
A Proof for Theorems

We prove Theorem 2 before Theorem 1, since the former one includes more technical steps and main parts of the two
proofs are similar.

A.1 Proof of Theorem 2 (C-TS)

Proof. By definition, µa := E [Y |a] =
Pkn

i=1 E [Y |PaY = Zi]P (PaY = Zi|a), a⇤ = argmaxa µa.
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where Z(s) denotes the observed values of parent nodes for Y , in round s. Note that µ̂Z(t) = 0 when TZ(t) = 0.

Let E be the event that for all t 2 [T ], i 2 [kn] such that maxa2A P (PaY = Zi|a) > 0, we have
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For fixed t and i, by Sub-Gaussian property, we can show
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By union bound, we have P (Ec)  2�Tkn.

The Bayesian regret can be written as
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where Ft�1 = � (a1, Z1, Y1, . . . , at�1, Zt�1, Yt�1).

The key insight is to notice that by definition of Thompson Sampling,

P (a⇤ = ·|Ft�1) = P (at = ·|Ft�1) . (1)

Further, define UCBa(t) :=
Pkn

j=1 UCBZj (t)P (PaY = Zj |a), we can bound the conditional expected difference
between optimal arm and the arm played at round t using equation 1 by
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On event Ec, by the original definition of BRT we have BRT  2T . On event E, the first term is negative showing
by the definition of UCBZj , j = 1, . . . , kn and
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because E [Y |PaY = Zj ]� UCBZj (t� 1)  0 on event E. Also on event E, the second term can be bounded by
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The second part of equation 2 can be bounded by
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For the first part of equation 2, we define Xt :=
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X0 := 0. Note that {Xt}Tt=0 is a martingale sequence and we have
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By applying Azuma’s inequality we have
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We take � = 1/T 2, combine the first and second part of equation 2, we show that with probability 1 � P (Ec) �
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Thus the Bayesian regret can be bounded by:
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where C is a constant and the above inequality holds for large T . Thus we have proved that E [RT ] = Õ
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A.2 Proof of Theorem 1 (C-UCB)

Proof. Let E be the event that for all t 2 [T ], j 2 [kn], we have
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Use same proof idea in Theorem 2, we have P (Ec)  2�Tkn. Define UCBa(t) :=
Pkn

j=1 UCBZj (t)P (PaY = Zj |a),
the regret can be rewritten as
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where the last inequality follows by the way to choose at in Algorithm 1, the second last inequality follows by the
definition of event E. Thus on event E we have
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The second part of Equation 3 can be bounded by
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By applying Azuma’s inequality we have
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Thus the expected regret can be bounded by:
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where C is a constant, above inequality holds for large T . Thus we prove E [RT ] = Õ

⇣p
knT

⌘

A.3 Proof of Theorem 3 (CL-TS)

Lemma 1. (Lattimore and Szepesvári, 2020) Notations same as algorithm 4 and algorithm 5. Let � 2 (0, 1). Then
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same as Algorithm 5, where
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Thus, by k✓k2  1,
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Again, we know from equation 1 such that P (a⇤ = ·|Ft�1) = P (at = ·|Ft�1), where Ft�1 =
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Substituting into the second term of equation 4,
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Putting together we prove
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A.4 Proof of Theorem 3 (CL-UCB)
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So the expected regret can be further bounded by:
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A.5 Proof of Claim 1

Proof. Denote the reward variable for action a by Y |a and denote the reward variable given fixed parent values by
Y |PaY =Z. According to the causal information, Y |a can be represented as a weighted sum of Y |PaY =Z:

Y |a =
X

Z

P (PaY = Z|a)Y |PaY =Z. (6)

In the statement of claim 1 we know that Y |PaY =Z are independent Gaussian distributions, therefore Y |a, a weighted
sum of Gaussian distributions still follows a Gaussian distribution. It remains to show the variance of Y |a is less than
1.

Var(Y |a) =
X

Z

P (PaY = Z|a)2Var(Y |PaY =Z) (7)
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P (PaY = Z|a)2 
X

Z

P (PaY = Z|a) = 1, (8)

where the first inequality above uses the condition that Var(Y |PaY =Z)  1. We show that the reward for every arm Y |a
is Gaussian distributed with variance less than 1, thus the bandit environment ⌫0 described in the claim is an instance
in Gaussian bandit environment class.

A.6 Proof of Theorem 4

We first introduce an important concept.
Definition 2 (p-order Policy). For K-arm unstructured Gaussian bandit environments E := EK(N ) and policy ⇡,

whose regret, on any ⌫ 2 E , is bounded by CT
p

for some C > 0 and p > 0. We call this policy class ⇧(E , C, T, p),
the class of p-order policies.

Note that UCB and TS are in this class with C = C
0
✏

p
K and p = 1/2 + ✏ with some C

0
✏ > 0 for arbitrary small ✏.

We use the following result to prove our theorem.
Theorem 5 (Finite-time, instance-dependent regret lower bound for p-order policies, Theorem 16.4 in Lattimore and
Szepesvári (2020)). Let ⌫ 2 EK(N ) be a K-arm Gaussian bandit with mean vector µ 2 RK

and suboptimality gaps

� 2 [0,1)K . Let

E(⌫) = {⌫0 2 EK(N ) : µi(⌫
0) 2 [µi, µi + 2�i]}.



Suppose ⇡ is a p-order policy such that 9C > 0 and p 2 (0, 1), RT (⇡, ⌫0)  CT
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where (x)+ = max(x, 0) is the positive part of x 2 R.

Proof of Theorem 4. Consider the bandit environment ⌫ described in section 4. By claim 1 we know ⌫ is an instance
in unstructured Gaussian bandit environment class, so we can further apply Theorem 5. The size of three types of
actions are all 3N/3. For Type 1 actions, its gap compared to the optimal actions is �, for Type 0 actions, gap is p1�.
Plugging into the results of Theorem 5, for every p-order policy over E(⌫), we have
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Note that sup⇢>0 log(⇢)/⇢ = exp(�1) ⇡ 0.35, and we next plug above two equations in Equation 9 to get
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B Probability Tables Used in Experiments

i 1 2 3
P (X1 = i) 0.3 0.4 0.3
P (X2 = i) 0.3 0.3 0.4
P (X3 = i) 0.5 0.3 0.2
P (X4 = i) 0.25 0.25 0.5

P (W1 = 1|X1 = i) 0.2 0.5 0.8
P (W2 = 1|X2 = i) 0.3 0.2 0.8
P (W3 = 1|X3 = i) 0.4 0.6 0.5
P (W4 = 1|X4 = i) 0.3 0.5 0.6

Table 1: Marginal and conditional probabilities for pure simulation experiment in section 5.1.1, numbers are randomly
selected.



i 1 2 3 4
P (X1 = i) 0.2 0.2 0.6
P (X2 = i) 0.05 0.6 0.3 0.05
P (Z3 = i) 0.5 0.2 0.3

P (Z1 = 1|X2 = i) 0.7 0.7 0.3 0.3
P (Z2 = 1|X1 = 3, X2 = i) 0.6 0.7 0.6 0.5
P (Z2 = 1|X1 6= 3, X2 = i) 0.8 0.9 0.5 0.2

Table 2: Marginal and conditional probabilities for email campaign causal graph.


