SUPPLEMENTARY MATERIAL

PRELIMINARIES

We now provide some terminology and notations related to polynomials and polynomial optimization using sum-of-squares. An n-variate real polynomial P is a sum of finitely many terms of the form $c_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ and $c_{\alpha} \in \mathbb{R}$. The monomial $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is also denoted by x^{α}, and the polynomial P can be written as $P(x)=\sum_{\alpha \in \mathbb{N}^{n}} c_{\alpha} x^{\alpha}$ where $c_{\alpha} \neq 0$ only for finitely many α. The degree of a monomial x^{α} is $|\alpha|:=\alpha_{1}+\ldots+\alpha_{n}$, and the degree of a polynomial is the maximum degree of all its monomials with non-zero coefficients.

A n-variate polynomial $P=\sum_{\alpha} c_{\alpha} x^{\alpha}$ with degree \leq d can be associated with its coefficient vector $\left(c_{\alpha}\right)$ as a point in $\mathbb{R}^{s_{n}(d)}$, where $s_{n}(d):=\binom{n+d}{d}=O\left(n^{d}\right)$ (which can be seen by counting the monomials x^{α} with $\alpha \in \mathbb{N}^{n}$ and $\left.|\alpha|=\alpha_{1}+\ldots+\alpha_{n} \leq d\right)$.

A set $K \subseteq \mathbb{R}^{n}$ is said to be a (basic closed) semi-algebraic set if there exist n-variate polynomials g_{1}, \ldots, g_{m} such that

$$
K=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0 \text { for all } i \in[m]\right\}
$$

SUM-OF-SQUARES RELAXATIONS

A polynomial P is said to be a sum-of-squares (s.o.s) if there exist some $m \geq 1$ and n-variate polynomials G_{1}, \ldots, G_{m} such that $P=G_{1}^{2}+\ldots+G_{m}^{2}$. The set of polynomials $G:=\left\{G_{1}, \ldots, G_{m}\right\}$ is said to be a sum-of-squares decomposition of P. The degree of the s.o.s decomposition is defined to be $\operatorname{deg}(G):=$ $\max _{i \in[m]} \operatorname{deg}\left(G_{i}\right)$. A polynomial P is said to be a degree- d sum-of-squares if it has a s.o.s decomposition of degree $\leq d$. Clearly, a polynomial which is degree d s.o.s has degree $\leq 2 d$, and the degree of a s.o.s representation for a degree $\leq 2 d$ polynomial (if it exists) is at most d.

It is easy to see that every s.o.s polynomial is nonnegative or positive semi-definite (p.s.d), but the converse (every p.s.d polynomial is s.o.s) is not true except in very specific cases (univariate polynomials, quadratics, bivariate quartics), as proved by Hilbert (Hilbert 1888).

However, we can construct a sound, but incomplete, verifier for the non-negativity (p.s.d-ness) of a given polynomial by checking whether the polynomial has degreed sum-of-squares decomposition (for appropriately large d). Shor (Shor 1987) showed that the question of whether a given polynomial f has a degree- d sum-of-squares decomposition is equivalent to the feasibility of a semidef-
inite program (SDP) with $O\left(n^{2 d}\right)$ variables and $O\left(n^{d}\right)$ constraints. For constant d, such an SDP (which we may call the degree- d s.o.s relaxation) can be solved in poly (n) time.
Let $[x]_{d}$ denote the $s_{n}(d)$-length vector of all n-variate monomials with degree $\leq d$, according to some monomial ordering. Say,
$[x]_{d}:=\left(\begin{array}{lllll}1 & x_{1} & \cdots & x_{n} & x_{1}^{2} \\ x_{1} & x_{2} & \cdots & x_{1} x_{n} & x_{n}^{2} \cdots x_{1}^{d} \cdots x_{n}^{d}\end{array}\right)$.
Let f be a n-variate real polynomial with $\operatorname{deg}(f) \leq 2 d$. That is,

$$
f=\sum_{\substack{\alpha \\|\alpha| \leq 2 d}} c_{\alpha} x^{\alpha}=c^{\top}[x]_{2 d} \quad \text { for some } c \in \mathbb{R}^{s_{n}(2 d)}
$$

Theorem 1 ((Shor 1987)). f is degree-d s.o.s if and only if there exists a symmetric positive semidefinite matrix $Q \in \mathbb{R}^{s_{n}(d) \times s_{n}(d)}$ such that $f=[x]_{d}^{\top} Q[x]_{d}$, coefficientwise. That is, $c_{\alpha}=\sum_{\beta+\gamma=\alpha} Q_{\beta, \gamma}$ for all α such that $x^{\alpha} \in[x]_{2 d}$, and β, γ such that $x^{\beta}, x^{\gamma} \in[x]_{d}$.

To perform (unconstrained) polynomial optimization i.e. finding the global minimum $f^{*}:=\inf _{x \in \mathbb{R}^{n}} f(x)$ of a given polynomial function f - using sum-ofsquares, Shor (Shor 1987) formulated a sequence of sum-of-squares relaxation SDPs (which have increasing size/complexity as the degree d increases). The degree- d SDP finds $f_{\text {sos }}^{(d)}:=\sup \gamma$, s.t. $f-\gamma$ is a degree- d s.o.s (which implies that γ is a lower bound for f).

$$
\begin{gathered}
\max _{Z}-A^{(\mathbf{0})} \circ Z, \text { subject to } \\
A^{(\alpha)} \circ Z=c_{\alpha}\left(\text { where } A_{\beta, \gamma}^{(\alpha)}=1 \text { if } \beta+\gamma=\alpha \text { and } 0 \text { othewise. }\right) \\
\left(\text { for all } \alpha \neq \mathbf{0} \in \mathbb{N}_{d}^{n}\right) \\
Z \succeq 0, Z \in \mathbb{S}^{s_{n}(d)}(\mathbb{R})
\end{gathered}
$$

The dual of the above SDP is

$$
\begin{aligned}
\min _{y} c^{\top} y, \quad \text { subject to } \\
\sum_{\alpha} y_{\alpha} \cdot A^{(\alpha)} \succeq 0, y_{\mathbf{0}}=1, y \in \mathbb{R}^{s_{n}(2 d)}
\end{aligned}
$$

In the above SDP, Z may be interpreted as $Z \equiv Q-\gamma$. E_{11}, where $Q \in \mathbb{S}^{s_{n}(d)}(\mathbb{R})$ is a symmetric p.s.d matrix such that $[x]_{d}^{\top} Q[x]_{d}=f$ (as in Theorem 1), and E_{11} denotes the elementary matrix with a 1 in the (first row, first column) and zeros elsewhere.
This implies, of course, that the objective is $-A^{(0)} \circ Z=$ $-Z_{0,0}=\gamma-c_{0}$; maximizing it is equivalent to maximizing γ, and the s.o.s lower bound $f_{\text {sos }}^{(d)}:=\gamma$ may be recovered as $\gamma=c_{\mathbf{0}}-Z_{\mathbf{0}, \mathbf{0}}$.

This hierarchy of SDPs gives a sequence of increasing lower bounds $f_{\text {sos }}^{(1)} \leq f_{\text {sos }}^{(2)} \leq f_{\text {sos }}^{(3)} \leq \ldots$ for f, where we define $f_{\text {sos }}^{(d)}:=-\infty$ if the degree- d SDP is infeasible. It is also possible in some cases (with s.o.s relaxations of sufficiently high degree) to extract a certificate x^{*} for the lower bound (i.e. an $x^{*} \in \mathbb{R}^{n}$ such that $f\left(x^{*}\right)=f_{\text {sos }}^{(d)}$). Clearly, the existence of such a certificate implies that the sum-of-squares hierarchy has reached the actual optimum, i.e. $f_{\text {sos }}^{(d)}=f^{*}$. However, this will not occur for all polynomials (and hence the s.o.s-based non-negativity verifier will always be incomplete). In the unconstrained minimization case, we only need to check s.o.s relaxations of degree $\leq 2 d$. But such a degree upper-bound is not known for the constrained case, which is described below.

Finally, it was shown by Lasserre (Lasserre 2001) and Parrilo (Parrilo 2000) independently that it is possible to lower-bound a polynomial optimization problem over a basic closed semi-algebraic set $K \subseteq \mathbb{R}^{n}$ by using semidefinite relaxations - a (basic closed) semi-algebraic set $K \subseteq \mathbb{R}^{n}$ is the intersection of the solution sets of finitely many non-strict inequalities of real polynomials. This is done by applying results from real algebraic geometry known as Positivstellensatz.

If $\mathbb{K}=\left\{x \in \mathbb{R}^{n}: g_{i}(x) \geq 0\right.$ for all $\left.i=1, \ldots, m\right\}$ is a compact semi-algebraic set, then we can get sum-ofsquares lower bounds (using Putinar's Positivstellensatz) for the constrained polynomial optimization problem of finding $f_{\mathbb{K}}^{*}:=\inf _{x \in \mathbb{K}} f(x)$ as follows:

Let $v_{j}:=\left\lceil\operatorname{deg}\left(g_{j}\right) / 2\right\rceil$, and let

$$
d \geq d_{0}:=\max \left(\lceil\operatorname{deg}(f) / 2\rceil, v_{1}, \ldots, v_{m}\right)
$$

Then

$$
\begin{aligned}
f_{\mathrm{sos}}^{(d)} & :=\sup \gamma, \text { s.t. } \\
f-\gamma & =\sum_{j=1}^{m} \sigma_{j} g_{j}, \text { where } \sigma_{j} \text { is degree- }\left(d-v_{j}\right) \text { s.o.s }
\end{aligned}
$$

Similar to the unconstrained case, this gives a sequence of increasing lower bounds for f^{*}.

References

[1] David Hilbert. "Ueber die Darstellung definiter Formen als Summe von Formenquadraten". In: Mathematische Annalen 32.3 (1888), pp. 342-350.
[2] Jean B. Lasserre. "Global Optimization with Polynomials and the Problem of Moments". In: SIAM J. on Optimization 11.3 (2001), pp. 796-817.
[3] Pablo A Parrilo. "Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization". PhD thesis. Caltech, 2000.

```
Algorithm 1 Individual bias verification for kernelized
RBF models.
    procedure Find-Bias-RBF
        Let \(f=\sum_{i=1}^{M} w_{i} y_{i} \exp \left(-\gamma\left\|x-x_{i}\right\|^{2}\right)\), with \(c<\)
        \(w_{i}<C\) for all \(i \in[M]\).
        Let \(\mathcal{S}^{+}\)be the subset of \(\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{M}\) with \(y_{i}=\)
        1 and \(\mathcal{S}^{-}\)be the subset with \(y_{i}=-1\).
        Let \(L:=\emptyset\).
        Construct the set \(V_{p}\) :
    \(V_{p}:=\left\{\left(v, v^{\prime}\right) \mid v, v^{\prime}\right.\) are feasible for \(x_{D}, x_{D}^{\prime}\)
                and \(\left.\left|v_{i}-v_{i}^{\prime}\right| \leq \varepsilon_{j} \forall i \in D \cap S_{j} \forall j \in[t]\right\}\)
        for all \(\left(v, v^{\prime}\right) \in V_{p}\) do
            for all \(x_{r} \in \mathcal{S}^{+}\)do
                for all \(x_{s} \in \mathcal{S}^{-}\)do
                    Solve this optimization problem to
    get \(x^{*}, x^{\prime *}\) :
10:
    \(\min _{\operatorname{valid} x, x^{\prime}} \frac{1}{2}\left(\sum_{u \in \mathcal{S}^{+}} w_{u}\left\|x^{\prime}-x_{u}\right\|^{2}+\sum_{v \in \mathcal{S}^{-}} w_{v}\left\|x-x_{v}\right\|^{2}\right)\)
                    subject to
            \(x_{r k}-D_{r} \leq x_{k}, x_{k}^{\prime} \leq x_{r k}+D_{r}\) and
            \(x_{s k}-D_{s} \leq x_{k}, x_{k}^{\prime} \leq x_{s k}+D_{s}\), for all \(k\)
            \(\left|x_{i}-x_{i}^{\prime}\right| \leq \varepsilon_{j} \forall i \in S_{j} \cap \bar{D} \forall j \in[t]\)
    \(x_{D}=v\) and \(x_{D}^{\prime}=v^{\prime}\)
11: \(\quad\) if \(f\left(x^{*}\right) \geq \varepsilon\) and \(f\left(x^{*}\right) \leq-\varepsilon\) then
                                    Output ( \(x^{*}, x^{\prime *}\) ) and return
                                    else
                                    Add \(f\left(x^{*}\right)-f\left(x^{*}\right)\) to \(L\).
        Output the lower bound \(L^{*}:=\min L\).
```

[4] Naum Z Shor. "Class of global minimum bounds of polynomial functions". In: Cybernetics and Systems Analysis 23.6 (1987), pp. 731-734.

