = 0. By solving the equa-
tion system in (3) with β̃ = 0, we obtain the following
constraint:

κ̃X κ̃Y =
Ĉov [X,Y |G]

1− Ĉov [X,Y |G]
.

We have one degree of freedom left for choosing κ̃X and
κ̃Y . We propose to additionally set |κ̃X | = |κ̃Y | and
assume κ̃X > 0. Finally, we obtain:

κ̃ML
X =

√√√√∣∣∣∣∣ Ĉov [X,Y |G]

1− Ĉov [X,Y |G]

∣∣∣∣∣
κ̃ML
Y =

√√√√∣∣∣∣∣ Ĉov [X,Y |G]

1− Ĉov [X,Y |G]

∣∣∣∣∣ · sign

{
Ĉov [X,Y |G]

1− Ĉov [X,Y |G]

}
.

The rest of the parameters can be derived given (κ̃X , κ̃Y )
from (3).

The third starting point corresponds to minimizing the
pleiotropic effects sum of squares. If we consider the
constraint (at the maximum likelihood estimate):

α = (GGᵀ)−1GY −β(GGᵀ)−1GX = rY |G−βrX|G,

where rX|G and rY |G are the coefficients obtained by
regressingG on X and Y , respectively,

β∗ = arg min

J∑
j=1

α2
j = arg min

(
r
Y |G
j − βrX|Gj

)2

.



The solution to this minimization problem is:

β∗ =
1

J

∑J
j=1 r

X|G
j r

Y |G
j∑J

j=1 r
X|G
j r

X|G
j

.

For independent instruments, the right-hand side ratios
above corresponds to the instrumental variable estimates.
By solving the equation system in (3) with β = β∗, we
obtain the following constraint:

κ̃X κ̃Y =
C

1− C
,

where

C = Ĉov [X,Y |G]−

−
β∗V̂ar [X|G]√

V̂ar [X|G] (V̂ar [Y |G] + (β∗)2V̂ar [X|G]− 2β∗Ĉov [X,Y |G])

.

We have one degree of freedom left for choosing κ̃X and
κ̃Y . We propose to additionally set |κ̃X | = |κ̃Y | and
assume κ̃X > 0. Finally, we obtain:

κ̃ML
X =

√∣∣∣∣ C

1− C

∣∣∣∣
κ̃ML
Y =

√∣∣∣∣ C

1− C

∣∣∣∣ · sign

{
C

1− C

}
.

D DETERMINING THE PRIOR
HYPERPARAMETERS
EMPIRICALLY

We base our choice of prior hyperparameters on how
likely it is for the observed genetic associations to have
come from the prior. We start by choosing a reasonable
hyperparameter for the ‘slab’ component (σslab). Since
instrument candidates are chosen based on the robustness
of their association with the exposure X , we can use the
size of these associations as a measure of the effect size
of relevant effects, i.e., those corresponding to the ‘slab’
component. In our framework, this translates to the as-
sumption that all the instrument strengths γ̃j arise from
the ‘slab’ distribution, and will therefore give a good in-
dication of the expected effect size for relevant parame-
ters. Consequently, we want to find the hyperparameter
value that maximizes the (log-)likelihood of the genetic
associations coming from N (0, σ2

slab):

σ∗slab = arg max
σslab

J∑
j=1

[
−1

2
log(2πσ2

slab)−
γ̃2
j

2σ2
slab

]
. (5)

Maximizing the above log-likelihood is straightforward
if we know the instrument strengths γ̃j on the right-hand
side from data. Instead, we will plug in an empirical
estimate of the scaled instrument strengths. We use the
fact that the unscaled maximum likelihood estimate for
the instrument strengths γj is identifiable as

γML = (GGᵀ)−1GX.

For the scaled parameters we then have:

(γ̃ML
j )2 = σ2

Gj
(γML
j )2(σML

X )−2 =
σ2
Gj

(γML
j )2(1 + κ̃2

X)

Var [X|G]
.

These values are undetermined because we de not know
the confounding coefficient κ̃X . We propose to compute
an average estimate by integrating out κ̃X , which we
have assumed follows a N (0, 10) distribution a-priori.
We average over all possible values of κ̃X to get

E
[
(γ̃ML
j )2

]
=
σ2
Gj

(γML
j )2

Var [X|G]

∫ ∞
−∞

(1 + κ̃2
X) N (κ̃X ; 0, 10) dκ̃X

=
σ2
Gj

(γML
j )2

Var [X|G]
· 101

!
= 101D2

j .
(6)

We plug in the derived estimate into (5) to get

σ∗slab = arg max
σslab

J∑
j=1

[
− log σslab −

101D2
j

2σ2
slab

]
.

From this we finally obtain our first empirically deter-
mined hyperparameter

(σ∗slab)2 =
101

J

J∑
j=1

D2
j =

101

J

J∑
j=1

σ2
Gj

(γML
j )2

Var [X|G]
. (7)

We now derive a reasonable hyperparameter for the
‘spike’ component (σspike), relative to the previously de-
termined σ∗slab. The potential gain (or penalty) in moving
γ̃min from the slab to the spike component in the prior is

G(σspike, σslab) = logN (γ̃min; 0, σspike)−logN (γ̃min; 0, σslab).

The penalty in the likelihood (approximated by a normal
distribution) due to the parameter shrinkage from its cur-
rent value to zero is

P (σslab) = N ·[logN (0; γ̃min, σslab)−logN (γ̃min; γ̃min, σslab)].

The empirical argument we employ is to choose σspike so
small such that changing the component of the minimal



instrument strength (γ̃min = minj γ̃j) from slab to spike
would incur a greater penalty than the one induced on
the log-likelihood by shrinking that parameter to zero.
This way, fitting any γ̃j into the ‘spike’ component is
strongly discouraged, in line with our assumption that
these are relevant values coming from the ‘slab’ com-
ponent. Consequently, as our second empirically deter-
mined hyperparameter, we choose the value σ∗spike solv-
ing the equation G(σspike, σ

∗
slab) = P (σ∗slab), where σ∗slab

is given in (7) and our estimate of γ̃min is the smallest
of the J expected value estimates derived in (6). It is
straightforward to show that the constraint boils down to

(N + 1− C)

(
101 minj D

2
j

σ∗slab

)2

+ logC = 0,

where C =
(
σ∗

slab
σspike

)2

. It can be easily shown that

the above equation in C has a unique solution greater
than one (C > 1 by definition because σspike < σslab).
Via our empirical argument, we have thus arrived at
an easily computable, unique pair of hyperparameters
(σ∗slab, σ

∗
spike). We emphasize that this choice of param-

eters is independent of the true causal effect and relies
solely on the estimated values of the instrument strengths
to calibrate the appropriate size of relevant (‘slab’) and
irrelevant (‘spike’) effects.


