A Proof for Theorems

We prove Theorem 2 before Theorem 1, since the former one includes more technical steps and main parts of the two proofs are similar.

A. 1 Proof of Theorem 2(C-TS)

Proof. By definition, $\mu_{a}:=E[Y \mid a]=\sum_{i=1}^{k^{n}} E\left[Y \mid P a_{Y}=Z_{i}\right] P\left(P a_{Y}=Z_{i} \mid a\right), a^{*}=\operatorname{argmax}_{a} \mu_{a}$.
Define:

$$
\begin{aligned}
T_{Z}(t) & :=\sum_{s=1}^{t} \mathbb{1}_{\left\{Z_{(s)}=Z\right\}}, \\
\hat{\mu}_{Z}(t) & :=\frac{1}{T_{Z}(t)} \sum_{s=1}^{t} Y_{s} \mathbb{1}_{\left\{Z_{(s)}=Z\right\}}, \\
\mu_{Z} & :=E\left[Y \mid P a_{Y}=Z\right],
\end{aligned}
$$

where $Z_{(s)}$ denotes the observed values of parent nodes for Y, in round s. Note that $\hat{\mu}_{Z}(t)=0$ when $T_{Z}(t)=0$.
Let E be the event that for all $t \in[T], i \in\left[k^{n}\right]$ such that $\max _{a \in \mathcal{A}} P\left(P a_{Y}=Z_{i} \mid a\right)>0$, we have

$$
\left|\hat{\mu}_{Z_{i}}(t-1)-\mu_{Z_{i}}\right| \leq \sqrt{\frac{2 \log (1 / \delta)}{1 \vee T_{Z_{i}}(t-1)}}
$$

For fixed t and i, by Sub-Gaussian property, we can show

$$
\begin{aligned}
P\left(\left|\hat{\mu}_{Z_{i}}(t)-\mu_{Z_{i}}\right| \geq \sqrt{\frac{2 \log (1 / \delta)}{1 \vee T_{Z_{i}}(t)}}\right) & =\mathbb{E}\left[P\left(\left.\left|\hat{\mu}_{Z_{i}}(t)-\mu_{Z_{i}}\right| \geq \sqrt{\frac{2 \log (1 / \delta)}{1 \vee T_{Z_{i}}(t)}} \right\rvert\, Z_{(1)}, \ldots, Z_{(t)}\right)\right] \\
& \leq \mathbb{E}[2 \delta]=2 \delta
\end{aligned}
$$

By union bound, we have $P\left(E^{c}\right) \leq 2 \delta T k^{n}$.
The Bayesian regret can be written as

$$
B R_{T}=\mathbb{E}\left[\sum_{t=1}^{T}\left(\mu_{a^{*}}-\mu_{a_{t}}\right)\right]=\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{E}\left[\mu_{a^{*}}-\mu_{a_{t}} \mid \mathcal{F}_{t-1}\right]\right],
$$

where $\mathcal{F}_{t-1}=\sigma\left(a_{1}, Z_{1}, Y_{1}, \ldots, a_{t-1}, Z_{t-1}, Y_{t-1}\right)$.
The key insight is to notice that by definition of Thompson Sampling,

$$
\begin{equation*}
P\left(a^{*}=\cdot \mid \mathcal{F}_{t-1}\right)=P\left(a_{t}=\cdot \mid \mathcal{F}_{t-1}\right) \tag{1}
\end{equation*}
$$

Further, define $\mathrm{UCB}_{a}(t):=\sum_{j=1}^{k^{n}} \mathrm{UCB}_{Z_{j}}(t) P\left(P a_{Y}=Z_{j} \mid a\right)$, we can bound the conditional expected difference between optimal arm and the arm played at round t using equation 1 by

$$
\begin{aligned}
& \mathbb{E}\left[\mu_{a^{*}}-\mu_{a_{t}} \mid \mathcal{F}_{t-1}\right] \\
& =\mathbb{E}\left[\mu_{a^{*}}-\mathrm{UCB}_{a_{t}}(t-1)+\mathrm{UCB}_{a_{t}}(t-1)-\mu_{a_{t}} \mid \mathcal{F}_{t-1}\right] \\
& =\mathbb{E}\left[\mu_{a^{*}}-\mathrm{UCB}_{a^{*}}(t-1)+\mathrm{UCB}_{a_{t}}(t-1)-\mu_{a_{t}} \mid \mathcal{F}_{t-1}\right] .
\end{aligned}
$$

Next by tower rule, we have

$$
B R_{T}=\mathbb{E}\left[\sum_{t=1}^{T}\left(\mu_{a^{*}}-\mathrm{UCB}_{a^{*}}(t-1)+\mathrm{UCB}_{a_{t}}(t-1)-\mu_{a_{t}}\right)\right] .
$$

On event E^{c}, by the original definition of $B R_{T}$ we have $B R_{T} \leq 2 T$. On event E, the first term is negative showing by the definition of $\mathrm{UCB}_{\mathbf{Z}_{j}}, j=1, \ldots, k^{n}$ and

$$
\mu_{a^{*}}-\mathrm{UCB}_{a^{*}}(t-1)=\sum_{j=1}^{k^{n}}\left(\mathbb{E}\left[Y \mid P a_{Y}=Z_{j}\right]-\mathrm{UCB}_{Z_{j}}(t-1)\right) P\left(P a_{Y}=Z_{j} \mid a^{*}\right) \leq 0
$$

because $\mathbb{E}\left[Y \mid P a_{Y}=Z_{j}\right]-\mathrm{UCB}_{Z_{j}}(t-1) \leq 0$ on event E. Also on event E, the second term can be bounded by

$$
\begin{align*}
\mathbb{1}_{E} \sum_{t=1}^{T}\left(\mathrm{UCB}_{a_{t}}(t-1)-\mu_{a_{t}}\right) & =\mathbb{1}_{E} \sum_{t=1}^{T} \sum_{j=1}^{k^{n}}\left(\mathrm{UCB}_{Z_{j}}(t-1)-\mathbb{E}\left[Y \mid P a_{Y}=Z_{j}\right]\right) P\left(P a_{Y}=Z_{j} \mid a_{t}\right) \\
& \leq \mathbb{1}_{E} \sum_{t=1}^{T} \sum_{j=1}^{k^{n}} \sqrt{\frac{8 \log (1 / \delta)}{1 \vee T_{Z_{j}}(t-1)}} P\left(P a_{Y}=Z_{j} \mid a_{t}\right) \\
& \leq \mathbb{1}_{E} \sum_{t=1}^{T} \sum_{j=1}^{k^{n}} \sqrt{\frac{8 \log (1 / \delta)}{1 \vee T_{Z_{j}}(t-1)}}\left(P\left(P a_{Y}=Z_{j} \mid a_{t}\right)-\mathbb{1}_{\left\{Z_{(t)}=Z_{j}\right\}}+\mathbb{1}_{\left\{Z_{(t)}=Z_{j}\right\}}\right) \tag{2}
\end{align*}
$$

The second part of equation 2 can be bounded by

$$
\begin{aligned}
\mathbb{1}_{E} \sum_{t=1}^{T} \sum_{j=1}^{k^{n}} \sqrt{\frac{8 \log (1 / \delta)}{1 \vee T_{Z_{j}}(t-1)}} \mathbb{1}_{\left\{Z_{(t)}=Z_{j}\right\}} & \leq \mathbb{1}_{E} \sum_{j=1}^{k^{n}} \int_{0}^{T_{Z_{j}}(T)} \sqrt{\frac{8 \log (1 / \delta)}{s}} d s \\
& \leq \sum_{j=1}^{k^{n}} \sqrt{32 T_{Z_{j}}(T) \log (1 / \delta)} \\
& \leq \sqrt{32 k^{n} T \log (1 / \delta)}
\end{aligned}
$$

For the first part of equation 12 , we define $X_{t}:=\sum_{s=1}^{t} \sum_{j=1}^{k^{n}} \sqrt{\frac{8 \log (1 / \delta)}{1 V T_{Z_{j}(s-1)}}}\left(P\left(P a_{Y}=Z_{j} \mid a_{s}\right)-\mathbb{1}_{\left\{Z_{(s)}=Z_{j}\right\}}\right)$, $X_{0}:=0$. Note that $\left\{X_{t}\right\}_{t=0}^{T}$ is a martingale sequence and we have

$$
\begin{aligned}
\left|X_{t}-X_{t-1}\right|^{2} & =\left|\sum_{j=1}^{k^{n}} \sqrt{\frac{8 \log (1 / \delta)}{1 \vee T_{Z_{j}}(t-1)}}\left(P\left(P a_{Y}=Z_{j} \mid a_{t}\right)-\mathbb{1}_{\left\{Z_{(t)}=Z_{j}\right\}}\right)\right|^{2} \\
& \leq 32 \log (1 / \delta)
\end{aligned}
$$

By applying Azuma's inequality we have

$$
P\left(\left|X_{T}\right|>\sqrt{k^{n} T \log (T)} \log (T)\right) \leq \exp \left(-\frac{k^{n} \log ^{3}(T)}{32 \log (1 / \delta)}\right)
$$

We take $\delta=1 / T^{2}$, combine the first and second part of equation 2 , we show that with probability $1-P\left(E^{c}\right)-$ $\exp \left(-\frac{k^{n} \log ^{2}(T)}{64}\right)=1-2 k^{n} / T-\exp \left(-\frac{k^{n} \log ^{2}(T)}{64}\right)$,

$$
R_{T} \leq 16 \sqrt{k^{n} T \log (T)} \log (T)
$$

Thus the Bayesian regret can be bounded by:

$$
\begin{aligned}
\mathbb{E}\left[R_{T}\right] & \leq P\left(E^{c}\right) \times 2 T+\exp \left(-\frac{k^{n} \log ^{2}(T)}{64}\right) \times 2 T+\sqrt{64 k^{n} T \log (T)} \log (T) \\
& \leq C \sqrt{k^{n} T \log (T)} \log (T)
\end{aligned}
$$

where C is a constant and the above inequality holds for large T. Thus we have proved that $\mathbb{E}\left[R_{T}\right]=\tilde{O}\left(\sqrt{k^{n} T}\right)$.

A. 2 Proof of Theorem 1 (C-UCB)

Proof. Let E be the event that for all $t \in[T], j \in\left[k^{n}\right]$, we have

$$
\left|\hat{\mu}_{Z_{j}}(t-1)-\mathbb{E}\left[Y \mid P a_{Y}=Z_{j}\right]\right| \leq \sqrt{\frac{2 \log (1 / \delta)}{1 \vee T_{Z_{j}}(t-1)}}
$$

Use same proof idea in Theorem 2 we have $P\left(E^{c}\right) \leq 2 \delta T k^{n}$. Define $\mathrm{UCB}_{a}(t):=\sum_{j=1}^{k^{n}} \mathrm{UCB}_{Z_{j}}(t) P\left(P a_{Y}=Z_{j} \mid a\right)$, the regret can be rewritten as

$$
\begin{aligned}
R_{T} & =\sum_{t=1}^{T}\left(\mu_{a^{*}}-\mu_{a_{t}}\right) \\
& =\sum_{t=1}^{T}\left(\mu_{a^{*}}-\operatorname{UCB}_{a_{t}}(t-1)+\mathrm{UCB}_{a_{t}}(t-1)-\mu_{a_{t}}\right)
\end{aligned}
$$

On event $E^{c}, R_{T} \leq 2 T$. On event E we can show

$$
\begin{aligned}
\mu_{a^{*}}-\mathrm{UCB}_{a_{t}}(t-1) & =\sum_{j=1}^{k^{n}} \mathbb{E}\left[Y \mid P a_{Y}=Z_{j}\right] P\left(P a_{Y}=Z_{j} \mid a^{*}\right)-\sum_{j=1}^{k^{n}} \mathrm{UCB}_{Z_{j}}(t-1) P\left(P a_{Y}=Z_{j} \mid a_{t}\right) \\
& \leq \sum_{j=1}^{k^{n}} \mathrm{UCB}_{Z_{j}}(t-1) P\left(P a_{Y}=Z_{j} \mid a^{*}\right)-\sum_{j=1}^{k^{n}} \mathrm{UCB}_{Z_{j}}(t-1) P\left(P a_{Y}=Z_{j} \mid a_{t}\right) \leq 0
\end{aligned}
$$

where the last inequality follows by the way to choose a_{t} in Algorithm 1 , the second last inequality follows by the definition of event E. Thus on event E we have

$$
\begin{align*}
R_{T} & \leq \sum_{t=1}^{T}\left(\mathrm{UCB}_{a_{t}}(t-1)-\mu_{a_{t}}\right) \\
& =\sum_{t=1}^{T} \sum_{j=1}^{k^{n}}\left(\mathrm{UCB}_{Z_{j}}(t-1)-\mathbb{E}\left[Y \mid P a_{Y}=Z_{j}\right]\right) P\left(P a_{Y}=Z_{j} \mid a_{t}\right) \\
& \leq \sum_{t=1}^{T} \sum_{j=1}^{k^{n}} \sqrt{\frac{8 \log (1 / \delta)}{1 \vee T_{Z_{j}}(t-1)}} P\left(P a_{Y}=Z_{j} \mid a_{t}\right) \\
& \leq \sum_{t=1}^{T} \sum_{j=1}^{k^{n}} \sqrt{\frac{8 \log (1 / \delta)}{1 \vee T_{Z_{j}}(t-1)}}\left(P\left(P a_{Y}=Z_{j} \mid a_{t}\right)-\mathbb{1}_{\left\{Z_{(t)}=Z_{j}\right\}}+\mathbb{1}_{\left\{Z_{(t)}=Z_{j}\right\}}\right) . \tag{3}
\end{align*}
$$

The second part of Equation 3 can be bounded by

$$
\begin{aligned}
\sum_{t=1}^{T} \sum_{j=1}^{k^{n}} \sqrt{\frac{8 \log (1 / \delta)}{1 \vee T_{Z_{j}}(t-1)}} \mathbb{1}_{\left\{Z_{(t)}=Z_{j}\right\}} & \leq \sum_{j=1}^{k^{n}} \int_{0}^{T_{Z_{j}}(T)} \sqrt{\frac{8 \log (1 / \delta)}{s}} d s \\
& \leq \sum_{j=1}^{k^{n}} \sqrt{32 T_{Z_{j}}(T) \log (1 / \delta)} \\
& \leq \sqrt{32 k^{n} T \log (1 / \delta)}
\end{aligned}
$$

For the first part of equation 3. we define $X_{t}:=\sum_{s=1}^{t} \sum_{j=1}^{k^{n}} \sqrt{\frac{8 \log (1 / \delta)}{1 \vee T_{Z_{j}}(s-1)}}\left(P\left(P a_{Y}=Z_{j} \mid a_{s}\right)-\mathbb{1}_{\left\{Z_{(s)}=Z_{j}\right\}}\right)$, $X_{0}:=0$. Note that $\left\{X_{t}\right\}_{t=0}^{T}$ is a martingale sequence.

$$
\begin{aligned}
\left|X_{t}-X_{t-1}\right|^{2} & =\left|\sum_{j=1}^{k^{n}} \sqrt{\frac{8 \log (1 / \delta)}{1 \vee T_{Z_{j}}(t-1)}}\left(P\left(P a_{Y}=Z_{j} \mid a_{t}\right)-\mathbb{1}_{\left\{Z_{(t)}=Z_{j}\right\}}\right)\right|^{2} \\
& \leq 32 \log (1 / \delta)
\end{aligned}
$$

By applying Azuma's inequality we have

$$
P\left(\left|X_{T}\right|>\sqrt{k^{n} T \log (T)} \log (T)\right) \leq \exp \left(-\frac{k^{n} \log ^{3}(T)}{32 \log (1 / \delta)}\right)
$$

We take $\delta=1 / T^{2}$, combine the first and second part of equation 3. with probability $1-P\left(E^{c}\right)-\exp \left(-\frac{k^{n} \log ^{2}(T)}{64}\right)=$ $1-2 k^{n} / T-\exp \left(-\frac{k^{n} \log ^{2}(T)}{64}\right)$, the regret can be bounded by

$$
R_{T} \leq 16 \sqrt{k^{n} T \log (T)} \log (T)
$$

Thus the expected regret can be bounded by:

$$
\begin{aligned}
\mathbb{E}\left[R_{T}\right] & \leq P\left(E^{c}\right) \times 2 T+\exp \left(-\frac{k^{n} \log ^{2}(T)}{64}\right) \times 2 T+\sqrt{64 k^{n} T \log (T)} \log (T) \\
& \leq C \sqrt{k^{n} T \log (T)} \log (T)
\end{aligned}
$$

where C is a constant, above inequality holds for large T. Thus we prove $\mathbb{E}\left[R_{T}\right]=\tilde{O}\left(\sqrt{k^{n} T}\right)$

A. 3 Proof of Theorem 3 (CL-TS)

Lemma 1. (Lattimore and Szepesvári, 2020) Notations same as algorithm 4 and algorithm 5. Let $\delta \in(0,1)$. Then with probability at least $1-\delta$ it holds that for all $t \in \mathbb{N}$,

$$
\left\|\hat{\theta}_{t}-\theta\right\|_{V_{t}(\lambda)} \leq \sqrt{\lambda}\|\theta\|_{2}+\sqrt{2 \log \left(\frac{1}{\delta}\right)+\log \left(\frac{\operatorname{det} V_{t}(\lambda)}{\lambda^{d}}\right)}
$$

Furthermore, if $\left\|\theta^{*}\right\| \leq m_{2}$, then $P\left(\exists t \in \mathbb{N}^{+}: \theta^{*} \notin \mathcal{C}_{t}\right) \leq \delta$ with

$$
\mathcal{C}_{t}=\left\{\theta \in \mathbb{R}^{d}:\left\|\hat{\theta}_{t-1}-\theta\right\|_{V_{t-1}(\lambda)} \leq m_{2} \sqrt{\lambda}+\sqrt{2 \log \left(\frac{1}{\delta}\right)+\log \left(\frac{\operatorname{det} V_{t-1}(\lambda)}{\lambda^{d}}\right)}\right\}
$$

Lemma 2. Lattimore and Szepesvári 2020, Let $x_{1}, \ldots, x_{T} \in \mathbb{R}^{d}$ be a sequence of vectors with $\left\|x_{t}\right\|_{2} \leq L<\infty$ for all $t \in[T]$, then

$$
\sum_{t=1}^{T}\left(1 \wedge\left\|x_{t}\right\|_{V_{t-1}^{-1}}^{2}\right) \leq 2 \log \left(\operatorname{det} V_{T}\right) \leq 2 d \log \left(1+\frac{T L^{2}}{d}\right)
$$

where $V_{t}=I_{d}+\sum_{s=1}^{t} x_{s} x_{s}^{T}$.
Proof. W define $\beta=1+\sqrt{2 \log (T)+d \log \left(1+\frac{T}{d}\right)}$ and $V_{t}=I_{d}+\sum_{s=1}^{t} m_{a_{s}} m_{a_{s}}^{T}$ same as Algorithm 5. where $m_{a}:=\sum_{i=1}^{k^{n}} f\left(Z_{i}\right) P\left(P a_{Y}=Z_{i} \mid a\right)$. Define upper confidence bound $\mathrm{UCB}_{t}: \mathcal{A} \rightarrow \mathbb{R}$ by

$$
\mathrm{UCB}_{t}(a)=\max _{\theta \in \mathcal{C}_{t}}\left\langle\theta, m_{a}\right\rangle=<\hat{\theta}_{t-1}, m_{a}>+\beta\left\|m_{a}\right\|_{V_{t-1}^{-1}}
$$

where $\mathcal{C}_{t}=\left\{\theta \in \mathbb{R}^{d}:\left\|\theta-\hat{\theta}_{t-1}\right\|_{V_{t-1}} \leq \beta\right\}$. By Lemma 1 we have

$$
P\left(\exists t \leq T:\left\|\hat{\theta}_{t-1}-\theta\right\|_{V_{t-1}} \geq 1+\sqrt{2 \log (T)+\log \left(\operatorname{det} V_{t}\right)}\right) \leq \frac{1}{T}
$$

And note $\left\|m_{a}\right\|_{2} \leq 1$, thus by geometric means inequality we have

$$
\operatorname{det} V_{t} \leq\left(\operatorname{trace}\left(\frac{V_{t}}{d}\right)\right)^{d} \leq\left(1+\frac{T}{d}\right)^{d}
$$

Thus, by $\|\theta\|_{2} \leq 1$,

$$
P\left(\exists t \leq T:\left\|\hat{\theta}_{t-1}-\theta\right\|_{V_{t-1}} \geq 1+\sqrt{2 \log (T)+d \log \left(1+\frac{T}{d}\right)}\right) \leq \frac{1}{T}
$$

Let E_{t} be the event that $\left\|\hat{\theta}_{t-1}-\theta\right\|_{V_{t-1}} \leq \beta, E:=\cap_{t=1}^{T} E_{t}, a^{*}:=\operatorname{argmax}_{a} \sum_{i=1}^{k^{n}}\left\langle f\left(Z_{i}\right), \theta\right\rangle P\left(P a_{Y}=Z_{i} \mid a\right)$, which is a random variable in this setting because θ is random. Then

$$
\begin{align*}
B R_{T} & =\mathbb{E}\left[\sum_{t=1}^{T}\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right)\left(P\left(P a_{Y}=Z_{i} \mid a^{*}\right)-P\left(P a_{Y}=Z_{i} \mid a_{t}\right)\right), \theta\right\rangle\right] \\
& =\mathbb{E}\left[\mathbb{E}_{E^{c}} \sum_{t=1}^{T}\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right)\left(P\left(P a_{Y}=Z_{i} \mid a^{*}\right)-P\left(P a_{Y}=Z_{i} \mid a_{t}\right)\right), \theta\right\rangle\right] \\
& +\mathbb{E}\left[\mathbb{1}_{E} \sum_{t=1}^{T}\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right)\left(P\left(P a_{Y}=Z_{i} \mid a^{*}\right)-P\left(P a_{Y}=Z_{i} \mid a_{t}\right)\right), \theta\right\rangle\right] \\
& \leq 2 T P\left(E^{c}\right)+\mathbb{E}\left[\mathbb{1}_{E} \sum_{t=1}^{T}\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right)\left(P\left(P a_{Y}=Z_{i} \mid a^{*}\right)-P\left(P a_{Y}=Z_{i} \mid a_{t}\right)\right), \theta\right\rangle\right] \\
& \leq 2+\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}_{E_{t}}\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right)\left(P\left(P a_{Y}=Z_{i} \mid a^{*}\right)-P\left(P a_{Y}=Z_{i} \mid a_{t}\right)\right), \theta\right\rangle\right] \tag{4}
\end{align*}
$$

Again, we know from equation 1 such that $P\left(a^{*}=\cdot \mid \mathcal{F}_{t-1}\right)=P\left(a_{t}=\cdot \mid \mathcal{F}_{t-1}\right)$, where $\mathcal{F}_{t-1}=$ $\sigma\left(Z_{1}, a_{1}, Y_{1}, \ldots, Z_{t-1}, a_{t-1}, Y_{t-1}\right)$. Thus we have

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{1}_{E_{t}}\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right)\left(P\left(P a_{Y}=Z_{i} \mid a^{*}\right)-P\left(P a_{Y}=Z_{i} \mid a_{t}\right)\right), \theta\right\rangle \mathcal{F}_{t-1}\right] \\
= & \mathbb{1}_{E_{t}} \mathbb{E}\left[\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right)\left(P\left(P a_{Y}=Z_{i} \mid a^{*}\right)-P\left(P a_{Y}=Z_{i} \mid a_{t}\right)\right), \theta\right\rangle \mid \mathcal{F}_{t-1}\right] \\
= & \mathbb{1}_{E_{t}} \mathbb{E}\left[\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right) P\left(P a_{Y}=Z_{i} \mid a^{*}\right), \theta\right\rangle-U C B_{t}\left(a^{*}\right)+U C B_{t}\left(a_{t}\right)-\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right) P\left(P a_{Y}=Z_{i} \mid a_{t}\right), \theta\right\rangle \mid \mathcal{F}_{t-1}\right] \\
\leq & \mathbb{1}_{E_{t}} \mathbb{E}\left[U C B_{t}\left(a_{t}\right)-\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right) P\left(P a_{Y}=Z_{i} \mid a_{t}\right), \theta\right\rangle \mathcal{F}_{t-1}\right] \\
\leq & \mathbb{1}_{E_{t}} \mathbb{E}\left[\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right) P\left(P a_{Y}=Z_{i} \mid a_{t}\right), \hat{\theta}_{t-1}-\theta\right\rangle \mid \mathcal{F}_{t-1}\right]+\beta\left\|\sum_{i=1}^{k^{n}} f\left(Z_{i}\right) P\left(P a_{Y}=Z_{i} \mid a\right)\right\|_{V_{t-1}^{-1}} \\
\leq & 2 \beta\left\|\sum_{i=1}^{k^{n}} f\left(Z_{i}\right) P\left(P a_{Y}=Z_{i} \mid a\right)\right\|_{V_{t-1}^{-1}} .
\end{aligned}
$$

Substituting into the second term of equation 4 ,

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}_{E_{t}}\left\langle\sum_{i=1}^{k^{n}} f\left(Z_{i}\right)\left(P\left(P a_{Y}=Z_{i} \mid a^{*}\right)-P\left(P a_{Y}=Z_{i} \mid a_{t}\right)\right), \theta\right\rangle\right] \\
\leq & 2 \mathbb{E}\left[\beta \sum_{t=1}^{T}\left(1 \wedge\left\|\sum_{i=1}^{k^{n}} f\left(Z_{i}\right) P\left(P a_{Y}=Z_{i} \mid a\right)\right\|_{V_{t-1}^{-1}}\right)\right] \\
\leq & \sqrt{T \mathbb{E}\left[\beta^{2} \sum_{t=1}^{T}\left(1 \wedge\left\|\sum_{i=1}^{k^{n}} f\left(Z_{i}\right) P\left(P a_{Y}=Z_{i} \mid a\right)\right\|_{V_{t-1}^{-1}}^{2}\right)\right]} \\
\leq & 2 \sqrt{2 d T \beta^{2} \log \left(1+\frac{T}{d}\right)}(\text { By Cauchy-Schwartz }) \\
&
\end{aligned}
$$

Putting together we prove

$$
\begin{equation*}
B R_{T} \leq 2+2 \sqrt{2 d T \beta^{2} \log \left(1+\frac{T}{d}\right)}=\tilde{O}(d \sqrt{T}) \tag{5}
\end{equation*}
$$

A. 4 Proof of Theorem 3 (CL-UCB)

Proof. Define $\beta=1+\sqrt{2 \log (T)+d \log \left(1+\frac{T}{d}\right)}$, by Lemma 1 and above proof for CL-TS we have

$$
\begin{aligned}
& P\left(\exists t \leq T:\left\|\hat{\theta}_{t-1}-\theta^{*}\right\|_{V_{t-1}} \geq \beta\right) \leq \frac{1}{T} \\
& P\left(\exists t \in \mathbb{N}^{+}: \theta^{*} \notin \mathcal{C}_{t}\right) \leq \frac{1}{T}
\end{aligned}
$$

where $\mathcal{C}_{t}=\left\{\theta \in \mathbb{R}^{d}:\left\|\theta-\hat{\theta}_{t-1}\right\|_{V_{t-1}} \leq \beta\right\}$.
Let $\tilde{\theta}_{t}$ denote a θ that satisfies $\left\langle\tilde{\theta}_{t}, a_{t}\right\rangle=U C B_{t}\left(a_{t}\right)$. Again let E_{t} be the event that $\left\|\hat{\theta}_{t-1}-\theta^{*}\right\|_{V_{t-1}} \leq \beta$, let $E=\bigcap E_{t}, a^{*}=\operatorname{argmax}_{a} \sum_{j=1}^{k^{n}}\left\langle f\left(Z_{j}\right), \theta\right\rangle P\left(P a_{Y}=Z_{j} \mid a\right)$. Then on event E_{t}, using the fact that $\theta^{*} \in \mathcal{C}_{t}$ we have

$$
\left\langle\theta^{*}, \sum_{j=1}^{k^{n}} f\left(Z_{j}\right) P\left(P a_{Y}=Z_{j} \mid a^{*}\right)\right\rangle \leq U C B_{t}\left(a^{*}\right) \leq U C B_{t}\left(a_{t}\right)=\left\langle\tilde{\theta}_{t}, \sum_{j=1}^{k^{n}} f\left(Z_{j}\right) P\left(P a_{Y}=Z_{j} \mid a_{t}\right)\right\rangle
$$

Thus we can bound the difference of expected reward between optimal arm and a_{t} by

$$
\begin{aligned}
\mu_{a^{*}}-\mu_{a_{t}} & =\left\langle\theta^{*}, \sum_{j=1}^{k^{n}} f\left(Z_{j}\right) P\left(P a_{Y}=Z_{j} \mid a^{*}\right)\right\rangle-\left\langle\theta^{*}, \sum_{j=1}^{k^{n}} f\left(Z_{j}\right) P\left(P a_{Y}=Z_{j} \mid a_{t}\right)\right\rangle \\
& \leq\left\langle\tilde{\theta}_{t}-\theta^{*}, \sum_{j=1}^{k^{n}} f\left(Z_{j}\right) P\left(P a_{Y}=Z_{j} \mid a_{t}\right)\right\rangle \\
& \leq 2 \wedge 2 \beta\left\|\sum_{j=1}^{k^{n}} f\left(Z_{j}\right) P\left(P a_{Y}=Z_{j} \mid a_{t}\right)\right\|_{V_{t-1}^{-1}} \\
& \leq 2 \beta\left(1 \wedge\left\|\sum_{j=1}^{k^{n}} f\left(Z_{j}\right) P\left(P a_{Y}=Z_{j} \mid a_{t}\right)\right\|_{V_{t-1}^{-1}}\right)
\end{aligned}
$$

So the expected regret can be further bounded by:

$$
\begin{aligned}
\mathbb{E}\left[R_{T}\right] & =\mathbb{E}\left[\sum_{t=1}^{T}\left(\mu_{a^{*}}-\mu_{a_{t}}\right)\right]=\mathbb{E}\left[\mathbb{1}_{E} \sum_{t=1}^{T}\left(\mu_{a^{*}}-\mu_{a_{t}}\right)\right]+\mathbb{E}\left[\mathbb{1}_{E^{c}} \sum_{t=1}^{T}\left(\mu_{a^{*}}-\mu_{a_{t}}\right)\right] \\
& \leq \mathbb{E}\left[\sum_{t=1}^{T}\left(\mu_{a^{*}}-\mu_{a_{t}}\right) \mathbb{1}_{E_{t}}\right]+\mathbb{E}\left[\mathbb{1}_{E^{c}} \sum_{t=1}^{T}\left(\mu_{a^{*}}-\mu_{a_{t}}\right)\right] \\
& \left.\leq 2 \beta \sum_{t=1}^{T}\left(1 \wedge\left\|\sum_{j=1}^{k^{n}} f\left(Z_{j}\right) P\left(P a_{Y}=Z_{j} \mid a_{t}\right)\right\|_{V_{t-1}^{-1}}\right)\right]+2 T P\left(E^{c}\right) \\
& \leq 2+2 \beta \sqrt{T \sum_{t=1}^{T}\left(1 \wedge\left\|\sum_{j=1}^{k^{n}} f\left(Z_{j}\right) P\left(P a_{Y}=Z_{j} \mid a_{t}\right)\right\|_{V_{t-1}^{-1}}^{2}\right)} \text { (By Cauchy-Schwartz) } \\
& \left.\leq 2+2 \beta \sqrt{2 d T \log \left(1+\frac{T}{d}\right)} \text { (By Lemma } 2\right)
\end{aligned}
$$

A. 5 Proof of Claim 1

Proof. Denote the reward variable for action a by $\left.Y\right|_{a}$ and denote the reward variable given fixed parent values by $\left.Y\right|_{\mathrm{Pa}_{Y}=\mathbf{Z}}$. According to the causal information, $\left.Y\right|_{a}$ can be represented as a weighted sum of $\left.Y\right|_{\mathrm{Pa}_{Y}=\mathbf{Z}}$:

$$
\begin{equation*}
\left.Y\right|_{a}=\left.\sum_{\mathbf{Z}} P\left(\operatorname{Pa}_{Y}=\mathbf{Z} \mid a\right) Y\right|_{\mathrm{Pa}_{Y}=\mathbf{Z}} \tag{6}
\end{equation*}
$$

In the statement of claim 1 we know that $\left.Y\right|_{\mathrm{Pa}_{Y}=\mathbf{Z}}$ are independent Gaussian distributions, therefore $\left.Y\right|_{a}$, a weighted sum of Gaussian distributions still follows a Gaussian distribution. It remains to show the variance of $\left.Y\right|_{a}$ is less than 1.

$$
\begin{align*}
\operatorname{Var}\left(\left.Y\right|_{a}\right) & =\sum_{\mathbf{Z}} P\left(\mathrm{~Pa}_{Y}=\mathbf{Z} \mid a\right)^{2} \operatorname{Var}\left(\left.Y\right|_{\mathrm{Pa}_{Y}=\mathbf{Z}}\right) \tag{7}\\
& \leq \sum_{\mathbf{Z}} P\left(\mathrm{~Pa}_{Y}=\mathbf{Z} \mid a\right)^{2} \leq \sum_{\mathbf{Z}} P\left(\mathrm{~Pa}_{Y}=\mathbf{Z} \mid a\right)=1 \tag{8}
\end{align*}
$$

where the first inequality above uses the condition that $\operatorname{Var}\left(\left.Y\right|_{\mathrm{Pa}_{Y}=\mathbf{Z}}\right) \leq 1$. We show that the reward for every arm $\left.Y\right|_{a}$ is Gaussian distributed with variance less than 1, thus the bandit environment ν^{\prime} described in the claim is an instance in Gaussian bandit environment class.

A. 6 Proof of Theorem 4

We first introduce an important concept.
Definition 2 (p-order Policy). For K-arm unstructured Gaussian bandit environments $\mathcal{E}:=\mathcal{E}_{K}(\mathcal{N})$ and policy π, whose regret, on any $\nu \in \mathcal{E}$, is bounded by $C T^{p}$ for some $C>0$ and $p>0$. We call this policy class $\Pi(\mathcal{E}, C, T, p)$, the class of p-order policies.

Note that UCB and TS are in this class with $C=C_{\epsilon}^{\prime} \sqrt{K}$ and $p=1 / 2+\epsilon$ with some $C_{\epsilon}^{\prime}>0$ for arbitrary small ϵ.
We use the following result to prove our theorem.
Theorem 5 (Finite-time, instance-dependent regret lower bound for p-order policies, Theorem 16.4 in Lattimore and Szepesvári (2020)). Let $\nu \in \mathcal{E}_{K}(\mathcal{N})$ be a K-arm Gaussian bandit with mean vector $\mu \in \mathbb{R}^{K}$ and suboptimality gaps $\Delta \in[0, \infty)^{K}$. Let

$$
\mathcal{E}(\nu)=\left\{\nu^{\prime} \in \mathcal{E}_{K}(\mathcal{N}): \mu_{i}\left(\nu^{\prime}\right) \in\left[\mu_{i}, \mu_{i}+2 \Delta_{i}\right]\right\} .
$$

Suppose π is a p-order policy such that $\exists C>0$ and $p \in(0,1), R_{T}\left(\pi, \nu^{\prime}\right) \leq C T^{p}$ for all T and $\nu^{\prime} \in \mathcal{E}(\nu)$. Then for any $\epsilon \in(0,1]$,

$$
\mathbb{E} R_{T}(\pi, \nu) \geq \frac{2}{(1+\epsilon)^{2}} \sum_{i: \Delta_{i}>0}\left(\frac{(1-p) \log (T)+\log \left(\frac{\epsilon \Delta_{i}}{8 C}\right)}{\Delta_{i}}\right)^{+}
$$

where $(x)^{+}=\max (x, 0)$ is the positive part of $x \in \mathbb{R}$.

Proof of Theorem 4. Consider the bandit environment ν described in section 4 . By claim 1 we know ν is an instance in unstructured Gaussian bandit environment class, so we can further apply Theorem 5] The size of three types of actions are all $3^{N} / 3$. For Type 1 actions, its gap compared to the optimal actions is Δ, for Type 0 actions, gap is $p_{1} \Delta$. Plugging into the results of Theorem 5 , for every p-order policy over $\mathcal{E}(\nu)$, we have

$$
\begin{equation*}
\mathbb{E} R_{T}(\pi, \nu) \geq \frac{1}{2} \frac{3^{N}}{3}\left(\frac{(1-p) \log (T)+\log \left(\frac{\Delta}{8 C}\right)}{\Delta}\right)^{+}+\frac{1}{2} \frac{3^{N}}{3}\left(\frac{(1-p) \log (T)+\log \left(\frac{p_{1} \Delta}{8 C}\right)}{p_{1} \Delta}\right)^{+} \tag{9}
\end{equation*}
$$

In particular, choose $\Delta=8 \rho C T^{p-1}$, we get

$$
\begin{aligned}
(1-p) \log (T)+\log \left(\frac{\Delta}{8 C}\right) & =\log (\rho) \\
(1-p) \log (T)+\log \left(\frac{p_{1} \Delta}{8 C}\right) & =\log \left(p_{1} \rho\right)
\end{aligned}
$$

Note that $\sup _{\rho>0} \log (\rho) / \rho=\exp (-1) \approx 0.35$, and we next plug above two equations in Equation 9 to get

$$
\mathbb{E} R_{T}(\pi, \nu) \geq \frac{3^{N}}{3} \frac{0.35}{8 C T^{p-1}}
$$

Now consider π to be UCB, by plugging in $C=C_{\epsilon}^{\prime} \sqrt{3^{N}}$ and $p=1 / 2+\epsilon$ we have

$$
\mathbb{E} R_{T}(U C B, \nu) \geq \frac{0.35}{24 C_{\epsilon}^{\prime}} \sqrt{3^{N}} T^{1 / 2-\epsilon}
$$

B Probability Tables Used in Experiments

i	1	2	3
$P\left(X_{1}=i\right)$	0.3	0.4	0.3
$P\left(X_{2}=i\right)$	0.3	0.3	0.4
$P\left(X_{3}=i\right)$	0.5	0.3	0.2
$P\left(X_{4}=i\right)$	0.25	0.25	0.5
$P\left(W_{1}=1 \mid X_{1}=i\right)$	0.2	0.5	0.8
$P\left(W_{2}=1 \mid X_{2}=i\right)$	0.3	0.2	0.8
$P\left(W_{3}=1 \mid X_{3}=i\right)$	0.4	0.6	0.5
$P\left(W_{4}=1 \mid X_{4}=i\right)$	0.3	0.5	0.6

Table 1: Marginal and conditional probabilities for pure simulation experiment in section 5.1.1 numbers are randomly selected.

i	1	2	3	4
$P\left(X_{1}=i\right)$	0.2	0.2	0.6	
$P\left(X_{2}=i\right)$	0.05	0.6	0.3	0.05
$P\left(Z_{3}=i\right)$	0.5	0.2	0.3	
$P\left(Z_{1}=1 \mid X_{2}=i\right)$	0.7	0.7	0.3	0.3
$P\left(Z_{2}=1 \mid X_{1}=3, X_{2}=i\right)$	0.6	0.7	0.6	0.5
$P\left(Z_{2}=1 \mid X_{1} \neq 3, X_{2}=i\right)$	0.8	0.9	0.5	0.2

Table 2: Marginal and conditional probabilities for email campaign causal graph.

