
SUPPLEMENTARY MATERIAL

PRELIMINARIES

We now provide some terminology and notations related
to polynomials and polynomial optimization using sum-
of-squares. An n-variate real polynomial P is a sum
of finitely many terms of the form cαx

α1
1 · · ·xαnn where

α = (α1, . . . , αn) ∈ Nn and cα ∈ R. The monomial
xα1
1 · · ·xαnn is also denoted by xα, and the polynomial P

can be written as P (x) =
∑
α∈Nn cαx

α where cα 6= 0
only for finitely many α. The degree of a monomial xα

is |α| := α1+ . . .+αn, and the degree of a polynomial is
the maximum degree of all its monomials with non-zero
coefficients.

A n-variate polynomial P =
∑
α cαx

α with degree ≤
d can be associated with its coefficient vector (cα) as a
point in Rsn(d), where sn(d) :=

(
n+d
d

)
= O(nd) (which

can be seen by counting the monomials xα with α ∈ Nn
and |α| = α1 + . . .+ αn ≤ d).

A set K ⊆ Rn is said to be a (basic closed)
semi-algebraic set if there exist n-variate polynomials
g1, . . . , gm such that

K = {x ∈ Rn : gi(x) ≥ 0 for all i ∈ [m]} .

SUM-OF-SQUARES RELAXATIONS

A polynomial P is said to be a sum-of-squares (s.o.s)
if there exist some m ≥ 1 and n-variate polynomi-
als G1, . . . , Gm such that P = G2

1 + . . . + G2
m. The

set of polynomials G := {G1, . . . , Gm} is said to be
a sum-of-squares decomposition of P . The degree of
the s.o.s decomposition is defined to be deg(G) :=
maxi∈[m] deg(Gi). A polynomial P is said to be a
degree-d sum-of-squares if it has a s.o.s decomposition
of degree ≤ d. Clearly, a polynomial which is degree d
s.o.s has degree ≤ 2d, and the degree of a s.o.s repre-
sentation for a degree ≤ 2d polynomial (if it exists) is at
most d.

It is easy to see that every s.o.s polynomial is non-
negative or positive semi-definite (p.s.d), but the con-
verse (every p.s.d polynomial is s.o.s) is not true except
in very specific cases (univariate polynomials, quadrat-
ics, bivariate quartics), as proved by Hilbert (Hilbert
1888).

However, we can construct a sound, but incomplete, ver-
ifier for the non-negativity (p.s.d-ness) of a given poly-
nomial by checking whether the polynomial has degree-
d sum-of-squares decomposition (for appropriately large
d). Shor (Shor 1987) showed that the question of whether
a given polynomial f has a degree-d sum-of-squares de-
composition is equivalent to the feasibility of a semidef-

inite program (SDP) with O(n2d) variables and O(nd)
constraints. For constant d, such an SDP (which we
may call the degree-d s.o.s relaxation) can be solved in
poly(n) time.

Let [x]d denote the sn(d)-length vector of all n-variate
monomials with degree ≤ d, according to some mono-
mial ordering. Say,

[x]d := (1 x1 · · · xn x21 x1x2 · · · x1xn x2n · · · xd1 · · · xdn).

Let f be a n-variate real polynomial with deg(f) ≤ 2d.
That is,

f =
∑
α

|α|≤2d

cαx
α = c>[x]2d for some c ∈ Rsn(2d).

Theorem 1 ((Shor 1987)). f is degree-d s.o.s if and only
if there exists a symmetric positive semidefinite matrix
Q ∈ Rsn(d)×sn(d) such that f = [x]>d Q[x]d, coefficient-
wise. That is, cα =

∑
β+γ=αQβ,γ for all α such that

xα ∈ [x]2d, and β, γ such that xβ , xγ ∈ [x]d.

To perform (unconstrained) polynomial optimization —
i.e. finding the global minimum f∗ := infx∈Rn f(x)
of a given polynomial function f — using sum-of-
squares, Shor (Shor 1987) formulated a sequence of
sum-of-squares relaxation SDPs (which have increasing
size/complexity as the degree d increases). The degree-d
SDP finds f (d)sos := sup γ, s.t. f − γ is a degree-d s.o.s
(which implies that γ is a lower bound for f ).

max
Z
−A(0) ◦ Z, subject to

A(α) ◦ Z = cα (where A(α)
β,γ = 1 if β + γ = α and 0 othewise.)

(for all α 6= 0 ∈ Nnd )

Z � 0, Z ∈ Ssn(d)(R)

The dual of the above SDP is

min
y

c>y, subject to∑
α

yα ·A(α) � 0, y0 = 1, y ∈ Rsn(2d)

In the above SDP, Z may be interpreted as Z ≡ Q− γ ·
E11, where Q ∈ Ssn(d)(R) is a symmetric p.s.d matrix
such that [x]>d Q[x]d = f (as in Theorem 1), and E11

denotes the elementary matrix with a 1 in the (first row,
first column) and zeros elsewhere.

This implies, of course, that the objective is−A(0)◦Z =
−Z0,0 = γ − c0; maximizing it is equivalent to maxi-
mizing γ, and the s.o.s lower bound f (d)sos := γ may be
recovered as γ = c0 − Z0,0.



This hierarchy of SDPs gives a sequence of increasing
lower bounds f (1)sos ≤ f

(2)
sos ≤ f

(3)
sos ≤ . . . for f , where we

define f (d)sos := −∞ if the degree-d SDP is infeasible. It
is also possible in some cases (with s.o.s relaxations of
sufficiently high degree) to extract a certificate x∗ for the
lower bound (i.e. an x∗ ∈ Rn such that f(x∗) = f

(d)
sos ).

Clearly, the existence of such a certificate implies that
the sum-of-squares hierarchy has reached the actual opti-
mum, i.e. f (d)sos = f∗. However, this will not occur for all
polynomials (and hence the s.o.s-based non-negativity
verifier will always be incomplete). In the unconstrained
minimization case, we only need to check s.o.s relax-
ations of degree ≤ 2d. But such a degree upper-bound
is not known for the constrained case, which is described
below.

Finally, it was shown by Lasserre (Lasserre 2001) and
Parrilo (Parrilo 2000) independently that it is possible to
lower-bound a polynomial optimization problem over a
basic closed semi-algebraic set K ⊆ Rn by using semi-
definite relaxations — a (basic closed) semi-algebraic set
K ⊆ Rn is the intersection of the solution sets of finitely
many non-strict inequalities of real polynomials. This is
done by applying results from real algebraic geometry
known as Positivstellensatz.

If K = {x ∈ Rn : gi(x) ≥ 0 for all i = 1, . . . ,m} is
a compact semi-algebraic set, then we can get sum-of-
squares lower bounds (using Putinar’s Positivstellensatz)
for the constrained polynomial optimization problem of
finding f∗K := infx∈K f(x) as follows:

Let vj := ddeg(gj)/2e, and let

d ≥ d0 := max(ddeg(f)/2e, v1, . . . , vm).

Then

f (d)sos := sup γ, s.t.

f − γ =

m∑
j=1

σjgj , where σj is degree-(d− vj) s.o.s

Similar to the unconstrained case, this gives a sequence
of increasing lower bounds for f∗.
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Algorithm 1 Individual bias verification for kernelized
RBF models.

1: procedure FIND-BIAS-RBF
2: Let f =

∑M
i=1 wiyi exp(−γ‖x−xi‖2), with c <

wi < C for all i ∈ [M ].
3: Let S+ be the subset of {(xi, yi)}Mi=1 with yi =

1 and S− be the subset with yi = −1.
4: Let L := ∅.
5: Construct the set Vp:

Vp := {(v, v′) | v, v′ are feasible for xD, x′D
and |vi − v′i| ≤ εj ∀i ∈ D ∩ Sj ∀j ∈ [t]}

6: for all (v, v′) ∈ Vp do
7: for all xr ∈ S+ do
8: for all xs ∈ S− do
9: Solve this optimization problem to

get x∗, x′∗:
10:

min
valid x, x′

1
2

( ∑
u∈S+

wu‖x′ − xu‖2 +
∑
v∈S−

wv‖x− xv‖2
)

subject to
xrk −Dr ≤ xk, x′k ≤ xrk +Dr and
xsk −Ds ≤ xk, x′k ≤ xsk +Ds, for all k

|xi − x′i| ≤ εj ∀i ∈ Sj ∩D ∀j ∈ [t]

xD = v and x′D = v′

11: if f(x′∗) ≥ ε and f(x∗) ≤ −ε then
12: Output (x∗, x′∗) and return
13: else
14: Add f(x′∗)− f(x∗) to L.
15: Output the lower bound L∗ := minL.

[4] Naum Z Shor. “Class of global minimum bounds
of polynomial functions”. In: Cybernetics and Sys-
tems Analysis 23.6 (1987), pp. 731–734.


