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Abstract

In preference-based reinforcement learning
(RL), an agent interacts with the environ-
ment while receiving preferences instead of
absolute feedback. While there is increas-
ing research activity in preference-based RL,
the design of formal frameworks that ad-
mit tractable theoretical analysis remains an
open challenge. Building upon ideas from
preference-based bandit learning and poste-
rior sampling in RL, we present DUELING
POSTERIOR SAMPLING (DPS), which em-
ploys preference-based posterior sampling to
learn both the system dynamics and the un-
derlying utility function that governs the pref-
erence feedback. As preference feedback is
provided on trajectories rather than individ-
ual state-action pairs, we develop a Bayesian
approach for the credit assignment problem,
translating preferences to a posterior distri-
bution over state-action reward models. We
prove an asymptotic Bayesian no-regret rate
for DPS with a Bayesian linear regression
credit assignment model. This is the first re-
gret guarantee for preference-based RL to our
knowledge. We also discuss possible avenues
for extending the proof methodology to other
credit assignment models. Finally, we evaluate
the approach empirically, showing competitive
performance against existing baselines.

1 INTRODUCTION

Reinforcement learning (RL) agents interact with hu-
mans in many domains, from clinical trials (Sui et al.,
2018a) to autonomous driving (Sadigh et al., 2017) to
human-robot interaction (Kupcsik et al., 2018), and take
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human preferences as feedback. While many RL algo-
rithms assume the existence of a numerical reward sig-
nal, in settings involving humans, it is often unclear how
to define a reward signal that accurately reflects optimal
system-human interaction. For instance, in autonomous
driving (Basu et al., 2017) and robotics (Argall et al.,
2009; Akrour et al., 2012), users can have difficulty with
both specifying numerical reward functions and provid-
ing demonstrations of desired behavior. Moreover, a
misspecified reward function can result in “reward hack-
ing” (Amodei et al., 2016), in which undesirable actions
achieve high rewards. In such situations, the user’s pref-
erences could more reliably measure her intentions.

This work studies the problem of preference-based rein-
forcement learning (PBRL), in which the RL agent exe-
cutes a pair of trajectories of interaction with the environ-
ment, and the user provides (noisy) pairwise preference
feedback, revealing which of the two trajectories is pre-
ferred. Though the study of PBRL has seen increased
interest in recent years (Christiano et al., 2017; Wirth
et al., 2017), it remains an open challenge to design for-
mal frameworks that admit tractable theoretical analysis.
While the preference-based bandit setting—in which the
agent observes preferences between selected actions—
has seen significant theoretical progress (e.g., Yue et al.
(2012); Zoghi et al. (2014); Ailon et al. (2014); Szörényi
et al. (2015); Dudı́k et al. (2015); Zoghi et al. (2015);
Ramamohan et al. (2016); Wu and Liu (2016); Sui et al.
(2017, 2018b)), the PBRL setting is more challenging, as
the environment’s dynamics can stochastically translate
the agent’s policies for interaction (analogous to actions
in the bandit setting) to the observed trajectories.

In this paper, we present the DUELING POSTERIOR
SAMPLING (DPS) algorithm, which uses preference-
based posterior sampling to tackle PBRL in the Bayesian
regime. Posterior sampling (Thompson, 1933), also
called Thompson sampling, is a Bayesian model-based
approach to balancing exploration and exploitation,
which enables the algorithm to efficiently learn models



of both the environment’s state transition dynamics and
reward function. Previous work on posterior sampling
in RL (Osband et al., 2013; Gopalan and Mannor, 2015;
Agrawal and Jia, 2017; Osband and Van Roy, 2017) is
focused on learning from absolute rewards, while we
extend posterior sampling to both elicit and learn from
trajectory-level preference feedback.

To elicit preference feedback, at every episode of learn-
ing, DPS draws two independent samples from the pos-
terior to generate two trajectories. This approach is in-
spired by the Self-Sparring algorithm proposed for the
bandit setting (Sui et al., 2017), but has a quite different
theoretical analysis, as we need to incorporate trajectory-
level preference learning and state transition dynamics.

Learning from trajectory-level preferences is in general
a very challenging problem, as information about the re-
wards is sparse (often just one bit), is only relative to
the pair of trajectories being compared, and does not ex-
plicitly include information about actions within trajec-
tories. DPS learns from preference feedback by inter-
nally maintaining a Bayesian state-action reward model
that explains the preferences; this reward model is a solu-
tion to the temporal credit assignment problem (Akrour
et al., 2012; Zoghi et al., 2014; Szörényi et al., 2015;
Christiano et al., 2017; Wirth et al., 2016, 2017), i.e., de-
termining which of the encountered states and actions are
responsible for the trajectory-level preference feedback.

We developed DPS concurrently with an analysis
framework for characterizing regret convergence in the
episodic setting, based upon information-theoretic tech-
niques for bounding the Bayesian regret of posterior
sampling (Russo and Van Roy, 2016). We mathemat-
ically integrate Bayesian credit assignment and prefer-
ence elicitation within the conventional posterior sam-
pling framework, evaluate several credit assignment
models, and prove a Bayesian asymptotic no-regret rate
for DPS with a Bayesian linear regression credit assign-
ment model. To our knowledge, this is the first PBRL ap-
proach with theoretical guarantees. We also demonstrate
that DPS delivers competitive performance empirically.

2 RELATED WORK

Posterior sampling. Balancing exploration and ex-
ploitation is a key problem in RL. In the episodic learn-
ing setting, the agent typically aims to balance explo-
ration and exploitation to minimize its regret, i.e., the
gap between the expected total rewards of the agent and
the optimal policy. Posterior sampling, first proposed in
Thompson (1933), is a Bayesian model-based approach
toward achieving this goal, which iterates between (1)
updating the posterior of a Bayesian environment model

and (2) sampling from this posterior to select the next
policy. In both the bandit and RL settings, posterior sam-
pling has been demonstrated to perform competitively in
experiments and enjoy favorable theoretical regret guar-
antees (Osband and Van Roy, 2017; Osband et al., 2013;
Agrawal and Jia, 2017; Chapelle and Li, 2011).

Our approach builds upon two existing posterior sam-
pling algorithms: Self-Sparring (Sui et al., 2017) for
preference-based bandit learning (also known as duel-
ing bandits (Yue et al., 2012)) and posterior sampling
RL (Osband et al., 2013). Self-Sparring maintains a pos-
terior over each action’s reward, and in each iteration,
draws multiple samples from this posterior to “duel” or
“spar” via preference elicitation. For each set of sampled
rewards, the algorithm executes the action with the high-
est reward sample, obtaining new preferences to update
the model posterior. Sui et al. (2017) prove an asymp-
totic no-regret guarantee for Self-Sparring with indepen-
dent Beta-Bernoulli reward models for each action.

Within RL, posterior sampling has been applied to the
finite-horizon setting with absolute rewards to learn
Bayesian posteriors over both the dynamics and rewards.
Each posterior sample yields models of both dynamics
and rewards, which are used to compute the optimal pol-
icy for the sampled system. This policy is executed to
get a roll-out trajectory, used to update the dynamics and
reward posteriors. In Osband et al. (2013), the authors
show an expected regret of O(hS

√
AT log(SAT )) after

T time-steps, with finite time horizon h and discrete state
and action spaces of sizes S and A, respectively.

Our theoretical analysis studies the Bayesian linear re-
gression credit assignment model, which most closely
resembles Bayesian reward modeling in the linear bandit
setting (Abbasi-Yadkori et al., 2011; Agrawal and Goyal,
2013; Abeille and Lazaric, 2017). While both the PBRL
and linear bandit settings apply Bayesian linear regres-
sion to recover model parameters, PBRL additionally re-
quires learning the dynamics, determining policies via
value iteration, and receiving feedback as preferences be-
tween trajectory pairs.

Several regret analyses in the linear bandit domain
(Abbasi-Yadkori et al., 2011; Agrawal and Goyal, 2013;
Abeille and Lazaric, 2017) rely upon martingale con-
centration properties introduced in Abbasi-Yadkori et al.
(2011), and depend upon a bound that is not applicable
in the preference-based setting (see Appendix C). Intu-
itively, these analyses assume that the agent learns about
rewards with respect to every observation’s feature vec-
tor. In contrast, the preference-based setting assumes that
only the difference in the total rewards of two trajectories
affects human preferences. Thus, while the algorithm in-
curs regret with respect to every sampled trajectory, only



differences between compared trajectory feature vectors
yield information about rewards.

Our regret analysis takes inspiration from the
information-theoretic perspective on Thompson
sampling introduced in Russo and Van Roy (2016),
a framework for quantifying Bayesian regret in terms of
the information gained at each step about the optimal
action. This analysis focuses upon upper-bounding the
information ratio, which quantifies the trade-off between
exploration (via the information gain) and exploitation
(via the instantaneous regret) at each step. Several
studies (Zanette and Sarkar, 2017; Nikolov et al., 2018)
consider extensions of this work to the RL setting, but
to our knowledge, it has not previously been applied
toward preference-based learning.

Preference-based learning. Previous work on PBRL
has shown successful performance in a number of ap-
plications, including Atari games and the Mujoco envi-
ronment (Christiano et al., 2017), learning human prefer-
ences for autonomous driving (Sadigh et al., 2017), and
selecting a robot’s controller parameters (Kupcsik et al.,
2018; Akrour et al., 2014). Yet, to our knowledge, the
PBRL literature still lacks theoretical guarantees.

Much of the existing work in PBRL handles a distinct
setting from ours. While we seek online regret minimiza-
tion, several existing algorithms minimize the number of
preference queries (Christiano et al., 2017; Wirth et al.,
2016). Such algorithms, for instance those which apply
deep learning, typically assume that many simulations
can be cheaply run between preference queries. In con-
trast, our setting assumes that experimentation is as ex-
pensive as preference elicitation; this could include such
domains as adaptive experiment design and human-robot
interaction without well-understood human dynamics.

Existing approaches for trajectory-level preference-
based RL may be broadly divided into three categories
(Wirth, 2017): a) directly optimizing policy parameters
(Wilson et al., 2012; Busa-Fekete et al., 2013; Kupc-
sik et al., 2018); b) modeling action preferences in each
state (Fürnkranz et al., 2012); and c) learning a utility
function to characterize the rewards, returns, or values of
state-action pairs (Wirth and Fürnkranz, 2013a,b; Akrour
et al., 2012; Wirth et al., 2016; Christiano et al., 2017).
In c), the utility is often modeled as linear in the trajec-
tory features. If those features are defined in terms of
visitations to each state-action pair, then utility directly
corresponds to the total (undiscounted) reward.

We adopt the third of these paradigms: PBRL with
underlying utility functions. By inferring state-action
rewards from preference feedback, one can derive
relatively-interpretable reward models and employ such

methods as value iteration. In addition, utility-based
approaches may be more sample efficient compared to
policy search and preference relation methods (Wirth,
2017), as they extract more information from each ob-
servation. Notably, Wilson et al. (2012) learn a Bayesian
model over policy parameters, and sample from its pos-
terior to inform actions. From existing PBRL meth-
ods, their algorithm perhaps most resembles ours; how-
ever, compared to utility-based approaches, policy search
methods typically require either more samples or expert
knowledge to craft the policy parameters (Wirth et al.,
2017; Kupcsik et al., 2018).

Beyond RL, preference-based learning has been the sub-
ject of much research. The bandit setting (Yue et al.,
2012; Zoghi et al., 2014; Ailon et al., 2014; Szörényi
et al., 2015; Dudı́k et al., 2015; Zoghi et al., 2015; Ra-
mamohan et al., 2016; Wu and Liu, 2016; Sui et al., 2017,
2018b) is closest, as it is essentially a single-state variant
of RL. Other settings include: active learning (Sadigh
et al., 2017; Houlsby et al., 2011; Eric et al., 2008), which
is focused exclusively on learning an accurate model
rather than maximizing utility of decision-making; learn-
ing with more structured preference feedback (Radlinski
and Joachims, 2005; Shivaswamy and Joachims, 2012;
Raman et al., 2013; Shivaswamy and Joachims, 2015),
where the learner receives more than one bit of informa-
tion per preference elicitation; and batch supervised set-
tings such as learning to rank (Herbrich et al., 1999; Chu
and Ghahramani, 2005; Joachims, 2005; Burges et al.,
2005; Yue et al., 2007; Burges et al., 2007; Liu, 2009).

3 PROBLEM STATEMENT

Preliminaries. We consider fixed-horizon Markov De-
cision Processes (MDPs), in which rewards are re-
placed by preferences over trajectories. This class
of MDPs can be represented as a tuple, M =
(S,A, φ, p, p0, h), where the state space S and action
space A are finite sets with cardinalities S and A, re-
spectively. The agent episodically interacts with the en-
vironment in length-h roll-out trajectories of the form
τ = {s1, a1, s2, a2, . . . , sh, ah, sh+1}. In the ith iter-
ation, the agent executes two trajectory roll-outs τi1 and
τi2 and observes a preference between them; we use the
notation τ � τ ′ to indicate a preference for trajectory τ
over τ ′. The initial state is sampled from p0, while p de-
fines the transition dynamics: st+1 ∼ p(·|st, at). Finally,
the function φ captures the preference feedback genera-
tion mechanism: φ(τ, τ ′) := P (τ � τ ′) ∈ [0, 1].

A policy, π : S × {1, . . . , h} −→ A, is a (possibly-
stochastic) mapping from states and time indices to ac-
tions. In each iteration i, the agent selects two policies,
πi1 and πi2, which are rolled out to obtain trajectories τi1



and τi2 and preference label yi. We represent each tra-
jectory as a feature vector, where the features record the
number of times each state-action pair is visited. In it-
eration i, rolled-out trajectories τi1 and τi2 correspond,
respectively, to feature vectors xi1,xi2 ∈ Rd, where
d := SA is the total number of state-action pairs, and
the kth element of xij , j ∈ {1, 2}, is the number of times
that τij visits state-action pair k. The preference for iter-
ation i is denoted yi := I[τi2�τi1]− 1

2 ∈
{
− 1

2 ,
1
2

}
, where

I[·] denotes the indicator function, so that P
(
yi = 1

2

)
=

1− P
(
yi = − 1

2

)
= φ(τi2, τi1)− 1

2 ; there are no ties in
any comparisons. Lastly, we define xi := xi2 − xi1.

Our analysis builds upon two main assumptions. Firstly,
we assume the existence of underlying utilities, quanti-
fying the user’s satisfaction with each trajectory:
Assumption 1. Each trajectory τ has utility r(τ), which
decomposes additively: r(τ) ≡

∑h
t=1 r(st, at) for the

state-action pairs in τ . Defining r ∈ Rd as the vector
of all state-action rewards, r(τ) can also be expressed in
terms of τ ’s state-action visit counts x: r(τ) = rTx.

Secondly, we assume that the utilities r(τ) are stochas-
tically translated to preferences via the noise model φ,
such that the probability of observing τi2 � τi1 is a
function of the difference in their utilities. Intuitively,
the greater the disparity in two trajectories’ utilities, the
more accurate the user’s preference between them:
Assumption 2. P (τi2 � τi1) = φ(τi2, τi1) =
g(r(τi2) − r(τi1)) + 1

2 = g(rTxi2 − rTxi1) + 1
2 ,

where g : R −→
[
− 1

2 ,
1
2

]
is a link function such that

a) g is non-decreasing, and b) g(x) = −g(−x) to en-
sure that P (τ � τ ′) = 1 − P (τ ′ � τ). Note that
if r(τ) = r(τ ′), we have P (τ � τ ′) = 1

2 , and that
P (τi2 � τi1) > 1

2 ⇔ g(rTxi) > 0⇔ rTxi2 > r
Txi1.

For noiseless preferences, gideal(x) := I[x>0] − 1
2 . Al-

ternatively, the logistic or Bradley-Terry link function
is defined as glog(x) := [1 + exp(−x/c)]−1 − 1

2 with
“temperature” c ∈ (0,∞). Our theoretical analysis
assumes the linear link function (Ailon et al., 2014):
glin(x) := cx, for c > 0 and x ∈ [− 1

2c ,
1
2c ]. Then,

E[yi] = P (τi2 � τi1) − 1
2 = crT (xi2 − xi1). With-

out loss of generality, we set c = 1 by subsuming c into
r. Denote the observation noise associated with glin on
iteration i as ηi, such that yi = rT (xi2 − xi1) + ηi.

Given a policy π, we can define the standard RL value
function as the expected total utility when starting in state
s at step j, and following π:

Vπ,j(s) = E

 h∑
t=j

r(st, π(st, t))
∣∣ sj = s

 . (1)

The optimal policy π∗ is then defined as one

that maximizes the expected value over all input
states: π∗ = supπ

∑
s∈S p0(s)Vπ,1(s). Note that

Es1∼p0 [Vπ,1(s1)] ≡ Eτ∼(π,M) [r(τ)]. Given fully spec-
ified dynamics and rewards, p and r, it is straight-
forward to apply standard dynamic programming ap-
proaches such as value iteration to arrive at the optimal
policy under p and r. The learning goal, then, is to infer p
and r to the extent necessary for good decision-making.

Learning problem. We quantify the learning agent’s
performance via its cumulative T -step Bayesian regret
relative to the optimal policy:

E[REG(T )] = E

{ dT/(2h)e∑
i=1

∑
s∈S

p0(s)
[
2Vπ∗,1(s)

− Vπi1,1(s)− Vπi2,1(s)
]}
. (2)

To minimize regret, the agent must balance exploration
(collecting new data) with exploitation (behaving op-
timally given current knowledge). Over-exploration
of bad trajectories will incur large regret, and under-
exploration can prevent convergence to optimality. In
contrast to the standard regret formulation in RL, at each
iteration we measure regret of both selected policies.

Assumptions. We make two further assumptions. The
first imposes a regularity condition upon the noise ηi:
Assumption 3. The label noise ηi = yi−rTxi is condi-
tionallyR-sub-Gaussian, that is, there existsR ≥ 0 such
that ∀λ ∈ R:

E
[
eληi

∣∣x1, . . . ,xi−1, η1, . . . , ηi−1

]
≤ exp

(
λ2R2

2

)
.

Note that bounded, zero-mean noise lying in an interval
of length at most 2R is R-sub-Gaussian, and that sub-
Gaussianity requires E[ηi |x1, . . . ,xi, η1, . . . , ηi−1] =
0 (Abbasi-Yadkori et al., 2011). Since yi ∈

{
− 1

2 ,
1
2

}
and E[yi |xi] = rTxi ∈

[
− 1

2 ,
1
2

]
, we must have ηi ∈

[−1, 1]. Thus, ηi is R-sub-Gaussian with R ≤ 1, pro-
vided that E[ηi |x1, . . . ,xi, η1, . . . , ηi−1] = 0. The lat-
ter holds by the assumption that E[yi |xi] = rTxi.
Assumption 4. For some known Sr <∞, ||r||2 ≤ Sr.

Additional notation. For random variables X and Xn,
n ∈ N, Xn

D−→ X denotes that Xn converges to X in
distribution. For x ∈ Rd and positive definite matrix
B ∈ Rd×d, we define the norm ||x||B :=

√
xTBx.

4 ALGORITHM

As outlined in Algorithm 1, DUELING POSTERIOR
SAMPLING (DPS) iterates among three steps: (a) sam-
pling two policies πi1, πi2 from the Bayesian posteriors



Algorithm 1 DUELING POSTERIOR SAMPLING (DPS)
H0 = ∅ {Initialize history}
Initialize prior for fp {Initialize state transition model}
Initialize prior for fr {Initialize utility model}
for i = 1, 2, . . . do
πi1 ← ADVANCE(fp, fr)
πi2 ← ADVANCE(fp, fr)
Sample trajectories τi1 and τi2 from πi1 and πi2
Observe feedback yi = I[τi2�τi1] −

1
2

Hi = Hi−1 ∪ (τi1, τi2, yi)
fp, fr = FEEDBACK(Hi, fp, fr)

end for

of the dynamics and utility models (ADVANCE – Algo-
rithm 2); (b) rolling out πi1 and πi2 to obtain trajecto-
ries τi1 and τi2, and receiving a preference yi between
them; and (c) updating the posterior (FEEDBACK – Al-
gorithm 3). In contrast to conventional posterior sam-
pling with absolute feedback, DPS samples two poli-
cies rather than one at each iteration and solves a credit
assignment problem to learn from feedback.

ADVANCE (Algorithm 2) samples from the Bayesian
posteriors of the dynamics and utility models to select
a policy to roll out. The sampled dynamics and utilities
form an MDP, for which value iteration derives the opti-
mal policy π under the sample. One can also view π as a
random function whose randomness depends on the sam-
pling of the dynamics and utility models. In the Bayesian
setting, it can be shown that π is sampled according to its
posterior probability of being the optimal policy π∗. In-
tuitively, peaked (i.e., certain) posteriors lead to less vari-
ability when sampling π, which implies less exploration,
while diffuse (i.e., uncertain) posteriors lead to greater
variability when sampling π, implying more exploration.

FEEDBACK (Algorithm 3) updates the Bayesian posteri-
ors of the dynamics and utility models based on new data.
Updating the dynamics posterior is relatively straight-
forward, as we assume that the dynamics are fully-
observed; we model the dynamics prior via a Dirich-
let distribution for each state-action pair, with conju-
gate multinomial observation likelihoods. In contrast,
performing Bayesian inference over state-action utilities
from trajectory-level feedback is much more challeng-
ing. We consider a range of approaches (see Appendix
B), and found Bayesian linear regression (Section 4.1)
to both perform well and admit tractable analysis within
our theoretical framework.

4.1 BAYESIAN LINEAR REGRESSION FOR
UTILITY INFERENCE AND CREDIT
ASSIGNMENT

Credit assignment is the problem of inferring which
state-action pairs are responsible for observed trajectory-

Algorithm 2 ADVANCE: Sample policy from dynamics
and utility models

Input: fp, fr
Sample p̃ ∼ fp(·) {Sample MDP transition dynamics pa-
rameters from posterior}
Sample r̃ ∼ fr(·) {Sample utilities from posterior}
Compute π = argmaxπV (p̃, r̃) {Value iteration yields
sampled MDP’s optimal policy}
Return π

Algorithm 3 FEEDBACK: Update dynamics and utility
models based on new user feedback

Input: historyH, fp, fr
Apply Bayesian update to fp, given H {Update dynamics
model given history}
Apply Bayesian update to fr , givenH {Update utility model
given preferences}
Return fp, fr

level preferences. We detail a Bayesian linear regression
approach to addressing this task in our setting.

Let n be the number of iterations, or trajectory pairs, ob-
served so far. Then, the maximum a posteriori (MAP)
estimate of the rewards r is calculated via ridge regres-
sion, similarly to algorithms for the linear bandit setting:

r̂n = M−1
n

n−1∑
i=1

yixi, where (3)

Mn = λI +

n−1∑
i=1

xix
T
i , and λ ≥ 1. (4)

We perform Thompson sampling as in Agrawal and
Goyal (2013) and Abeille and Lazaric (2017), such that
in iteration n, rewards are sampled from the distribution:

r̃n1, r̃n2 ∼ N (r̂n, βn(δ)2M−1
n ), where (5)

βn(δ) = R

√
2 log

(
det(Mn)1/2λ−d/2

δ

)
+
√
λSr

≤ R

√√√√d log

(
1 + L2n

dλ

δ

)
+
√
λSr,

and where δ ∈ (0, 1) is a failure probability and for all n,
||xn||2 ≤ L. Note that L ≤ 2h, since ||xn||2 = ||xn2 −
xn1||2 ≤ ||xn2 − xn1||1 ≤ ||xn2||1 + ||xn1||1 = 2h.

The factor βn(δ), introduced in Abbasi-Yadkori et al.
(2011), is critical to deriving the theoretical guarantees
for posterior sampling with linear bandits in Agrawal
and Goyal (2013) and Abeille and Lazaric (2017), due
to their dependence on Theorems 1 and 2 of Abbasi-
Yadkori et al. (2011). Our analysis invokes these results
as well. Both of the theorems require any noise in the la-
bels yn to be sub-Gaussian; in our case, sub-Gaussianity



holds by Assumption 3, as we adopted the linear prefer-
ence noise model with link function glin.

Our theoretical analysis is quite different from that for
linear bandits in Agrawal and Goyal (2013) and Abeille
and Lazaric (2017), because in our setting, observations
xn are differences of trajectory feature vectors, policies
are chosen via value iteration, and trajectories are ob-
tained by rolling out RL policies while subject to the en-
vironment’s state transition dynamics.

5 THEORETICAL RESULTS

This section sketches our analysis of the asymptotic
Bayesian regret of DPS under a Bayesian linear regres-
sion credit assignment model. Appendix A details the
full proof, while Appendix B.4 discusses possible future
extensions to additional credit assignment models.

The analysis follows three main steps: 1) we prove that
DPS is asymptotically-consistent, that is, the probability
with which DPS selects the optimal policy approaches
1 over time (Appendix A.1); 2) we asymptotically bound
the one-sided Bayesian regret for πi2 under the set-
ting where, at each iteration i, DPS only selects policy
πi2, while policy πi1 is sampled from a fixed distribu-
tion over policies (Appendix A.2); and lastly, 3) we as-
sume DPS selects policy πi2, while the πi1-distribution
is drifting but converging, and then we asymptotically
bound the one-sided regret for πi2 (Appendix A.3). Due
to the asymptotic consistency shown in 1), the policies
are indeed sampled from converging distributions, and
so the asymptotic regret rate in 3) holds.

This outline is inspired by the analysis for Self-Sparring
(Sui et al., 2017); however, because their guarantee is
for dueling bandits with independent Beta-Bernoulli re-
ward models for each action, the details of our analysis
are completely different from theirs. Below, we give in-
tuition for each of the three portions of the proof.

Asymptotic consistency of DPS. To prove that DPS is
asymptotically consistent, we first prove that samples of
the dynamics and reward parameters converge in distri-
bution to their true values:
Proposition 1. The sampled dynamics converge in dis-
tribution to their true values as the DPS iteration in-
creases.

Proof sketch. Applying standard concentration inequal-
ities to the Dirichlet dynamics posterior, one can show
that the sampled dynamics converge in distribution to
their true values if every state-action pair is visited
infinitely-often. The latter condition can be proven via
contradiction: assuming that certain state-action pairs
are visited finitely-often, DPS does not receive new in-

formation about their rewards. Examining their reward
posteriors, we show that DPS is guaranteed to eventu-
ally sample high enough rewards in the unvisited state-
actions that its policies will attempt to reach them.

We also show that with high probability, the sampled re-
wards exhibit aymptotic consistency:

Proposition 2. With probability 1 − δ, where δ is a
parameter of the Bayesian linear regression model, the
sampled rewards converge in distribution to the true re-
ward parameters, r, as the DPS iteration increases.

Proof sketch. We leverage Theorem 2 from Abbasi-
Yadkori et al. (2011) (Lemma 4 in Appendix A.4): under
stated conditions and for any δ > 0, with probability 1−δ
and for all i > 0, ||r̂i − r||Mi

≤ βi(δ). This result de-
fines a high-confidence ellipsoid, which can be linked to
the posterior sampling distribution. We demonstrate that
it suffices to show that all eigenvalues of the posterior co-
variance matrix, βi(δ)2M−1

i , converge in distribution to
zero. This statement is proven via contradiction: we an-
alyze the behavior of posterior sampling if this does not
hold. The probability of failure δ comes entirely from
Theorem 2 in Abbasi-Yadkori et al. (2011).

From the asymptotic consistency of the dynamics and re-
ward samples, it is straightforward to show that the sam-
pled policies converge to the optimal policy:

Theorem 1. With probability 1 − δ, the sampled poli-
cies πi1, πi2 converge in distribution to the optimal pol-
icy, π∗, as i −→ ∞. That is, P (πi1 = π∗) −→ 1 and
P (πi2 = π∗) −→ 1 as i −→∞.

Bounding the one-sided regret under a fixed πi1-
distribution. To analyze the Bayesian regret of DPS,
we adapt the information-theoretic posterior sampling
analysis in Russo and Van Roy (2016) to the PBRL set-
ting. In comparison to Russo and Van Roy’s work, this
requires accounting for preference feedback and incor-
porating state transition dynamics. Their analysis hinges
upon defining a quantity called the information ratio,
which captures the trade-off between exploration and ex-
ploitation. In our setting, we define the information ratio
corresponding to the one-sided regret of πi2 as:

Γi :=
Ei[y∗i − yi]2

Ii(π∗; (πi2, τi1, τi2,xi2 − xi1, yi))
,

where yi is the label in iteration i, y∗i is the label in it-
eration i given πi2 = π∗, I(·; ·) denotes mutual infor-
mation, and the subscripts i in Ei[·] and Ii(·; ·) indicate
conditioning upon the history, as formalized in Appendix
A.2. The ratio Γi is between the squared instantaneous
one-sided regret of πi2 (exploitation) and the information
gained about the optimal policy (exploration).



When πi1 is drawn from a fixed distribution, we show
that analogously to Russo and Van Roy (2016), the
Bayesian one-sided regret E[REG2(T )] for πi2 can be
bounded in terms of an upper bound on Γi:

Lemma 12. If Γi ≤ Γ almost surely for each i ∈
{1, . . . , N}, where N is the number of DPS iterations
(over which the policies πi2 take T = Nh actions), then:

E[REG2(T )] = E[REG2(Nh)] ≤
√

ΓH(π∗)N,

where H(π∗) is the entropy of the optimal policy π∗.
Because there are at most ASh deterministic policies,
H(π∗) ≤ log |ASh| = Sh logA. Substituting this,

E[REG2(T )] ≤
√

ΓShN logA =

√
ΓST logA.

We show that Γi can be asymptotically upper-bounded
such that limi−→∞ Γi ≤ SA

2 , and consequently:

Theorem 2. If the policy πi1 is drawn from a fixed dis-
tribution for all i, then for the competing policy πi2,
DPS achieves a one-sided asymptotic Bayesian regret

rate of S
√

AT logA
2 .

The bounds in Lemma 12 and Theorem 2 are asymp-
totic rather than finite-time, due to the convergence in
distribution of the dynamics. If the dynamics are known
a priori, then these would be finite-time guarantees; in
fact, to prove Lemma 12, we first show that under known
dynamics, Γi ≤ SA

2 for all i, and then extend the anal-
ysis to prove that under converging dynamics, the result
still holds asymptotically. Note that in the PBRL set-
ting, it is significantly more difficult to learn the rewards
via credit assignment than to learn the dynamics, which
are assumed to be fully-observed. Thus, in practice, we
expect that DPS would learn the dynamics much faster
than the rewards, and so it is reasonable to consider con-
vergence of the dynamics model only asymptotically.

Bounding the one-sided regret under a converging
πi1-distribution. Finally, we assume that the distribu-
tion of πi1 is no longer fixed, but rather converges to
some fixed distribution over deterministic policies. To
asymptotically bound the one-sided regret incurred by
πi2, we leverage that when two discrete random vari-
ables converge in distribution, such that Xn

D−→ X

and Yn
D−→ Y , their mutual information also converges:

limn−→∞ I(Xn, Yn) = I(X,Y ). This fact allows us to
bound the one-sided regret for πi2 as follows:

Lemma 17. Assume that the sampling distribution of πi1
converges to a fixed probability distribution. Then, the
information ratio Γi corresponding to πi2’s one-sided re-
gret E[REG2(T )] satisfies limi−→∞ Γi ≤ SA

2 .

Combining Lemma 17 with the asymptotic consistency
of sampled policies as shown in Theorem 1, P (πi1 =
π∗) −→ 1, yields our main theoretical result:
Theorem 3. With probability 1−δ, where δ is a parame-
ter of the Bayesian linear regression model, the expected
Bayesian regret E[REG(T )] of DPS achieves an asymp-
totic rate of S

√
2AT logA.

Discussion. The specific theoretical results presented
yield a high-probability asymptotic Bayesian no-regret
rate for DPS under Bayesian linear regression credit as-
signment. The proof consists of first demonstrating that
the algorithm is asymptotically consistent, and then ana-
lyzing its information ratio to characterize the Bayesian
regret. We adopted this information-theoretic perspec-
tive because we found it more amenable to preference-
based feedback than other prevalent methods from the
linear bandits literature.

In particular, while several existing regret analyses for
posterior sampling with linear bandits (Agrawal and
Goyal, 2013; Abeille and Lazaric, 2017) are based upon
martingale concentration properties derived in Abbasi-
Yadkori et al. (2011), we found that these techniques
cannot readily extend to the preference-feedback setting
(Appendix C). These linear bandit analyses assume that
each observation xi that incurs regret contributes fully
toward learning the rewards. In contrast, we assume that
while regret is incurred with respect to the observations
xi1,xi2, learning occurs only with respect to observation
differences, xi = xi2 − xi1. In preference-based learn-
ing settings, it is common to make such assumptions as
P (τi2 � τi1) = g(xi2 − xi1), for some function g. In
comparison to the martingale-based techniques, the in-
formation ratio provides a more direct method for quanti-
fying the trade-off between exploration and exploitation.

Theoretically analyzing other credit assignment models,
in addition to Bayesian linear regression, is an important
direction for future work. We conjecture that our proof
methodology could extend toward other asymptotically-
consistent credit assignment models. Indeed, recent
work (Dong and Van Roy, 2018) has analyzed the in-
formation ratio for more general link functions, includ-
ing for logistic bandits. It would be interesting to study
the information ratio’s behavior under general link func-
tions, as well as to characterize its relationship to the dy-
namics model’s convergence. It would also be interest-
ing to develop methodology for extending the analysis to
achieve finite-time convergence guarantees.

6 EXPERIMENTS

We validate the empirical performance of DPS in three
simulated domains with varying degrees of preference



(a) RiverSwim, c = 0.0001 (b) Random MDPs, c = 0.0001 (c) Mountain Car, c = 0.0001

(d) RiverSwim, c = 1 (e) Random MDPs, c = 1 (f) Mountain Car, c = 0.1

Figure 1: Empirical performance of DPS; each simulated environment is shown under the two least-noisy user pref-
erence models evaluated. The plots show DPS with three credit assignment models: Gaussian process regression
(GPR), Bayesian linear regression, and a Gaussian process preference model. PSRL is an upper bound that receives
numerical rewards, while EPMC is a baseline. Plots display the mean +/- one standard deviation over 100 runs of each
algorithm tested. The remaining user noise models are plotted in Appendix D. For RiverSwim and Random MDPs,
normalization is with respect to the total reward achieved by the optimal policy. Overall, we see that DPS performs
well and is robust to the choice of credit assignment model.

noise and using three alternative credit assignment mod-
els. We find that DPS generally performs well and com-
pares favorably against standard PBRL baselines.

Experimental setup. We evaluate on three simulated en-
vironments: RiverSwim and random MDPs (described
in Osband et al. (2013)) and the Mountain Car prob-
lem as detailed in Wirth (2017). The RiverSwim envi-
ronment has six states and two actions (actions 0 and
1); the optimal policy always chooses action 1, which
maximizes the probability of reaching a goal state-action
pair. Meanwhile, a suboptimal policy—yielding a small
reward compared to the goal—is quickly and easily dis-
covered and incentivizes the agent to always select action
0. The algorithm must demonstrate sufficient exploration
to have hope of discovering the optimal policy quickly.

In the second environment, we generate random MDPs
with 10 states and 5 actions. The transition dynamics and
rewards are respectively generated from Dirichlet (all pa-
rameters set to 0.1) and exponential (rate parameter =
5) distributions. These distribution parameters were cho-

sen to generate MDPs with sparse dynamics and rewards.
For each random MDP, the sampled reward values were
shifted and normalized so that the minimum reward is
zero and their mean is one.

Thirdly, in the Mountain Car problem, an under-powered
car in a valley must reach the top of a hill by accelerat-
ing in both directions to build its momentum. The state
space is two-dimensional (position and velocity), while
there are three actions (left, right, and neutral). Our im-
plementation begins each episode in a uniformly-random
state and has a maximum episode length of 500. We dis-
cretize the state space into 10 states in each dimension.
Each episode terminates either when the car reaches the
goal or after 500 steps, and rewards are -1 in every step.

In each environment, preferences between trajectory
pairs were generated by (noisily) comparing their to-
tal accrued rewards; this reward information was hidden
from the learning algorithm, which observed only the tra-
jectory preferences and state transitions. For trajectories
τi and τj with total rewards r(τi) and r(τj), we con-



sider two models for generating preferences: a) a logistic
model, P (τi � τj) = {1 + exp[−(r(τi)− r(τj))/c]}−1,
and b) a linear model, P (τi � τj) = (r(τi) − r(τj))/c,
where in both cases, the temperature c controls the de-
gree of noisiness. In the linear case, c is assumed to be
large enough that P (τi � τj) ∈ [0, 1]. Note that in ties
where r(τi) = r(τj), preferences are uniformly-random.

Methods compared. We evaluate DPS under three
credit assignment models (Appendix B): 1) Bayesian
linear regression, 2) Gaussian process regression, and
3) a Gaussian process preference model. User noise
generated via the logistic model has noise levels: c ∈
{10, 2, 1, 0.001} for RiverSwim and random MDPs and
c ∈ {100, 20, 10, 0.001} for the Mountain Car. We se-
lected higher values of c for the Mountain Car because
|r(τi)− r(τj)| has a wider range. Additionally, we eval-
uate the linear preference noise model with c = 2h∆r,
where ∆r is the difference between the maximum and
minimum element of r for each MDP; this choice of c
guarantees that P (τi � τj) ∈ [0, 1], but yields noisier
preferences than the logistic noise models considered.

As discussed in Section 2, many existing PBRL algo-
rithms handle a somewhat distinct setting from ours, as
they assume access to a simulator between preference
queries and/or prioritize minimizing preference queries
rather than online regret. As a baseline, we evaluate
the Every-Visit Preference Monte Carlo (EPMC) algo-
rithm with probabilistic credit assignment (Wirth and
Fürnkranz, 2013b; Wirth, 2017). While EPMC does
not require simulations between preference queries, it
has several limitations, including: 1) the exploration
approach always takes uniformly-random actions with
some probability, and thus, the authors’ plots do not de-
pict online reward accumulation, and 2) EPMC assumes
that compared trajectories start in the same state. Lastly,
we compare against the posterior sampling RL algorithm
(PSRL) from Osband et al. (2013), which receives the
true numerical rewards at each step, and thus upper-
bounds the achievable performance of a preference-
based algorithm.

Results. Figure 1 depicts performance curves for
the three environments, each with two noise models
(Appendix D contains additional results and details).
DPS performs well in all simulations, and significantly
outperforms the EPMC baseline. In RiverSwim, most
credit assignment models perform best in the second-to-
least-noisy case (logistic noise, c = 1), since it is harder
to escape the local minimum under the least-noisy prefer-
ences. We also see that DPS is competitive with PSRL,
which has access to the full cardinal rewards at each
state-action. Additionally, while our theoretical guaran-
tees for DPS assume fixed-horizon episodes, the Moun-

tain Car results demonstrate that it also succeeds with
variable episode lengths. Finally, the performance of
DPS is robust to the choice of credit assignment model,
and in fact using Gaussian processes (for which we do
not have an end-to-end regret analysis) often leads to
the best empirical performance. These results suggest
that DPS is a practically-promising approach that can
robustly incorporate many models as subroutines.

7 CONCLUSION

This work investigates the preference-based reinforce-
ment learning problem, in which an RL agent receives
comparative preferences instead of absolute real-valued
rewards as feedback. We develop the DUELING POS-
TERIOR SAMPLING (DPS) algorithm, which optimizes
policies in a highly efficient and flexible way. To our
knowledge, DPS is the first preference-based RL algo-
rithm with a regret guarantee. DPS also performs well in
our simulations, making it both a theoretically-justified
and practically-promising algorithm.

There are many directions for future work. Assumptions
governing the user’s preferences, such as requiring an un-
derlying utility model, could be relaxed. It would also
be interesting to extend our theoretical analysis to addi-
tional credit assignment approaches and to pursue finite-
time guarantees. We expect that DPS would perform
well with any asymptotically-consistent reward model
that sufficiently captures users’ preference behavior, and
hope to develop models that are tractable with larger state
and action spaces. For instance, incorporating kernelized
input spaces could further improve sample efficiency.
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E. Hüllermeier. Preference-based evolutionary direct policy
search. In ICRA Workshop on Autonomous Learning, 2013.

O. Chapelle and L. Li. An empirical evaluation of Thompson
sampling. In NeurIPS, 2011.

P. F. Christiano, J. Leike, T. Brown, et al. Deep reinforcement
learning from human preferences. In NeurIPS, 2017.

W. Chu and Z. Ghahramani. Preference learning with Gaussian
processes. In ICML, 2005.

T. M. Cover and J. A. Thomas. Elements of information theory.
John Wiley & Sons, 2012.

S. Dong and B. Van Roy. An information-theoretic analysis for
Thompson sampling with many actions. In NeurIPS, 2018.

S. Dong, T. Ma, and B. Van Roy. On the performance of
Thompson sampling on logistic bandits. In COLT, 2019.

M. Dudı́k, K. Hofmann, R. E. Schapire, A. Slivkins, and
M. Zoghi. Contextual dueling bandits. In COLT, 2015.

B. Eric, N. D. Freitas, and A. Ghosh. Active preference learn-
ing with discrete choice data. In NeurIPS, 2008.
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APPENDICES

A DERIVATION OF THE ASYMPTOTIC REGRET RATE

As outlined in Section 5, the analysis follows three main steps:

1. Prove that DPS is asymptotically-consistent, that is, over time, the probability that DPS selects the optimal
policy approaches 1 (Appendix A.1).

2. Assume that in each iteration i, policy πi1 is drawn from a fixed distribution while policy πi2 is selected by DPS.
Then, asymptotically bound the one-sided regret rate for πi2 (Appendix A.2).

3. Assume that policy πi1 is drawn from a drifting but converging distribution while policy πi2 is selected by DPS.
Then, asymptotically bound the one-sided regret rate for πi2 (Appendix A.3).

Finally, Appendix A.4 combines these results to asymptotically bound the expected regret rate.

A.1 ASYMPTOTIC CONSISTENCY OF DPS

We show asymptotic consistency of DPS in three parts: 1) samples from the model posterior over transition dynamics
parameters converge in distribution to the true transition probabilities; 2) samples from the reward posterior converge
in distribution to the true utilities; and 3) consequently, the sampled policies converge in distribution to the optimal
policy.

State transition dynamics are modeled independently for each state-action pair. For a given state-action pair, a Dirichlet
model estimates the probability of transitioning to each possible subsequent state. The prior and posterior distributions
are both Dirichlet; because the Dirichlet and multinomial distributions are conjugate, each state-action pair’s posterior
can be updated easily using the observed transitions from that state-action. Each time that DPS draws a sample
from the dynamics distribution, values are sampled for all S2A transition parameters, {P (st+1 = s′ | st = s, at =
a) | s, s′ ∈ S, a ∈ A}.

Notation. This section uses the following notation. Let p ∈ RS2A be the vector containing all true state transition
dynamics parameters, {P (st+1 = s′ | st = s, at = a) | s, s′ ∈ S, a ∈ A}. Let p̃i1, p̃i2 ∈ RS2A be the two posterior
samples of the transition dynamics p in iteration i. Similarly, r ∈ RSA is the vector of true reward parameters, while
r̃i1, r̃i2 ∈ RSA are posterior samples of r in iteration i. For a random variable X and a sequence of random variables
(Xn), n ∈ N, Xn

D−→ X denotes thatXn converges toX in distribution, whileXn
P−→ X denotes thatXn converges

to X in probability. Notation for the value function and for policies given by value iteration follows.
Definition 1 (Value function given transition dynamics, rewards, and a policy). Define V (p, r, π) as the value function
over a length-h episode—i.e., the expected total reward in the episode—under transition dynamics p ∈ RS2A, rewards
r ∈ RSA, and policy π:

V (p, r, π) =
∑
s∈S

p0(s)E

[
h∑
t=1

r(st, π(st, t))
∣∣∣ s1 = s,p = p, r = r

]
.

Definition 2 (Optimal deterministic policy given transition dynamics and rewards). Define πvi(p, r) :=

argmaxπV (p, r, π) as the optimal deterministic policy given transition dynamics p ∈ RS2A and rewards r ∈ RSA
(breaking ties randomly if multiple deterministic policies achieve the maximum). Note that πvi(p, r) can be found
via finite-horizon value iteration: defining Vπ,t(s) as in (1), set Vπ,h+1(s) := 0 for each s ∈ S and use the Bellman
equation to calculate Vπ,t(s) successively for t ∈ {h, h− 1, . . . , 1} given p and r:

π(s, t) = argmaxa∈A

[
r(s, a) +

∑
s′∈S

P (st+1 = s′ | st = s, at = a)Vπ,t+1(s′)

]
,

Vπ,t(s) =
∑
a∈A

I[π(s,t)=a]

[
r(s, a) +

∑
s′∈S

P (st+1 = s′ | st = s, at = a)Vπ,t+1(s′)

]
.



As value iteration results in only deterministic policies, of which there are finitely-many (more precisely, there are
ASh), the maximum argument πvi(p, r) := argmaxπV (p, r, π) is taken over a finite policy class.

Finally, we define notation for the eigenvectors and eigenvalues of the matrix Mi := λI +
∑i−1
k=1 xkx

T
k (see Equation

(4)).

Definition 3 (Eigenvalue notation). Let λ(i)
j refer to the jth-largest eigenvalue ofMi, and v(i)

j denote its corresponding

eigenvector. Note that M−1
i also has eigenvectors v(i)

j , with corresponding eigenvalues 1

λ
(i)
j

. Because Mi is positive

definite, the eigenvectors {v(i)
j } form an orthonormal basis, and λ(i)

j > 0 for all i, j.

We demonstrate convergence in distribution of the sampled transition dynamics parameters. First, Lemma 1 shows that
if every state-action pair is visited infinitely-often, the desired result holds. Then, Lemma 3 completes the argument
by showing that DPS indeed visits each state-action pair infinitely-often.

Lemma 1. If every state-action pair is visited infinitely-often, then the sampled transition dynamics parameters con-
verge in distribution to their true values: p̃i1, p̃i2

D−→ p as i −→∞, where D−→ denotes convergence in distribution.

Proof. Denote the d = SA state-action pairs as s̃1, . . . , s̃d. At a particular DPS episode, let nj be the number of visits
to s̃j and njk be the number of observed transitions from s̃j to the kth subsequent state. For the jth state-action pair at
iteration i, let p(j), p̃(j), p̂(j), p̂′(j) ∈ RS be the true, sampled, MAP, and maximum likelihood dynamics parameters,
respectively (hiding the dependency on the DPS episode i1 or i2 for the latter three quantities); thus, [p(j)]k denotes
the true probability of transitioning from state-action pair s̃j to the kth state, and analogously for the kth elements of
p̃(j), p̂(j), and p̂′(j). Then, from the Dirichlet model,

[p̂(j)]k =
njk + αjk,0

nj +
∑S
m=1 αjm,0

,

where the prior for p(j) is 1∑S
m=1 αjm,0

[αj1,0, . . . , αjS,0]T for user-defined hyperparameters αjk,0 > 0. Meanwhile,

the maximum likelihood is given by [p̂′(j)]k =
njk

max(nj ,1) (this is equivalent to [p̂(j)]k, except with the prior parameters
set to zero). Consider the sampled dynamics at state-action pair s̃j . For any ε > 0,

P
(
||p̃(j) − p(j)||1 ≥ ε

)
= P

(
||p̃(j) − p̂(j) + p̂(j) − p̂′(j) + p̂′(j) − p(j)||1 ≥ ε

)
(a)

≤ P
(
||p̃(j) − p̂(j)||1 + ||p̂(j) − p̂′(j)||1 + ||p̂′(j) − p(j)||1 ≥ ε

)
≤ P

(
||p̃(j) − p̂(j)||1 ≥

ε

3

⋃
||p̂(j) − p̂′(j)||1 ≥

ε

3

⋃
||p̂′(j) − p(j)||1 ≥

ε

3

)
(b)

≤ P
(
||p̃(j) − p̂(j)||1 ≥

ε

3

)
+ P

(
||p̂(j) − p̂′(j)||1 ≥

ε

3

)
+ P

(
||p̂′(j) − p(j)||1 ≥

ε

3

)
, (6)

where (a) holds due to the triangle inequality and (b) follows from the union bound. For each term in (6), we will
upper-bound the quantity in terms of nj and show that it decays as nj −→ ∞, that is, as s̃j is visited infinitely-often.
For the first term, we will achieve this bound via Chebyshev’s inequality:

P
(
||p̃(j) − p̂(j)||1 ≥

ε

3

)
≤ P

(
S⋃
k=1

{∣∣∣[p̃(j)]k − [p̂(j)]k

∣∣∣ ≥ ε

3S

}) (a)

≤
S∑
k=1

P
(∣∣∣[p̃(j)]k − [p̂(j)]k

∣∣∣ ≥ ε

3S

)
(b)

≤
S∑
k=1

9S2

ε2
Var

[
[p̃(j)]k

]
,

where (a) follows from the union bound and (b) is an application of Chebyshev’s inequality. For a Dirichlet variable
X with parameters (α1, . . . , αS), αk > 0 for each k, the variance of the kth component Xk is given by:

Var[Xk] =
α̃k(1− α̃k)

1 +
∑S
m=1 αm

≤ 1

2
∗ 1

1 +
∑S
m=1 αm

,



where α̃k := αk∑S
m=1 αm

. In the DPS algorithm, p̃(j) is drawn from a Dirichlet distribution with parameters
(αj1, . . . , αjS) = (αj1,0 + nj1, . . . , αjS,0 + njS), and so,

Var
[
[p̃(j)]k

]
≤ 1

2
∗ 1

1 +
∑S
m=1 αjm

=
1

2
∗ 1

1 +
∑S
m=1(αjm,0 + njm)

≤ 1

2
∗ 1

1 +
∑S
m=1 njm

=
1

2(1 + nj)
,

and so,

P
(
||p̃(j) − p̂(j)||1 ≥

ε

3

)
≤

S∑
k=1

9S2

ε2

1

2(1 + nj)
=

9S3

2ε2(1 + nj)
.

Considering the second term in (6),

P
(
||p̂(j) − p̂′(j)||1 ≥

ε

3

)
≤ P

(
S⋃
k=1

{∣∣∣[p̂(j) − p̂′(j)]k
∣∣∣ ≥ ε

3S

}) (a)

≤
S∑
k=1

P
( ∣∣∣[p̂(j)]k − [p̂′(j)]k

∣∣∣ ≥ ε

3S

)
(b)

≤
S∑
k=1

P

(
αjk,0 +

∑S
m=1 αjm,0

nj +
∑S
m=1 αjm,0

≥ ε

3S

)
,

where (a) holds via the union bound and (b) follows for nj ≥ 1 because when nj ≥ 1:

∣∣∣[p̂(j)]k − [p̂′(j)]k

∣∣∣ =

∣∣∣∣∣ njk + αjk,0

nj +
∑S
m=1 αjm,0

− njk
nj

∣∣∣∣∣ =

∣∣∣∣∣ αjk,0

nj +
∑S
m=1 αjm,0

−
njk

∑S
m=1 αjm,0

nj(nj +
∑S
m=1 αjm,0)

∣∣∣∣∣
≤ αjk,0

nj +
∑S
m=1 αjm,0

+
njk
nj

∑S
m=1 αjm,0

nj +
∑S
m=1 αjm,0

≤
αjk,0 +

∑S
m=1 αjm,0

nj +
∑S
m=1 αjm,0

.

For the third term in (6), we apply the following concentration inequality for Dirichlet variables (see Appendix C.1 in
Jaksch et al. (2010)):

P (||p̂′(j) − p(j)||1 ≥ ε) ≤ (2S − 2) exp

(
−njε2

2

)
.

Therefore:

P
(
||p̂′(j) − p(j)||1 ≥

ε

3

)
≤ (2S − 2) exp

(
−njε2

18

)
.

Thus, to upper-bound (6), for any ε > 0:

P
(
||p̃(j) − p(j)||1 ≥ ε

)
≤ 9S3

2ε2(nj + 1)
+

S∑
k=1

P

(
αjk,0 +

∑S
m=1 αjm,0

nj +
∑S
m=1 αjm,0

≥ ε

3S

)
+ (2S − 2) exp

(
−njε2

18

)
.

On the right hand side, the first and third terms clearly decay as nj −→ ∞. The middle term is identically zero for
nj large enough, since the αjk,0 values are user-defined constants. Given this inequality, it is clear that for any ε > 0,
as nj −→ ∞, P

(
||p̃(j) − p(j)||1 ≥ ε

)
−→ 0. If every state-action pair is visited infinitely-often, then nj −→ ∞ for

each j, and so p̃(j) converges in probability to p(j): p̃(j) P−→ p(j). Convergence in probability implies convergence
in distribution, the desired result.

To continue proving that DPS’s model of the transition dynamics converges, we next prove the intermediate result
that the magnitude of the reward MAP estimate, ||r̂n||2, is uniformly upper-bounded:

Lemma 2. Across all n ≥ 1, there exists some b < ∞ such that estimated reward at DPS trial n is bounded by b:
||r̂n||2 ≤ b.



Proof. Recall that the MAP reward estimate r̂n is the solution to a ridge regression problem:

r̂n = arg infr

{
n−1∑
i=1

(xTi r − yi)2 + λ||r||22

}
= arg infr

{
n−1∑
i=1

[
(xTi r − yi)2 +

1

n− 1
λ||r||22

]}
. (7)

We will prove the desired result by contradiction. Assuming that there exists no upper bound b, we will identify a
subsequence (r̂ni) of MAP estimates whose lengths increase unboundedly, but whose directions converge. Then, we
will show that such vectors fail to minimize the objective in (7), achieving a contradiction.

Because there exist finitely-many state-action pairs, there are finitely-many possible length-h trajectories. Hence, the
vector xi in Equation (7) can take finitely-many possible values. The binary labels yi take values in

{
− 1

2 ,
1
2

}
. Note

that for r = 0, (xTi r − yi)2 + 1
n−1λ||r||

2
2 = 1

4 . We prove the desired statement by contradiction: assume that there is
no b <∞ such that ||r̂n||2 ≤ b for all n. Then, the sequence r̂1, r̂2, . . .must have a subsequence indexed by (ni) such
that limi−→∞ ||r̂ni ||2 = ∞. Consider the sequence of unit vectors r̂ni

||r̂ni ||2
. This sequence lies within the compact

set of unit vectors in Rd, and so it must have a convergent subsequence; we index this subsequence of the sequence
(ni) by (nij ). Then, the sequence (r̂ij ) is such that limj−→∞ ||r̂ij ||2 = ∞ and limj−→∞

r̂ij
||r̂ij ||2

= r̂unit, where

r̂unit ∈ Rd is a fixed unit vector.

For any xi such that |xTi r̂unit| 6= 0, limnij−→∞(xTi r̂nij −yi)
2 =∞, and so the corresponding terms in (7) approach

infinity. However, a lower value of the optimization objective in (7) can be realized by replacing r̂nij with the
assignment r = 0. Meanwhile, for any xi such that |xTi r̂| = 0, replacing r̂nij with r = 0 would also decrease the
value of the optimization objective in (7). Therefore, for large j, r = 0 results in a smaller objective function value
than r̂nij . This is a contradiction, and so the elements of the sequence r̂nij cannot have arbitrarily-large magnitudes.
Thus, the elements of the original sequence r̂i also cannot become arbitrarily large, and ||r̂i|| ≤ b for some b <∞.

To finish proving convergence of the transition dynamics Bayesian model, we show that every state-action pair is
visited infinitely-often.

Lemma 3. Under DPS, every state-action pair is visited infinitely-often.

Proof. The proof proceeds by assuming that there exists a state-action pair that is visited only finitely-many times.
This assumption will lead to a contradiction1: once this state-action pair is no longer visited, the reward model posterior
is no longer updated with respect to it. Then, DPS is guaranteed to eventually sample a high enough reward for this
state-action that the resultant policy will prioritize visiting it.

First we note that DPS is guaranteed to reach at least one state-action pair infinitely often: given our problem’s finite
state and action spaces, at least one state-action pair must be visited infinitely-often during DPS execution. If all state-
actions are not visited infinitely-often, there must exist a state-action pair (s, a) such that s is visited infinitely-often,
while (s, a) is not. Otherwise, if all actions are selected infinitely-often in all infinitely-visited states, the finitely-
visited states are unreachable (in which case these states are irrelevant to the learning process and regret minimization,
and can be ignored). Without loss of generality, we label this state-action pair (s, a) as s̃1. To reach a contradiction, it
suffices to show that s̃1 is visited infinitely-often.

Let r1 be the reward vector with a reward of 1 in state-action pair s̃1 and rewards of zero elsewhere. From Definition
2, πvi(p̃, r1) is the policy that maximizes the expected number of visits to s̃1 under dynamics p̃ and reward vector r1:

πvi(p̃, r1) = argmaxπV (p̃, r1, π),

where V (p̃, r1, π) is the expected total reward of a length-h trajectory under p̃, r1, and π, or equivalently (by definition
of r1), the expected number of visits to state-action s̃1.

1Note that in finite-horizon MDPs, the concept of visiting a state finitely-many times is not the same as that of a transient state
in an infinite Markov chain, because: 1) due to a finite horizon, the state is resampled from the initial state distribution p0(s) every
h timesteps, and 2) the policy—which determines which state-action pairs can be reached in an episode—is also resampled every
h timesteps.



We next show that there exists a ρ > 0 such that P (π = πvi(p̃, r1)) > ρ for all possible values of p̃. That is, for
any sampled parameters p̃, the probability of selecting policy πvi(p̃, r1) is uniformly lower-bounded, implying that
DPS must eventually select πvi(p̃, r1).

Let r̃j be the sampled reward associated with state-action pair s̃j in a particular DPS episode, for each state-action
j ∈ {1, . . . , d}, with d = SA. We show that conditioned on p̃, there exists v > 0 such that if r̃1 exceeds
max{vr̃2, vr̃3, . . . , vr̃d}, then value iteration returns the policy πvi(p̃, r1), which is the policy maximizing the ex-
pected amount of time spent in s̃1. This can be seen by setting v := h

ρ1
, where h is the time horizon and ρ1 is the

expected number of visits to s̃1 under πvi(p̃, r1). Under this definition of v, the event {r̃1 ≥ max{vr̃2, vr̃3, . . . , vr̃d}}
is equivalent to {r̃1ρ1 ≥ hmax{r̃2, r̃3, . . . , r̃d}}; the latter inequality implies that given p̃ and r̃, the expected reward
accumulated solely in state-action s̃1 exceeds the reward gained by repeatedly (during all h time-steps) visiting the
state-action pair in the set {s̃2, . . . , s̃d} having the highest sampled reward. Clearly, in this situation, value iteration
results in the policy πvi(p̃, r1).

Next we show that v = h
ρ1

is continuous in the sampled dynamics p̃ by showing that ρ1 is continuous in p̃. Recall
that ρ1 is defined as expected number of visits to s̃1 under πvi(p̃, r1). This is equivalent to the expected reward for
following πvi(p̃, r1) under dynamics p̃ and rewards r1:

ρ1 = V (p̃, r1, πvi(p̃, r1)) = max
π

V (p̃, r1, π). (8)

The value of any policy π is continuous in the transition dynamics parameters, and so V (p̃, r1, π) is continuous in p̃.
The maximum in (8) is taken over the finite set of deterministic policies; because a maximum over a finite number of
continuous functions is also continuous, ρ1 is continuous in p̃.

Next, recall that a continuous function on a compact set achieves its maximum and minimum values on that set. The
set of all possible dynamics parameters p̃ is such that for each state-action pair j,

∑S
k=1 pjk = 1 and pjk ≥ 0 ∀ k; the

set of all possible vectors p̃ is clearly closed and bounded, and hence compact. Therefore, v achieves its maximum
and minimum values on this set, and so for any p̃, v ∈ [vmin, vmax], where vmin > 0 (v is nonnegative by definition, and
v = 0 is impossible, as it would imply that s̃1 is unreachable).

Then, P (π = πvi(p̃, r1)) can then be expressed in terms of v and the parameters of the reward posterior. Firstly,

P (π = πvi(p̃, r1)) ≥ P (r̃1 > max{vr̃2, vr̃3, . . . , vr̃d}) ≥
d∏
j=2

P (r̃1 > vr̃j) =

d∏
j=2

[1− P (r̃1 − vr̃j ≤ 0)].

In the nth DPS iteration, the sampled rewards are drawn from a jointly Gaussian posterior: r̃ ∼ N (µ(n),Σ(n)) for
some µ(n) and Σ(n), where [µ(n)]j = µ

(n)
j and [Σ(n)]jk = Σ

(n)
jk . Then, (r̃1 − vr̃j) ∼ N (µ

(n)
1 − vµ

(n)
j , Σ

(n)
11 +

v2Σ
(n)
jj − 2vΣ

(n)
1j ), so that:

P (πn1 = πvi(p̃, r1)) ≥
d∏
j=2

1− Φ

 −µ(n)
1 + vµ

(n)
j√

Σ
(n)
11 + v2Σ

(n)
jj − 2vΣ

(n)
1j

 =

d∏
j=2

Φ

 µ
(n)
1 − vµ(n)

j√
Σ

(n)
11 + v2Σ

(n)
jj − 2vΣ

(n)
1j

 ,

(9)
where Φ is the standard Gaussian cumulative distribution function. For the right-hand expression in (9) to have a lower
bound greater than zero, the argument of Φ(·) must be lower-bounded. It suffices to upper-bound the numerator’s
magnitude and to lower-bound the denominator above zero for each product factor j and over all iterations n.

The numerator can be upper-bounded using Lemma 2. Since µ(n) is equal to the MAP reward estimate at iteration n,
||µ(n)||2 ≤ b, and so |µ(n)

1 |, |µ
(n)
j | ≤ b. Because 0 < v ≤ vmax, |µ1 − vµj | ≤ |µ(n)

1 |+ v|µ(n)
j | ≤ (1 + vmax)b.

To lower-bound the denominator, first note that the reward model’s posterior covariance is equal to βn(δ)2M−1
n , with

Mn and βn(δ) as defined in Equations (4) and (5), respectively; however, because βn(δ)2 is non-decreasing in n, it
suffices to prove the statement while ignoring the βn(δ)2 factor. Thus, to prove this lemma, we can set Σ(n) := M−1

n .

Letwj ∈ Rd be a vector with 1 in the first position,−v in the jth position for some j ∈ {2, . . . , d}, and zero elsewhere:

wj = [1, 0, . . . , 0,−v, 0, . . . , 0]T . (10)



The denominator in (9) can be expressed in terms of wj : Σ
(n)
11 + v2Σ

(n)
jj − 2vΣ

(n)
1j = wT

j Σ(n)wj . Recall from Def-

inition 3 that the eigenvectors of Σ(n) are v(n)
1 , . . . ,v

(n)
d , with corresponding eigenvalues

(
λ

(n)
1

)−1

, . . . ,
(
λ

(n)
d

)−1

.

We can write wj in terms of the orthonormal basis formed by the eigenvectors {v(n)
k }:

wj =

d∑
k=1

α
(n)
k v

(n)
k , (11)

for some coefficients α(n)
k ∈ R. Using (11), the square of the denominator in (9) can now be written as:

Σ
(n)
11 + v2Σ

(n)
jj − 2vΣ

(n)
1j = wT

j Σ(n)wj =

(
d∑
k=1

α
(n)
k v

(n)T
k

)(
d∑
l=1

1

λ
(n)
l

v
(n)
l v

(n)T
l

)(
d∑

m=1

α(n)
m v(n)

m

)
(a)
=

d∑
k=1

(
α

(n)
k

)2 1

λ
(n)
k

(b)

≥
(
α

(n)
k0

)2 1

λ
(n)
k0

, (12)

where equality (a) follows by orthonormality of the eigenvector basis, and (b) holds for any k0 ∈ {1, . . . , d} due to
positivity of the eigenvalues (λk)−1. Therefore, to show that the denominator is bounded away from zero, it suffices

to show that for every n, there exists some k0 such that
(
α

(n)
k0

)2 (
λ

(n)
k0

)−1

is bounded away from zero.

To prove the previous statement, note that by definition of Mn, the eigenvalues (λ
(n)
k )−1 are non-increasing in n.

Below, we will show that for any eigenvalue (λ
(n)
k )−1 such that limn−→∞(λ

(n)
k )−1 = 0, the first element of its

corresponding eigenvector,
[
v

(n)
k

]
1
, also converges to zero. Since the first element of wj equals 1, (10) implies that

there must exist some k0 such that
[
v

(n)
k0

]
1
6−→ 0 and α(n)

k0
is bounded away from 0. If these implications did not hold,

thenwj would not have a value of 1 in its first element, contradicting its definition. These observations imply that for
every n, there must be some k0 such that as n −→∞, (λ

(n)
k0

)−1 6−→ 0 and α(n)
k0

is bounded away from zero.

Let Xn denote the observation matrix after n − 1 observations: Xn :=
[
x1 . . . xn−1

]T
. Then, Σ(n) = M−1

n =
(XT

nXn + λI)−1. The matrices M−1
n and XT

nXn have the same eigenvectors. Meanwhile, for each eigenvalue
(λ

(n)
i )−1 of M−1

n , XT
nXn has an eigenvalue ν(n)

i := λ
(n)
i − λ ≥ 0 corresponding to the same eigenvector. We aim

to characterize the eigenvectors of M−1
n whose eigenvalues approach zero. Since these eigenvectors are identical to

those of XT
nXn whose eigenvalues approach infinity, we consider the latter instead.

We assume that all finitely-visited state-action pairs (including s̃1) occur in the firstm < n−1 iterations. Without loss
of generality, we index these finitely-visited state-action pairs from 1 to r ≥ 1, so that the finitely-visited state-actions
are: {s̃1, s̃2, · · · , s̃r}. Let X1:m ∈ Rm×d denote the matrix containing the first m rows of Xn, while Xm+1:n ∈
Rn−m×d denotes the remaining rows of Xn. With this notation,

XT
nXn =

n−1∑
i=1

xix
T
i = XT

1:mX1:m +XT
m+1:nXm+1:n.

Because the first r state-action pairs, {s̃1, s̃2, · · · , s̃r}, are unvisited after iteration m, the first r elements of xi are
zero for all i > m. Therefore, XT

m+1:nXm+1:n can be written in the following block matrix form:

XT
m+1:nXm+1:n =

[
Or×r Or×(d−r)

O(d−r)×r An

]
,

where Oa×b denotes the all-zero matrix with dimensions a× b. The matrix An includes elements that are unbounded
as n −→ ∞. In particular, the diagonal elements of An approach infinity as n −→ ∞. We can write XT

nXn in the
following block matrix form:

XT
nXn = XT

1:mX1:m +XT
m+1:nXm+1:n =

[
[XT

1:mX1:m](1:r,1:r) [XT
1:mX1:m](1:r,r+1:d)

[XT
1:mX1:m](r+1:d,1:r) [XT

1:mX1:m](r+1:d,r+1:d) +An

]
:=

[
B C
CT Dn

]
,



where M(a:b,c:d) denotes the submatrix of M obtained by extracting rows a through b and columns c through d.
Matrices B and C only depend upon X1:m, and so are fixed as n increases, while matrix Dn contains values that grow
towards infinity with increasing n. In particular, all elements along Dn’s diagonal are unbounded. Intuitively, in the
limit, B and C are close to zero compared to Dn, and XT

nXn (when normalized) increasingly resembles a matrix in
which only the bottom-right block is nonzero. This intuitive notion is formalized next.

Consider an eigenpair (v
(n)
i , ν

(n)
i ) of XT

nXn such that limn−→∞ ν
(n)
i = ∞. We show that the first element of v(n)

i

must approach 0. Let v(n)
i =

[
z

(n)T
i q

(n)T
i

]T
, where z(n)

i ∈ Rm and q(n)
i ∈ Rn−1−m. We see that:

(XT
nXn)v

(n)
i = XT

nXn

[
z

(n)
i

q
(n)
i

]
=

[
B C
CT Dn

][
z

(n)
i

q
(n)
i

]
=

[
Bz

(n)
i + Cq

(n)
i

CTz
(n)
i +Dnq

(n)
i

]
= λ

(n)
i

[
z

(n)
i

q
(n)
i

]
.

Dividing both sides by ν(n)
i ,

1

ν
(n)
i

XT
nXn

[
z

(n)
i

q
(n)
i

]
=

 1

ν
(n)
i

(
Bz

(n)
i + Cq

(n)
i

)
1

ν
(n)
i

(
CTz

(n)
i +Dnq

(n)
i

) =

[
z

(n)
i

q
(n)
i

]
.

In the upper matrix block: limn−→∞ ν
(n)
i = ∞, B and C are fixed as n increases, and z(n)

i and q(n)
i have upper-

bounded elements because v(n)
i is a unit vector. Thus, limn−→∞ z

(n)
i = limn−→∞

1

ν
(n)
i

(
Bz

(n)
i + Cq

(n)
i

)
= 0. In

particular, the first element of z(n)
i converges to zero, and so the same is true of v(n)

i .

As justified above, this result implies that for each iteration n, there exists an index k0 ∈ {1, . . . , d} such that the
right-hand side of (12) has a lower bound above zero. This completes the proof that the denominator of the fraction in
(9) does not decay to zero. As a result, there exists some ρ > 0 such that P (π = πvi(p̃, r1)) ≥ ρ > 0.

In consequence, DPS is guaranteed to infinitely-often sample pairs (p̃, π) such that π = πvi(p̃, r1). As a result,
DPS infinitely-often samples policies that prioritize reaching s̃1 as quickly as possible. Such a policy always takes
action a in state s. Furthermore, because s is visited infinitely-often, either a) p0(s) > 0 or b) the infinitely-visited
state-action pairs include a path with a nonzero probability of reaching s. In case a), since the initial state distribution is
fixed, the MDP will infinitely-often begin in state s under the policy π = πvi(p̃, r1), and so s̃1 will be visited infinitely-
often. In case b), due to Lemma 1, the transition dynamics parameters for state-actions along the path to s converge
to their true values (intuitively, the algorithm knows how to reach s). In episodes with the policy π = πvi(p̃, r1),
DPS is thus guaranteed to reach s̃1 infinitely-often. Since DPS selects πvi(p̃, r1) infinitely-often, it must reach s̃1

infinitely-often. This presents a contradiction, and so every state-action pair must be visited infinitely-often.

Thus, by the direct combination of Lemmas 1 and 3, we arrive at the following result.
Proposition 1. Under DPS, the sampled dynamics p̃i1, p̃i2 converge in distribution to the true dynamics:
p̃i1, p̃i2

D−→ p, where D−→ denotes convergence in distribution.

Next, we show that the sampled rewards converge in distribution to their true values. Our analysis will use Theorem 2
from Abbasi-Yadkori et al. (2011), which is repeated below. Recall that Eq.s (3)-(4) define the MAP reward estimate.
Lemma 4 (Theorem 2 from Abbasi-Yadkori et al. (2011)). Let {Fi}∞i=0 be a filtration. Let {ηi}∞i=1 be a real-valued
stochastic process such that ηi is Fi-measurable and ηi is conditionally R-sub-Gaussian for some R ≥ 0. Let {xi} be
an Rd-valued stochastic process such that xi is Fi−1-measurable. Define yi := xTi r+ηi, and assume that ||r||2 ≤ Sr
and ||xi||2 ≤ L. Then, for any δ > 0, with probability at least 1− δ, for all i > 0, ||r̂i − r||Mi ≤ βi(δ), where:

βi(δ) = R

√
2 log

(
det(Mi)1/2λ−d/2

δ

)
+
√
λSr ≤ R

√√√√d log

(
1 + L2i

dλ

δ

)
+
√
λSr.

Note that in the present case, L ≤ 2h, since:

||xi||2 = ||xi2 − xi1||2
(a)

≤ ||xi2 − xi1||1 ≤ ||xi2||1 + ||xi1||1
(b)
= 2h,



where (a) holds because ||x||2 ≤ ||x||1 for any x ∈ Rd, and (b) holds because xi1 and xi2 each count an episode’s
visits to every state-action pair, and so their elements are non-negative integers summing to h.

Proposition 2. With probability 1 − δ, where δ is a parameter of the Bayesian linear regression model, the sampled
rewards r̃i1, r̃i2 converge in distribution to the true reward parameters, r̃i1, r̃i2

D−→ r, as i −→∞.

Proof. This is a direct implication of Lemmas 5 and 11, both proven below.

Lemma 5. If βi(δ)
2

λ
(i)
d

D−→ 0 as i −→∞, where λ(i)
d is the minimum eigenvalue of Mi and D−→ denotes convergence in

distribution, then r̃i1, r̃i2
D−→ r with probability 1− δ.

Proof. From Lemma 4, with probability at least 1−δ, r̂i belongs to a confidence ellipsoid centered at r: ||r̂i−r||Mi
≤

βi(δ). We show that under this high-probability event, r̃i1, r̃i2
D−→ r. Similarly to the high-probability confidence

ellipsoid from Lemma 4, the Thompson sampling covariance matrix is also defined by βi(δ) and Mi:

r̃i1, r̃i2 ∼ N (r̂i, βi(δ)
2M−1

i ). (13)

Letting zi ∼ N (0, I) be independent for each i, we can equivalently express r̃i1 (and similarly, r̃i2) as:

r̃i1 = r̂i + βi(δ)M
− 1

2
i zi, (14)

since the random variable in (14) has the same distribution as (13). The quantity ||r̃i1 − r̂i||Mi
can be rewritten as:

||r̃i1 − r̂i||Mi
=
∣∣∣∣∣∣βi(δ)M− 1

2
i zi

∣∣∣∣∣∣
Mi

= βi(δ)

√
zTi M

− 1
2

i MiM
− 1

2
i zi = βi(δ)||zi||2.

Because the probability distribution of ||zi||2 is fixed, there exists some fixed a > 0 such that with probability at least
1− δ, ||zi||2 ≤ a. So, for each i, with probability at least 1− δ,

||r̃i1 − r̂i||Mi = βi(δ)||zi||2 ≤ βi(δ)a.

Assuming that the high-probability event in Lemma 4 occurs, we combine the previous inequality with ||r̂i− r||Mi ≤
βi(δ) to obtain that for each i, with probability at least 1− δ,

||r̃i1 − r||Mi
≤ ||r̃i1 − r̂i||Mi

+ ||r̂i − r||Mi
≤ (a+ 1)βi(δ).

Squaring both sides and dividing by βi(δ) yields that for each i, with probability at least 1− δ,

1

βi(δ)2
(r̃i1 − r)TMi(r̃i1 − r) ≤ (a+ 1)2.

By assumption, λ
(i)
d

βi(δ)2
D−→∞ as i −→∞. Recall from Definition 3 that v(i)

j , j ∈ {1, . . . , d}, represent the eigenvec-

tors of Mi corresponding to the eigenvalues λ(i)
j . Then, with probability at least 1− δ for each i:

1

βi(δ)2
(r̃i1 − r)TMi(r̃i1 − r) =

1

βi(δ)2
(r̃i1 − r)T

 d∑
j=1

λ
(i)
j v

(i)
j v

(i)T
j

 (r̃i1 − r)

=
1

βi(δ)2

d∑
j=1

λ
(i)
j

(
(r̃i1 − r)Tv

(i)
j

)2

≤ (a+ 1)2. (15)

Since for each j,
λ
(i)
j

βi(δ)2
−→ ∞ as i −→ ∞, and v(i)

j is an orthonormal basis, the constant bound of (a + 1)2 in (15)

is violated if we do not have r̃i1 − r
D−→ 0. Equation (15) must hold with probability at least 1− δ independently for



each iteration i, with the (1− δ)-probability due entirely to randomness in the Thompson sampling distribution, (13).
Therefore, it follows that r̃i1

D−→ r. The proof that r̃i2
D−→ r with high probability is identical.

The next result enables us to leverage convergence in distribution of the dynamics samples, p̃i1, p̃i2
D−→ p (as guar-

anteed by Proposition 1), in characterizing the impact of sampled policies upon convergence of the reward model.

Lemma 6. Let f : RS2A × RSA −→ R be a function of transition dynamics p ∈ RS2A and reward vector r ∈ RSA,
f(p, r), where f is continuous in p and uniformly-continuous in r. Assume that Proposition 1 holds: p̃i1, p̃i2

D−→ p.
Then, for any δ, ε > 0, there exists i′ such that for i > i′, |f(p, r)−f(p̃ij , r)| < ε for any unit vector r and j ∈ {1, 2}
with probability at least 1− δ.

Proof. The proof is identical for j = 1 and j = 2, and so without loss of generality, we set j = 1. Applying
Proposition 1, p̃i1

D−→ p. By continuity of f , we can apply Fact 1 from Appendix A.5 to obtain that f(p̃i1, r)
D−→

f(p, r) for any r. Further applying Fact 2 from Appendix A.5, f(p̃i1, r)
P−→ f(p, r) for any r. By definition of

convergence in probability, given δ, there exists ir such that for i ≥ ir:

|f(p̃i1, r)− f(p, r)| < 1

3
ε with probability at least 1− δ. (16)

To obtain a high-probability bound that applies over all unit vectors r, we use compactness of the set of unit vectors.
Any infinite cover of a compact set has a finite subcover; in particular, for any δ′ > 0, the set of unit vectors in Rd
has a finite cover of the form {B(r1, δ

′), . . . ,B(rK , δ
′)}, where {r1, . . . , rK} are unit vectors, and B(r, δ′) := {r′ ∈

Rd | ||r′ − r||2 < δ′} is the d-dimensional sphere of radius δ′ centered at r. Thus, there exists a finite set of unit
vectors U = {r1, . . . , rK} such that for any unit vector r′, ||ri − r′||2 < δ′ for some i ∈ {1, . . . ,K}. Because f is
uniformly-continuous in r, for any transition dynamics p, there exists δp > 0 such that for any two unit vectors r, r′

such that ||r − r′||2 < δp:

|f(p, r)− f(p, r′)| < 1

3
ε. (17)

Without loss of generality, for each p, define δp := supx such that ||r− r′||2 < x implies |f(p, r)− f(p, r′)| ≤ 1
6ε.

Then, because f is continuous in p, δp is also continuous in p. Because the set of all possible transition probability
vectors p is compact, and a continuous function over a compact set achieves its minimum value, there exists δmin > 0
such that δp ≥ δmin > 0 over all p. We can define U such that δ′ ≤ δmin; then, for any unit vector r′, there exists
r ∈ U such that ||r − r′||2 < δmin, and thus (17) holds for any p.

By (16), for each rj ∈ U , there exists there exists irj such that for i ≥ irj : ||f(p̃i1, r) − f(p, r)||2 < 1
3ε with

probability at least 1− δ. Because U is a finite set, there exists i′ > max{ir1 , . . . , irK} such that for r ∈ U and i > i′:

|f(p̃i1, r)− f(p, r)| < 1

3
ε for each r ∈ U with probability at least 1− δ. (18)

Therefore, for any unit vector r′, there exists r ∈ U such that ||r − r′||2 < δ′ ≤ δmin, and with probability at least
1− δ for i > i′:

|f(p, r′)− f(p̃i1, r
′)| = |f(p, r′)− f(p, r) + f(p, r)− f(p̃i1, r) + f(p̃i1, r)− f(p̃i1, r

′)| (19)
(a)

≤ |f(p, r′)− f(p, r)|+ |f(p, r)− f(p̃i1, r)|+ |f(p̃i1, r)− f(p̃i1, r
′)| (20)

(b)

≤ 1

3
ε+

1

3
ε+

1

3
ε = ε, (21)

where (a) holds due to the triangle inequality, and (b) holds via (17) and (18), where we showed that there exists δmin
such that 0 < δmin ≤ δp for all possible transition dynamics parameters p.

Applying Lemma 6 to the two functions V (p, r, πvi(p, r)) = maxπ′ V (p, r, π′) and V (p, r, π), for any fixed policy
π, yields the following result.



Lemma 7. For any ε, δ > 0, any policy π, and any unit reward vector r, both of the following hold with probability
at least 1− δ for sufficiently-large i and j ∈ {1, 2}:

|V (p, r, π)− V (p̃ij , r, π)| < ε

|V (p, r, πvi(p, r))− V (p̃ij , r, πvi(p̃ij , r))| < ε.

Proof. Both statements follow by applying Lemma 6. First, consider the function f1(p, r) := V (p, r, π) for a fixed
policy π. The value function V (p, r, π) is continuous in both p and r. Furthermore, it is linear in r and therefore
uniformly-continuous in r: for a linear function g(z) = aTz and for any ε′ > 0, if δ′ := ε′

||a|| , then for any z1, z2

such that ||z1 − z2|| < δ′:

|g(z1)− g(z2)| = |aT (z1 − z2)| ≤ ||a||2||z1 − z2||2 < ||a||2δ′ = ε′.

Thus, f1 satisfies the conditions of Lemma 6 for any fixed π, and so for i > iπ , |V (p, r, π)− V (p̃ij , r, π)| < ε with
probability at least 1 − δ. Because there are finitely-many deterministic policies π, we can set i > maxπ iπ , so that
the statement holds jointly over all π.

Next, let f2(p, r) = maxπ V (p, r, π) = V (p, r, πvi(p, r)). A maximum over finitely-many continuous functions is
continuous, and a maximum over finitely-many uniformly-continuous functions is uniformly-continuous. Therefore,
f2 also satisfies the conditions of Lemma 6.

We will show convergence in distribution of the reward samples, r̃i1, r̃i2
D−→ r, by applying Lemma 5 and demon-

strating that 1
βi(δ)2

λ
(i)
d −→ ∞ as i −→ ∞. This result is proven by contradiction: intuitively, if 1

βi(δ)2
λ

(i)
d is upper-

bounded, then DPS has a lower-bounded probability of selecting policies that increase λ(i)
d . Importantly, abbreviating

λ
(i)
d ’s eigenvector v(i)

d as v, this proof is contingent upon there existing a pair of policies π1, π2 such that:∣∣E[xTi v |πi1 = π1, πi2 = π2]
∣∣ =

∣∣E[(xi2 − xi1)Tv |πi1 = π1, πi2 = π2]
∣∣ (a)

= |V (p,v, π1)− V (p,v, π2)| > 0,

where (a) holds because the value function V (p,v, π) gives the expected total reward of π under the reward vector v.
In other words, the proof will require,

max
π1,π2

∣∣E[xTi v |πi1 = π1, πi2 = π2]
∣∣ = max

π1,π2

|V (p,v, π1)− V (p,v, π2)| > 0. (22)

If this does not hold, then it is impossible to select a pair of policies under which the observation xi is not expected to
be orthogonal to the eigenvector v.

We argue that without loss of generality, (22) can be assumed to hold for all eigenvectors of Mi. Note that if (22)
does not hold, then E[xTi1v |πi1 = π] = V (p,v, π) is fixed for all π. Given p, by linearity of the value function V
in the rewards, any v-directed component of r does not affect policy selection: V (p, r, π) = V (p, rv + rv⊥, π) =
V (p, rv, π)+V (p, rv⊥, π), where rv is the projection of r onto the v-direction and rv⊥ is its orthogonal complement
in Rd. Because V (p, rv, π) does not depend on π, πvi(p, r) = argmaxπV (p, r, π) = argmaxπV (p, rv⊥, π).

We call any vector v which does not satisfy (22) an irrelevant dimension of the rewards: given p, removing the v-
directed component of r does not influence policy selection. The following lemma demonstrates that such vectors
remain irrelevant towards policy selection when p is unknown, but once p̃i1, p̃i2 have sufficiently converged to p in
distribution.

Lemma 8. For any reward vector r ∈ Rd, let rrel be the projection of r onto the relevant subspace (for which (22)
holds), and r⊥ be its orthogonal complement in Rd, such that r = rrel + r⊥, and r⊥ belongs to the subspace of
irrelevant dimensions (where (22) does not hold). The reward samples on iteration i are r̃ij , j ∈ {1, 2}. Then, for any
ε, δ > 0, there exists i0 such that for i > i0, with probability at least 1− δ:

|V (p, r̃ij , πij)− V (p, r̃ij , πvi(p̃ij , r̃
rel
ij ))| < ε.

In other words, with respect to the sampled rewards r̃ij , the expected reward of the selected policy πij = πvi(p̃ij , r̃ij)
is close to the expected reward of the policy that would have been selected were r̃ij replaced by r̃rel

ij .



Proof. We prove the result for j = 1 (the proof is identical for j = 2). Because V (p, r̃⊥i1, π) is constant for all π,
we define w := V (p, r̃⊥i1, π) for convenience. First, we show that under the true transition dynamics p, the irrelevant
dimensions of r̃i1 do not affect policy selection. For any π,

V (p, r̃i1, πvi(p, r̃i1)) = max
π

V (p, r̃i1, π)
(a)
= max

π

[
V (p, r̃rel

i1 , π) + V (p, r̃⊥i1, π)
]

(b)
= V (p, r̃rel

i1 , πvi(p, r̃
rel
i1 )) + V (p, r̃⊥i1, πvi(p, r̃

rel
i1 ))

(c)
= V (p, r̃i1, πvi(p, r̃

rel
i1 )), (23)

where (a) and (c) hold because r̃i1 = r̃rel
i1 + r̃⊥i1 and the value function is linear in the rewards, and (b) holds because

V (p, r̃⊥i1, π) = w is constant across all policies π.

To upper-bound |V (p, r̃i1, πi1)− V (p, r̃i1, πvi(p̃i1, r̃
rel
i1 ))|, we write:

|V (p,r̃i1, πi1)− V (p, r̃i1, πvi(p̃i1, r̃
rel
i1 ))| (a)

= |V (p, r̃i1, πvi(p̃i1, r̃i1))− (V (p, r̃rel
i1 , πvi(p̃i1, r̃

rel
i1 )) + w)|

= |V (p, r̃i1, πvi(p̃i1, r̃i1))− (V (p, r̃rel
i1 , πvi(p̃i1, r̃

rel
i1 )) + w)

− V (p̃i1, r̃i1, πvi(p̃i1, r̃i1)) + V (p̃i1, r̃i1, πvi(p̃i1, r̃i1))| − V (p, r̃i1, πvi(p, r̃i1)) + V (p, r̃i1, πvi(p, r̃i1))|
− (V (p̃i1, r̃

rel
i1 , πvi(p̃i1, r̃

rel
i1 )) + w) + (V (p̃i1, r̃

rel
i1 , πvi(p̃i1, r̃

rel
i1 )) + w)|

(b)

≤ |V (p, r̃i1, πvi(p̃i1, r̃i1))− V (p̃i1, r̃i1, πvi(p̃i1, r̃i1)|+ |V (p̃i1, r̃i1, πvi(p̃i1, r̃i1))− V (p, r̃i1, πvi(p, r̃i1)|
+ |V (p, r̃i1, πvi(p, r̃i1)− (V (p̃i1, r̃

rel
i1 , πvi(p̃i1, r̃

rel
i1 )) + w)| (24)

+ |(V (p̃i1, r̃
rel
i1 , πvi(p̃i1, r̃

rel
i1 )) + w)− (V (p, r̃rel

i1 , πvi(p̃i1, r̃
rel
i1 )) + w)|

(c)

≤ |V (p, r̃i1, πvi(p̃i1, r̃i1))− V (p̃i1, r̃i1, πvi(p̃i1, r̃i1)|+ |V (p̃i1, r̃i1, πvi(p̃i1, r̃i1))− V (p, r̃i1, πvi(p, r̃i1)|
+ |V (p, r̃rel

i1 , πvi(p, r̃
rel
i1 ))− V (p̃i1, r̃

rel
i1 , πvi(p̃i1, r̃

rel
i1 ))|

+ |V (p̃i1, r̃
rel
i1 , πvi(p̃i1, r̃

rel
i1 ))− V (p, r̃rel

i1 , πvi(p̃i1, r̃
rel
i1 ))|, (25)

where (a) applies r̃i1 = r̃rel
i1 + r̃⊥i1, linearity of the value function in the rewards, and the definition of w; (b) re-

arranges terms and uses the triangle inequality; and (c) applies (23) to line (24), that is, V (p, r̃i1, πvi(p, r̃i1)) =
V (p, r̃rel

i1 , πvi(p, r̃
rel
i1 )) + w.

Each of the four terms in (25) can be upper-bounded with high probability using Lemma 7. In particular, for large
enough i, each term is less than 1

4ε with probability at least 1− 1
4δ. Therefore, the desired result holds.

Remark 1. The reward dimensions could be irrelevant due to a number of reasons. For instance, because the elements
of xi := xi2 − xi1 must sum to zero, the vector [1, 1, . . . , 1]T must always be orthogonal to every observation xi.
Alternatively, the MDP’s transition dynamics could constrain the expected number of visits to a particular state to be
constant regardless of the policy.

Such constraints result in a subspace of Rd that is irrelevant to learning the optimal policy once the transition dynamics
model has converged sufficiently. Therefore, we only need Lemma 5 to be satisfied for eigenvalues ofMi along relevant
dimensions in order to asymptotically select the optimal policy. Thus, we can assume that sampled reward vectors
r̃i1, r̃i2 have been projected onto the relevant subspace of Rd. As a result, in proving that βi(δ)

2

λ
(i)
d

D−→ 0 as i −→ ∞,

we can assume that all eigenvectors of Mi belong to the relevant subspace without loss of generality. More formally,
we assume without loss of generality that all eigenvectors {v(i)

j } of Mi satisfy (22).

In Lemma 11, we will show that as i −→ ∞, βi(δ)
2

λ
(i)
d

D−→ 0. Combined with Lemma 5, this proves Proposition 2, that

the reward samples are convergent in distribution to r. Lemma 11 proves this result via contradiction, by first assuming
that there exists an i0 such that for all i ≥ i0, βi(δ)

2

λ
(i)
d

≥ α. The following two lemmas, Lemmas 9-10, are intermediate

results leading to Lemma 11, which utilize this contradiction hypothesis as a premise. In particular, Lemma 9 demon-
strates that under the contradiction hypothesis, there is a non-decaying probability of sampling rewards r̃i1, r̃i2 that
are highly-aligned with the eigenvector v(i)

d of M−1
i corresponding to its largest eigenvalue, (λ

(i)
d )−1.



Lemma 9. Assume that for a given iteration i, βi(δ)2
(
λ

(i)
d

)−1

≥ α. Then, the reward samples r̃i1, r̃i2 satisfy:

P (r̃Ti1v
(i)
d ≥ amax

j<d
|r̃Ti1v

(i)
j |) ≥ c(a) > 0, (26)

P (r̃Ti2v
(i)
d ≤ −amax

j<d
|r̃Ti2v

(i)
j |) ≥ c(a) > 0, (27)

where c : R+ −→ R+ is a continuous, monotonically-decreasing function.

Proof. Recall that the reward samples r̃i1, r̃i2 are drawn according to (13). We will demonstrate that the reward
samples can equivalently be expressed as:

r̃i1 = r̂i + βi(δ)

d∑
j=1

(
λ

(i)
j

)− 1
2

zijv
(i)
j , zij ∼ N (0, 1) i.i.d., (28)

and similarly for r̃i2. Similarly to (13), the expression in (28) has a multivariate Gaussian distribution. We take the
expectation and covariance of (28) with respect to the variables {zij} to show that they match the expressions in (13):

E

r̂i + βi(δ)

d∑
j=1

(
λ

(i)
j

)− 1
2

zijv
(i)
j

 = r̂i + βi(δ)

d∑
j=1

(
λ

(i)
j

)− 1
2 E[zij ]v

(i)
j = r̂i,

Cov

r̂i + βi(δ)

d∑
j=1

(
λ

(i)
j

)− 1
2

zijv
(i)
j

 (a)
= E

βi(δ) d∑
j=1

(
λ

(i)
j

)− 1
2

zijv
(i)
j

(βi(δ) d∑
k=1

(
λ

(i)
k

)− 1
2

zikv
(i)
k

)T
= βi(δ)

2
d∑
j=1

d∑
k=1

(
λ

(i)
j

)− 1
2
(
λ

(i)
k

)− 1
2

v
(i)
j v

(i)T
k E[zijzik]

(b)
= βi(δ)

2
d∑
j=1

(
λ

(i)
j

)−1

v
(i)
j v

(i)T
j = βi(δ)

2M−1
i ,

which match the expectation and covariance in (13). In the above, (a) applies the definition Cov[x] = E[(x−E[x])(x−
E[x])T ], and (b) holds because E[zijzik] = Cov[zijzik] = δjk, where δjk is the Kronecker delta function.

Next, we show that the probability that r̃i1 is arbitrarily-aligned with v(i)
d is lower-bounded above zero: that is, there

exists c : R+ −→ R+ such that for any a > 0, P (r̃Ti1v
(i)
d ≥ amaxj<d |r̃Ti1v

(i)
j |) ≥ c(a) > 0. This can be shown by

bounding the terms |r̃Ti1v
(i)
j |, j < d, and r̃Ti1v

(i)
d . Firstly, the term |r̃Ti1v

(i)
j |, j < d, can be upper-bounded:

|r̃Ti1v
(i)
j |

(a)
=

∣∣∣∣∣r̂Ti v(i)
j + βi(δ)

d∑
k=1

(
λ

(i)
k

)− 1
2

zikv
(i)T
k v

(i)
j

∣∣∣∣∣ (b)
=

∣∣∣∣r̂Ti v(i)
j + βi(δ)

(
λ

(i)
j

)− 1
2

zij

∣∣∣∣
≤ |r̂Ti v

(i)
j |+ βi(δ)

(
λ

(i)
j

)− 1
2 |zij |

(c)

≤ ||r̂i||2||v(i)
j ||2 + βi(δ)

(
λ

(i)
j

)− 1
2 |zij |

(d)

≤ b+ βi(δ)
(
λ

(i)
j

)− 1
2 |zij |,

where (a) applies (28), (b) follows from orthonormality of the eigenbasis, (c) follows from the Cauchy-Schwarz
inequality, and (d) uses that ||r̂i||2 ≤ b (Lemma 2). Similarly, r̃Ti1v

(i)
d can be lower-bounded:

r̃Ti1v
(i)
d

(a)
= r̂Ti v

(i)
d + βi(δ)

d∑
j=1

(
λ

(i)
j

)− 1
2

zijv
(i)T
j v

(i)
d

(b)
= r̂Ti v

(i)
d + βi(δ)

(
λ

(i)
d

)− 1
2

zi1

≥ −|r̂Ti v
(i)
d |+ βi(δ)

(
λ

(i)
d

)− 1
2

zi1
(c)

≥ −||r̂i||2||v(i)
d ||2 + βi(δ)

(
λ

(i)
d

)− 1
2

zi1

(d)

≥ −b+ βi(δ)
(
λ

(i)
d

)− 1
2

zi1,



where as before, (a) applies (28), (b) follows from orthonormality of the eigenbasis, (c) follows from the
Cauchy-Schwarz inequality, and (d) holds via Lemma 2. Given these upper and lower bounds, the probability
P
(
r̃Ti1v

(i)
d ≥ amaxj<d |r̃Ti1v

(i)
j |
)

can be lower-bounded:

P

(
r̃Ti1v

(i)
d ≥ amax

j<d
|r̃Ti1v

(i)
j |
)

(a)

≥ P

(
−b+ βi(δ)

(
λ

(i)
d

)− 1
2

zi1 ≥ amax
j<d

[
b+ βi(δ)

(
λ

(i)
j

)− 1
2 |zij |

])

= P

zi1 ≥ b

√
λ

(i)
d

βi(δ)
+ amax

j<d

b
√
λ

(i)
d

βi(δ)
+

√√√√λ
(i)
d

λ
(i)
j

|zij |


(b)

≥ P

(
zi1 ≥

b√
α

+ amax
j<d

[
b√
α

+ |zij |
])

= P

(
zi1 ≥

b(1 + a)√
α

+ amax
j<d
|zij |

)
:= c(a) > 0,

where (a) results from the upper and lower bounds derived above, and (b) follows because λ
(i)
d

λ
(i)
j

≤ 1 and

βi(δ)
(
λ

(i)
d

)− 1
2 ≥
√
α by assumption. The function c(a) > 0 is continuous and decreasing in a.

By identical arguments, P (r̃Ti2v
(i)
d ≤ −amaxj<d |r̃Ti2v

(i)
j |) ≥ c(a). Thus, for any a > 0 and set of eigenvectors v(i)

j :

P (r̃Ti1v
(i)
d ≥ amax

j<d
|r̃Ti1v

(i)
j |) ≥ c(a) > 0,

P (r̃Ti2v
(i)
d ≤ −amax

j<d
|r̃Ti2v

(i)
j |) ≥ c(a) > 0.

Next, we show that given sampled rewards r̃i1, r̃i2 that are highly-aligned with the eigenvector v(i)
d ofMi as in Lemma

9, there is a lower-bounded probability of sampling trajectories that have non-zero projection onto this eigenvector.

Lemma 10. Assume that there exists i0 such that for i > i0, βi(δ)2
(
λ

(i)
d

)−1

≥ α. Then, there exists i′ ≥ i0 and a

constant c′ > 0 such that for i > i′:

E
[∣∣∣xTi v(i)

d

∣∣∣] ≥ c′ > 0, (29)

where c′ > 0 depends only on the MDP parameters p and r, so that in particular, (29) holds for any eigenvector v(i)
d .

Proof. By Lemma 9, (26) and (27) both hold. We will refer to the events in (26) and (27), {r̃Ti1v
(i)
d ≥

amaxj<d |r̃Ti1v
(i)
j |} and {r̃Ti2v

(i)
d ≤ −amaxj<d |r̃Ti2v

(i)
j |}, as events A(a) and B(a), respectively. From Lemma

9, A(a) and B(a) have positive probability for any a.

We will show that by setting a to a large-enough value, under events A(a) and B(a), value iteration samples policies
πi1, πi2 such that E

[∣∣∣xTi v(i)
d

∣∣∣] ≥ c′ > 0 for some c′ > 0, for sufficiently-high i and for any unit vector v(i)
d .

First, note that under events A(a) and B(a), as a −→ ∞, r̃i1
||r̃i1||2 −→ v

(i)
d and r̃i2

||r̃i2||2 −→ −v
(i)
d . Let ε > 0. Under

event A(a) for sufficiently-large a,
∣∣∣∣∣∣ r̃i1
||r̃i1||2 − v

(i)
d

∣∣∣∣∣∣
2
< ε. Define amin,1(ε,v

(i)
1 , . . . ,v

(i)
d ) as the minimum value

of a such that A(a) implies
∣∣∣∣∣∣ r̃i1
||r̃i1||2 − v

(i)
d

∣∣∣∣∣∣
2
≤ ε

2 , given the eigenbasis {v(i)
1 , . . . ,v

(i)
d }. Because the inequality

defining A(a) is continuous in a, r̃i1, and the eigenbasis {v(i)
1 , . . . ,v

(i)
d }, the function amin,1(ε,v

(i)
1 , . . . ,v

(i)
d ) is also

continuous in the eigenbasis {v(i)
1 , . . . ,v

(i)
d }. Because amin,1(ε,v

(i)
1 , . . . ,v

(i)
d ) is positive for all {v(i)

1 , . . . ,v
(i)
d }, and

the set of all eigenbases {v(i)
1 , . . . ,v

(i)
d } is compact, there exists amin,1(ε) such that for any eigenbasis, if A(a) holds

for a ≥ amin,1(ε), then
∣∣∣∣∣∣ r̃i1
||r̃i1||2 − v

(i)
d

∣∣∣∣∣∣
2
< ε.



By the same arguments, there exists amin,2(ε) such that for any eigenbasis, if B(a) holds for a ≥ amin,2(ε), then∣∣∣∣∣∣ r̃i2
||r̃i2||2 − (−v(i)

d )
∣∣∣∣∣∣

2
< ε. Taking amin(ε) := max{amin,1(ε), amin,2(ε)}, then for any a ≥ amin(ε), under events

A(a) and B(a), both
∣∣∣∣∣∣ r̃i1
||r̃i1||2 − v

(i)
d

∣∣∣∣∣∣
2
< ε and

∣∣∣∣∣∣ r̃i2
||r̃i2||2 − (−v(i)

d )
∣∣∣∣∣∣

2
< ε hold.

Next, we will show that by setting ε small enough, the inequality
∣∣∣∣∣∣ r̃i1
||r̃i1||2 − v

(i)
d

∣∣∣∣∣∣
2
< ε implies that the expected

reward accrued by πi1 with respect to v(i)
d , that is, V (p,v

(i)
d , πi1), is close to the maximum possible expected reward

with respect to v(i)
d , maxπ V (p,v

(i)
d , π) = V (p,v

(i)
d , πvi(p,v

(i)
d )). (The same approach yields an equivalent result

for r̃i2.)

Assume that
∣∣∣∣∣∣ r̃i1
||r̃i1||2 − v

(i)
d

∣∣∣∣∣∣
2
< ε, and let ε′ > 0. We will show that |V (p,v

(i)
d , πvi(p,v

(i)
d )) − V (p,v

(i)
d , πi1)| <

ε′ for small-enough ε and when p̃i1 has sufficiently converged in distribution to p (as is guaranteed to occur by
Proposition 1):

∣∣∣V (p,v
(i)
d , πvi(p,v

(i)
d ))− V (p,v

(i)
d , πi1)

∣∣∣ (a)
=

∣∣∣∣V (p,v(i)
d , πvi(p,v

(i)
d )
)
− V

(
p,v

(i)
d , πvi

(
p̃i1,

r̃i1
||r̃i1||2

))∣∣∣∣
=

∣∣∣∣∣V (p,v(i)
d , πvi(p,v

(i)
d )
)
− V

(
p,

r̃i1
||r̃i1||2

, πvi

(
p,

r̃i1
||r̃i1||2

))
+ V

(
p,

r̃i1
||r̃i1||2

, πvi

(
p,

r̃i1
||r̃i1||2

))
− V

(
p̃i1,

r̃i1
||r̃i1||2

, πvi

(
p̃i1,

r̃i1
||r̃i1||2

))
+ V

(
p̃i1,

r̃i1
||r̃i1||2

, πvi

(
p̃i1,

r̃i1
||r̃i1||2

))
− V

(
p,

r̃i1
||r̃i1||2

, πvi

(
p̃i1,

r̃i1
||r̃i1||2

))
+ V

(
p,

r̃i1
||r̃i1||2

, πvi

(
p̃i1,

r̃i1
||r̃i1||2

))
− V

(
p,v

(i)
d , πvi

(
p̃i1,

r̃i1
||r̃i1||2

)) ∣∣∣∣∣
(b)

≤
∣∣∣∣V (p, r̃i1

||r̃i1||2
, πvi

(
p̃i1,

r̃i1
||r̃i1||2

))
− V

(
p,v

(i)
d , πvi

(
p̃i1,

r̃i1
||r̃i1||2

))∣∣∣∣ (30)

+

∣∣∣∣V (p,v(i)
d , πvi(p,v

(i)
d )
)
− V

(
p,

r̃i1
||r̃i1||2

, πvi

(
p,

r̃i1
||r̃i1||2

))∣∣∣∣ (31)

+

∣∣∣∣V (p, r̃i1
||r̃i1||2

, πvi

(
p,

r̃i1
||r̃i1||2

))
− V

(
p̃i1,

r̃i1
||r̃i1||2

, πvi

(
p̃i1,

r̃i1
||r̃i1||2

))∣∣∣∣ (32)

+

∣∣∣∣V (p̃i1, r̃i1
||r̃i1||2

, πvi

(
p̃i1,

r̃i1
||r̃i1||2

))
− V

(
p,

r̃i1
||r̃i1||2

, πvi

(
p̃i1,

r̃i1
||r̃i1||2

))∣∣∣∣ , (33)

where (a) uses that πi1 = πvi(p̃i1, r̃i1) by definition, and also that positive scaling of the reward argument of πvi(p, r)
does not affect its output; and (b) applies the triangle inequality. Next, we will show that each of (30)-(33) can be upper-
bounded by 1

4ε
′ (for (32) and (33) with high probability) by appropriate choice of ε and by utilizing that p̃i1

D−→ p
(Proposition 1).

Beginning with (30), because V (p, r, π) is linear in r, it is uniformly continuous in r for fixed transition dynamics p
and policy π. So, for fixed dynamics p and policy π and for any reward vector r, there exists επ such that if ||r−r′|| <
επ , then |V (p, r, π)− V (p, r′, π)| < 1

4ε
′. Because there are finitely-many deterministic policies, there exists ε1 > 0

such that ε1 ≤ επ for all π. Therefore, for any policy π, if ||r − r′||2 < ε1, then |V (p, r, π) − V (p, r′, π)| < 1
4ε
′.

The expression in (30) is thus upper-bounded by 1
4ε
′ if ε < ε1.

To upper-bound (31), observe that V (p, r, πvi(p, r)) = maxπ V (p, r, π) is also uniformly continuous in r for fixed
transition dynamics p: the maximum over finitely-many uniformly continuous functions is also uniformly continuous.
Thus, there exists ε2 > 0 such that if ||r − r′||2 < ε2, then |V (p, r, πvi(p, r)) − V (p, r′, πvi(p, r

′))| < 1
4ε
′. The

expression in (31) is thus upper-bounded by 1
4ε
′ if ε < ε2.

To obtain high-probability upper bounds for (32) and (33), we apply Lemma 7. For sufficiently-high i, each of the



following holds with probability at least 1− 1
2δ
′:∣∣∣∣V (p, r̃i1

||r̃i1||2
, πvi

(
p,

r̃i1
||r̃i1||2

))
− V

(
p̃i1,

r̃i1
||r̃i1||2

, πvi

(
p̃i1,

r̃i1
||r̃i1||2

))∣∣∣∣ < 1

4
ε′,∣∣∣∣V (p̃i1, r̃i1

||r̃i1||2
, π

)
− V

(
p,

r̃i1
||r̃i1||2

, π

)∣∣∣∣ < 1

4
ε′,

where the second statement holds for any policy π, and in particular for π = πvi

(
p̃i1,

r̃i1
||r̃i1||2

)
.

We combine the bounds for (30)-(33), setting ε < min{ε1, ε2} and i > i′. Thus, for any ε′, δ′ > 0, we have shown
that by setting ε small enough and taking i > i′:∣∣∣V (p,v

(i)
d , πvi(p,v

(i)
d ))− V (p,v

(i)
d , πi1)

∣∣∣ < ε′ with probability at least 1− δ′.

Combining with the analogous result for πi2 and −v(i)
d yields that for any ε′, δ′ > 0, there exists sufficiently-small ε

and large-enough i′ such that for i > i′:∣∣∣V (p,v
(i)
d , πvi(p,v

(i)
d ))− V (p,v

(i)
d , πi1)

∣∣∣ < ε′ with probability at least 1− δ′, and (34)∣∣∣V (p,−v(i)
d , πvi(p,−v(i)

d ))− V (p,−v(i)
d , πi2)

∣∣∣ < ε′ with probability at least 1− δ′.

Next, we will set ε′ to a small enough number to achieve
∣∣∣E[xTi v

(i)
d ]
∣∣∣ > ε′ > 0. Firstly, note that that |E[xTi v

(i)
d ]| is

maximized when setting πi1 = πvi(p,v
(i)
d ) and πi2 = πvi(p,−v(i)

d ):

max
π1,π2

∣∣∣E[xTi v
(i)
d ] |πi1 = π1, πi2 = π2

∣∣∣ = max
π1,π2

∣∣∣E[xTi1v
(i)
d − x

T
i2v

(i)
d ] |πi1 = π1, πi2 = π2

∣∣∣
=
∣∣∣E[xTi1v

(i)
d − x

T
i2v

(i)
d |πi1 = argmaxπE[xTi1v

(i)
d ], πi2 = argminπE[xTi2v

(i)
d ]]
∣∣∣

=
∣∣∣E[xTi1v

(i)
d − x

T
i2v

(i)
d |πi1 = argmaxπE[xTi1v

(i)
d ], πi2 = argmaxπE[xTi2(−v(i)

d )]]
∣∣∣

=
∣∣∣E[xTi1v

(i)
d − x

T
i2v

(i)
d |πi1 = argmaxπV (p,v

(i)
d , π), πi2 = argmaxπV (p,−v(i)

d , π)]
∣∣∣

=
∣∣∣E[xTi1v

(i)
d − x

T
i2v

(i)
d |πi1 = πvi(p,v

(i)
d ), πi2 = πvi(p,−v(i)

d )]
∣∣∣ .

From Lemma 8 and Remark 1, we can assume without loss of generality that for all v
(i)
d ,

maxπ1,π2

∣∣∣E[xTi v
(i)
d |πi1 = π1, πi2 = π2]

∣∣∣ > 0. Because
∣∣∣E[xTi v

(i)
d |πi1 = π1, πi2 = π2]

∣∣∣ is continu-

ous in v
(i)
d for fixed π1, π2, and a maximum over finitely-many continuous functions is continuous,

maxπ1,π2

∣∣∣E[xTi v
(i)
d |πi1 = π1, πi2 = π2]

∣∣∣ is also continuous in v(i)
d . Because v(i)

d belongs to the compact set

of unit vectors, the expression achieves a minimum positive value on the set of possible v(i)
d , and thus, there exists

η > 0 such that maxπ1,π2

∣∣∣E[xTi v
(i)
d |πi1 = π1, πi2 = π2]

∣∣∣ ≥ η > 0. Setting ε′ := η
3 :

0 < 3ε′ = η ≤ max
π1,π2

∣∣∣E[xTi v
(i)
d |πi1 = π1, πi2 = π2]

∣∣∣ =

∣∣∣∣max
π1

E[xTi1v
(i)
d |πi1 = π1]−min

π2

E[xTi2v
(i)
d |πi2 = π2]

∣∣∣∣
=

∣∣∣∣max
π1

V (p,v
(i)
d , π1)−min

π2

V (p,v
(i)
d , π2)

∣∣∣∣ =

∣∣∣∣max
π1

V (p,v
(i)
d , π1) + max

π2

[−V (p,v
(i)
d , π2)]

∣∣∣∣
=

∣∣∣∣max
π1

V (p,v
(i)
d , π1) + max

π2

V (p,−v(i)
d , π2)

∣∣∣∣ =
∣∣∣V (p,v

(i)
d , πvi(p,v

(i)
d )) + V (p,−v(i)

d , πvi(p,−v(i)
d ))

∣∣∣
(a)

≤
∣∣∣V (p,v

(i)
d , πi1) + V (p,−v(i)

d , πi2)
∣∣∣+ 2ε′,



where (a) holds with probability at least 1− 2δ′ by (34). Rearranging terms, with probability at least 1− 2δ′,

ε′ <
∣∣∣V (p,v

(i)
d , πi1) + V (p,−v(i)

d , πi2)
∣∣∣ =

∣∣∣V (p,v
(i)
d , πi1)− V (p,v

(i)
d , πi2)

∣∣∣ =
∣∣∣E[xTi v

(i)
d ]
∣∣∣ .

This implies that:

E
[∣∣∣xTi v(i)

d

∣∣∣] (a)

≥
∣∣∣E [xTi v(i)

d

]∣∣∣ ≥ c′ > 0 for some positive c′ and for all i > i′ and v(i)
d ,

where (a) holds via Jensen’s inequality and c′ := ε′.

We are now equipped to complete the proof of asymptotic consistency of the reward model.

Lemma 11. As i −→∞, βi(δ)
2

λ
(i)
d

D−→ 0, where λ(i)
d is the minimum eigenvalue of Mi.

Proof. We will first show that lim inf
i−→∞

βi(δ)
2
(
λ

(i)
d

)−1

= 0 via a proof by contradiction. Assume that:

lim inf
i−→∞

βi(δ)
2
(
λ

(i)
d

)−1

= 2α > 0. (35)

If (35) is true, then there exists i0 such that for all i ≥ i0, βi(δ)2
(
λ

(i)
d

)−1

≥ α. In the following, we assume that

i ≥ i0. Since βi(δ) increases at most logarithmically in i, it suffices to show that λ(i)
d increases at least linearly on

average to achieve a contradiction with (35).

Under the contradiction hypothesis, Lemmas 9 and 10 both hold. Due to Lemma 10, DPS will infinitely-often, and at
a non-decaying rate, sample trajectory pairs such that |xTi v

(i)
d | is lower-bounded away from zero. At iteration n, we

analyze the effect of this guarantee upon λ(n)
d . Note that λ(n)

d corresponds to the eigenvector v(n)
d of Mn, and so:

λ
(n)
d = v

(n)T
d Mnv

(n)
d

(a)
= v

(n)T
d

(
λI +

n−1∑
i=1

xix
T
i

)
v

(n)
d = λ+

n−1∑
i=1

(
xTi v

(n)
d

)2

, (36)

where (a) follows from the definition of Mn. Note that while the right-hand side expression of (36) depends upon
xTi v

(n)
d for i < n, (29) depends upon xTi v

(i)
d . Clearly, if v(i)

d remained constant in i, then the combination of (29) and
(36) would suffice to prove that λ(n)

d −→ ∞ with at least a linear on-average rate; however, v(i)
d can vary with i over

the entire space of unit vectors in Rd.

We leverage that v(i)
d is a unit vector, that the set of unit vectors in Rd is compact, and that any infinite cover of a

compact set has a finite subcover. In particular, for any ε > 0, there exist sets S1, . . . , SK ⊂ Rd, K <∞, such that:

1. For v ∈ Rd such that ||v||2 = 1, v ∈ Sk for some k ∈ {1, . . . ,K}, and

2. If v1,v2 ∈ Sk, then ||v1 − v2|| < ε.

We will show that there exists a sequence (ni) ∈ N such that v(ni)
d ∈ Sk for fixed k ∈ {1, . . . ,K}, with the events

v
(ni)
d ∈ Sk corresponding to the indices (ni) occurring at some non-decaying frequency. Then, by appropriately

choosing ε, we will use (36) and the mutual proximity of the vectors v(ni)
d to show that λ(n)

d increases with an at-least
linear rate.

Observe that for any number of total iterations N , there exists an integer k ∈ {1, . . . ,K} such that v(i)
d ∈ Sk during

at least NK iterations. Because K is a constant and N
K is linear in N , the number of iterations in which v(i)

d ∈ Sk is
at least linear in N for some k. The right-hand sum in (36) can then be divided according to the indices (ni) and the
remaining indices:

λ
(nj)
d = λ+

nj−1∑
i=1

(
xTi v

(ni)
d

)2

= λ+

j−1∑
i=1

(
xTniv

(ni)
d

)2

+

nj−1∑
j=1;j /∈{n1,n2,...,nj−1}

(
xTj v

(ni)
d

)2

. (37)



The latter sum in (37) is non-decreasing in nj , as all of its terms are non-negative. In the former sum, ||v(nj)
d −v(ni)

d || <
ε for each i ∈ {1, . . . , j − 1}. Defining δ := v

(nj)
d − v(ni)

d , so that ||δ||2 ≤ ε:(
xTniv

(ni)
d

)2

=
(
xTni

(
v

(ni)
d + δ

))2

=
(
xTniv

(ni)
d + xTniδ

)2

≥
(∣∣∣xTniv(ni)

d

∣∣∣− ∣∣xTniδ∣∣)2

. (38)

By the Cauchy-Schwarz inequality,
∣∣xTniδ∣∣ ≤ ||δ||2 ∗ ||xni ||2 ≤ 2εh, where h is the trajectory horizon. Because (29)

requires that E
[∣∣∣xTniv(ni)

d

∣∣∣] ≥ c′ > 0, one can choose ε small enough that E
[∣∣∣xTniv(ni)

d

∣∣∣− ∣∣xTniδ∣∣] ≥ c′ − 2εh ≥
c′′ > 0, and:

E
[(
xTniv

(ni)
d

)2
]

(a)

≥ E
[(∣∣∣xTniv(ni)

d

∣∣∣− ∣∣xTniδ∣∣)2
]

(b)

≥ E
[∣∣∣xTniv(ni)

d

∣∣∣− ∣∣xTniδ∣∣]2 ≥ (c′′)2 > 0,

where (a) takes expectations of both sides of (38), and (b) follows from Jensen’s inequality. Merging this result with
(37) implies that λ(nj)

d is expected to increase at least linearly on average, according to the positive constant c′′, over
the indices (ni). Recall that there always exists an Sk such that the number of times when v(i)

d ∈ Sk is at least linear in
the total number of iterations N . Thus, the rate at which indices (ni) occur is always (at least) linear in N on average,
and λ(nj)

d increases at least linearly in N in expectation.

We demonstrate that lim inf
i−→∞

βi(δ)
2

λ
(i)
d

= 0 holds: the numerator of βi(δ)
2

λ
(i)
d

is the square of a quantity that increases at most

logarithmically in i, while the denominator increases at least linearly in i on average. This contradicts the assumption

in (35), and so lim inf
i−→∞

βi(δ)
2
(
λ

(i)
d

)−1

= 0 must hold.

Finally, we leverage that lim inf
i−→∞

βi(δ)
2
(
λ

(i)
d

)−1

= 0 to show that lim
i−→∞

βi(δ)
2
(
λ

(i)
d

)−1

= 0. Consider the following

two possible cases: 1) βi(δ)2
(
λ

(i)
d

)−1

converges to zero in probability, and 2) βi(δ)2
(
λ

(i)
d

)−1

does not converge
to zero in probability. In case 1), because convergence in probability implies convergence in distribution, the desired
result holds.

In case 2), there exists some ε > 0 such that P
(
βi(δ)

2
(
λ

(i)
d

)−1

≥ ε
)
6−→ 0. In this case, one can apply the same

arguments used to show that lim inf
i−→∞

βi(δ)
2
(
λ

(i)
d

)−1

= 0, but specifically over time indices where βi(δ)2
(
λ

(i)
d

)−1

≥
ε. Due to the non-convergence in probability, these time indices must occur at some non-decaying rate, and so the
same analysis applies. Thus, λ(i)

d increases in i with at least a minimum linear average rate, while βi(δ) increases
at most logarithmically in i. This violates the non-convergence assumption of case 2), resulting in a contradiction.
Therefore, only case 1) can hold.

From the asymptotic consistency of the dynamics and reward samples, one can show that the sampled policies converge
in distribution to the optimal policy:

Theorem 1. With probability 1 − δ, the sampled policies πi1, πi2 converge in distribution to the optimal policy, π∗,
as i −→∞. That is, P (πi1 = π∗) −→ 1 and P (πi2 = π∗) −→ 1 as i −→∞.

Proof. It suffices to show that P (πi1 = π∗) −→ 1 as i −→ ∞, as the proof is identical for πi2. From Propositions
1 and 2, respectively, we have that p̃i1

D−→ p and that r̃i1
D−→ r with probability 1 − δ. We proceed under the

assumption that r̃i1
D−→ r, i.e., that the probability-(1− δ) event occurs.

By Fact 1 in Appendix A.5, for each fixed π, V (p̃i1, r̃i1, π)
D−→ V (p, r, π), as value functions are continuous in the

dynamics and reward parameters. Applying Fact 2 in Appendix A.5, for each fixed π and ε > 0:

P (|V (p̃i1, r̃i1, π)− V (p, r, π)| > ε) −→ 0 as i −→∞. (39)



Next, we set the value of ε to be less than half of the smallest gap between the value of the optimal policy and the
value of any suboptimal policy:

ε <
1

2

[
max
π

V (p, r, π)− max
π s.t. V (p,r,π)<maxπ′ V (p,r,π′)

V (p, r, π)

]
.

Then, the probability of selecting a non-optimal policy can be upper-bounded by a quantity that decays with i:

P (πi1 6= π∗)
(a)

≤ P

(⋃
π

{|V (p̃i1, r̃i1, π)− V (p, r, π)| > ε}

)
(b)

≤
∑
π

P (|V (p̃i1, r̃i1, π)− V (p, r, π)| > ε)
(c)−→ 0 as i −→∞,

where (a) follows from the definition of ε, (b) follows from the union bound, and (c) holds due to (39).

A.2 BOUNDING THE ONE-SIDED REGRET WHEN ONE POLICY IS DRAWN FROM A FIXED
DISTRIBUTION

In this portion of the analysis, we assume that in each iteration i, policy πi1 is drawn from a fixed distribution over
Π, the set of deterministic policies. In this setting, we only consider the one-sided regret incurred by the policies
{πi2}, i ≥ 1. LetN be the total number of iterations of DPS, so that the total number of actions taken by {πi2}, i ≥ 1,
is T = Nh. Let x∗i be the trajectory obtained in iteration i if πi2 = π∗. Then, the expected one-sided regret of the
policies {πi2} is the expected loss in total utility due to selecting suboptimal policies:

E [REG2(T )] = E [REG2(Nh)] := E

[
N∑
i=1

rT (x∗i − xi2)

]
.

Recall that the preference outcome on iteration i, yi ∈
{
− 1

2 ,
1
2

}
, can be written as:

yi = rT (xi2 − xi1) + ηi,

for zero-mean noise ηi. Define the outcome of selecting policy πi2 = π∗ in iteration i as y∗i ∈
{
− 1

2 ,
1
2

}
:

y∗i = rT (x∗i − xi1) + η∗i ,

for zero-mean noise η∗i . Importantly, the difference y∗i −yi is equal to the instantaneous one-sided regret in expectation:

E [REG2(T )] : = E

[
N∑
i=1

rT (x∗i − xi2)

]
= E

[
N∑
i=1

(
rT (x∗i − xi1)− rT (xi2 − xi1)

)]
(40)

(a)
= E

[
N∑
i=1

(y∗i − yi)

]
,

where equality (a) holds because the noise terms ηi and η∗i are zero-mean.

Define the one-sided algorithm’s history at iteration i as H(2)
i = {Z1, Z2, . . . , Zi}, where Zi = (πi2, τi1, τi2,xi2 −

xi1, yi). Analogously to Russo and Van Roy (2016), we establish notation for probabilities and information-theoretic
quantities while conditioning on the history H(2)

i−1. In particular, Pi(·) := P (· |H(2)
i−1) and Ei[·] := E[· |H(2)

i−1]. With
respect to the history, the entropy of a random variable X is Hi(X) := −

∑
x Pi(X = x) logPi(X = x), while

two random variables X and Y have mutual information Ii(X;Y ) := Hi(X) − Hi(X|Y ). Lastly, D(P ||Q) is the
Kullback-Leibler divergence between two discrete probability distributions P and Q.



The information ratio is then defined as:

Γi :=
Ei[y∗i − yi]2

Ii(π∗; (πi2, τi1, τi2,xi2 − xi1, yi))
. (41)

This definition is analogous to the information ratio defined in Russo and Van Roy (2016), but while Russo and
Van Roy (2016) study the bandit setting with absolute feedback, our definition is adapted to the preference-based RL
setting. Note that the numerator is the square of the expected instantaneous one-sided regret, while the denominator is
the information gained about the optimal policy in iteration i.

In Russo and Van Roy (2016), the authors express the expected Bayesian regret of Thompson sampling in the bandit
setting in terms of the information ratio (Proposition 1, Russo and Van Roy (2016)). The following lemma adapts this
result to the PBRL setting:

Lemma 12. If there exists an upper bound Γ such that Γi ≤ Γ almost surely for each i ∈ {1, . . . , N}, where N is the
number of DPS iterations (i.e., pairs of trajectories), then the policies {πi2} take T = Nh total actions, and:

E[REG2(T )] = E[REG2(Nh)] ≤
√

ΓH(π∗)N,

where H(π∗) is the entropy of the optimal policy π∗. Note that since there are at most ASh possible deterministic
policies, H(π∗) ≤ log |ASh| = Sh logA. Substituting this,

E[REG2(T )] ≤
√

ΓShN logA =

√
ΓST logA.

Proof.

E[REG2(T )] =

N∑
i=1

E[y∗i − yi]
(a)
=

N∑
i=1

EH(2)
i−1

Ei [y∗i − yi] =

N∑
i=1

EH(2)
i−1

√
ΓiIi(π∗; (πi2, τi1, τi2,xi2 − xi1, yi))

≤
√

Γ

N∑
i=1

EH(2)
i−1

√
Ii(π∗; (πi2, τi1, τi2,xi2 − xi1, yi))

(b)

≤

√√√√ΓN

N∑
i=1

[
EH(2)

i−1

√
Ii(π∗; (πi2, τi1, τi2,xi2 − xi1, yi))

]2
(c)

≤

√√√√ΓN

N∑
i=1

EH(2)
i−1
Ii(π∗; (πi2, τi1, τi2,xi2 − xi1, yi)), (42)

where (a) results from the tower property of conditional expectation, (b) follows from the Cauchy-Schwarz inequality,
and (c) follows from Jensen’s inequality. It remains to upper-bound the summation in (42) by H(π∗). Defining
Zi := (πi2, τi1, τi2,xi2 − xi1, yi), the summation terms are equal to EH(2)

i−1
Ii(π

∗;Zi) = I(π∗;Zi|Z1, . . . , Zi−1),
where the last equality comes from applying the definitions of Ii and of conditional mutual information. Therefore,

N∑
i=1

EH(2)
i−1
Ii(π

∗; (πi2, τi1, τi2,xi2 − xi1, yi)) =

N∑
i=1

I(π∗;Zi|Z1, . . . , Zi−1)
(a)
= I(π∗;Z1, . . . , Zi)

(b)
= H(π∗)−H(π∗|Z1, . . . , Zi)

(c)

≤ H(π∗),

where (a) results from the chain rule for mutual information, (b) is a standard identity resulting from the definitions of
entropy and mutual information (Cover and Thomas, 2012), and (c) follows from the non-negativity of entropy.

Corollary 1. If Γi ≤ Γ almost surely for each i ∈ {i0, . . . , N} for some index i0 ≥ 1, then DPS achieves an
asymptotic one-sided regret rate of

√
ΓShN logA =

√
ΓST logA.



Proof. The one-sided regret can be decomposed into two sums:

E[REG2(T )] =

N∑
i=1

E[y∗i − yi] =

i0−1∑
i=1

E[y∗i − yi] +

N∑
i=i0

E[y∗i − yi].

The second term can be upper-bounded via the same arguments used to prove Lemma 12. The first term is a constant
for iteration i ≥ i0, as it does not depend on the performance of the algorithm for iterations i ≥ i0.

Next, we turn to upper-bounding the information ratio. First, Lemma 13 demonstrates in Thompson sampling, the
probability of selecting a policy is equal to that policy’s posterior probability of being optimal.

Lemma 13. When πi2 is selected via Thompson sampling—i.e., by drawing respective samples p̃ and r̃ from the dy-
namics and reward posteriors, and performing value iteration to obtain πi2 = πvi(p̃, r̃)—then for each deterministic
policy π, Pi(πi2 = π) = Pi(π

∗ = π).

Proof. In Thompson sampling, the MDP parameters are sampled from the model posterior, that is, according to their
posterior probability of being the true MDP parameters. Let m = [rT ,pT ]T ∈ RS2A+SA be the vector of true MDP
parameters, where r ∈ RSA is the vector of reward parameters and p ∈ RS2A is the vector of dynamics parameters.
Let pi(m) be the posterior probability density of m, given the history; then, Thompson sampling samples parameter
vectors m ∈ RS2A+SA according to pi(m). Finally, for any deterministic policy π, let m(π) ⊂ RS2A+SA give the
set of all MDP parameters for which value iteration yields the policy π. Then:

Pi(πi2 = π)
(a)
=

∫
m(π)

pi(m)dm
(b)
= Pi(π

∗ = π),

where (a) holds because Thompson sampling selects policies by samplingm ∼ pi(·) and then applying value iteration
tom, and (b) follows from integrating over the posterior probability of all MDP parameter vectors resulting in π.

To upper-bound the information ratio, we next express its numerator and denominator using the optimal policy’s
distribution via the following lemma (analogous to Proposition 2 in Russo and Van Roy (2016)):

Lemma 14. Recall that Π is the set of deterministic policies. The following two statements hold:

Ei [y∗i − yi] =
∑
π∈Π

Pi(π
∗ = π)

{
Ei[yi |π∗ = πi2 = π]− Ei[yi |πi2 = π]

}
and

Ii(π
∗; (πi2, τi1, τi2,xi2−xi1, yi)) ≥

∑
π,π′∈Π

Pi(π
∗ = π)Pi(π

∗ = π′)D
(
Pi(yi |πi2 = π, π∗ = π′) ||Pi(yi |πi2 = π)

)
,

where D(p||q) is the Kullback-Leibler divergence between discrete probability distributions p and q.

Proof. The numerator of the information ratio can be written as:

Ei [y∗i − yi] =
∑
π∈Π

Pi(π
∗ = π)Ei[y∗i |π∗ = π]−

∑
π∈Π

Pi(πi2 = π)Ei[yi |πi2 = π]

(a)
=
∑
π∈Π

Pi(π
∗ = π)

(
Ei[y∗i |π∗ = π]− Ei[yi |πi2 = π]

)
=
∑
π∈Π

Pi(π
∗ = π)

{
Ei[yi |π∗ = πi2 = π]− Ei[yi |πi2 = π]

}
,



where (a) follows from Lemma 13. The denominator of the information ratio can meanwhile be lower-bounded:

Ii(π
∗; (πi2, τi1, τi2,xi2 − xi1, yi))

(a)
= Ii(π

∗;πi2) + Ii(π
∗; yi |πi2) + Ii(π

∗; (xi2 − xi1, τi1, τi2) |πi2, yi)
(b)

≥ Ii(π
∗; yi |πi2) =

∑
π∈Π

Pi(πi2 = π)Ii(π
∗; yi |πi2 = π)

(c)
=
∑
π∈Π

Pi(π
∗ = π)Ii(π

∗; yi |πi2 = π),

where (a) follows from the chain rule for mutual information, (b) results from the non-negativity of mutual information,
and (c) is a consequence of Lemma 13. We next apply the following information-theoretic identity (Fact 6 in Russo
and Van Roy (2016)), which holds for discrete random variables X and Y :

I(X;Y ) =
∑
x

P (X = x)D(P (Y |X = x) ||P (Y )).

From this, one obtains:

Ii(π
∗; yi |πi2 = π) =

∑
π′∈Π

Pi(π
∗ = π′ |πi2 = π)D(Pi(yi |π∗ = π′, πi2 = π) ||Pi(yi |πi2 = π))

(a)
=
∑
π′∈Π

Pi(π
∗ = π′)D(Pi(yi |π∗ = π′, πi2 = π) ||Pi(yi |πi2 = π)),

where (a) holds because by definition of Thompson sampling, π∗ and πi2 are independent given the history. Therefore:

Ii(π
∗; (πi2, τi1, τi2,xi2 − xi1, yi)) ≥

∑
π∈Π

Pi(π
∗ = π)

∑
π′∈Π

Pi(π
∗ = π′)D(Pi(yi |π∗ = π′, πi2 = π) ||Pi(yi |πi2 = π))

=
∑

π,π′∈Π

Pi(π
∗ = π)Pi(π

∗ = π′)D
(
Pi(yi |πi2 = π, π∗ = π′) ||Pi(yi |πi2 = π)

)
,

which is the desired result.

The next lemma asymptotically upper-bounds the information ratio Γi for the one-sided regret. It is inspired by the
analysis in Russo and Van Roy (2016) for the linear bandit setting (Proposition 5 in Russo and Van Roy (2016)); how-
ever, extending this result to the PBRL setting requires accounting for the dynamics, which complicates the analysis.
Lemma 15. Consider the one-sided regret when πi1 is drawn from a fixed distribution. The information ratio Γi
satisfies:

lim
i−→∞

Γi ≤
d

2
=
SA

2
.

Thus, for any ε > 0 and a sufficiently-large iteration index i, Γi ≤ SA
2 + ε.

Proof. Let K := |Π|. Index all the deterministic policies as π1, . . . , πK , and define B(i) ∈ RK×K with jkth element:

B
(i)
jk =

√
Pi(π∗ = πj)Pi(π∗ = πk)

(
Ei[yi |πi2 = πj , π

∗ = πk]− Ei[yi |πi2 = πj ]
)
. (43)

The numerator and denominator of Γi can both be expressed in terms of B(i). Applying Lemma 14 to the numerator,
the instantaneous regret can be written as follows:

Ei [y∗i − yi] =
∑
π∈Π

Pi(π
∗ = π)

{
Ei[yi |π∗ = πi2 = π]− Ei[yi |πi2 = π]

}
=

K∑
j=1

Pi(π
∗ = πj)

{
Ei[yi |π∗ = πi2 = πj ]− Ei[yi |πi2 = πj ]

}
=

K∑
j=1

B
(i)
jj = Tr

(
B(i)

)
.



Applying Lemma 14 to the denominator of Γi in Equation (41) yields:

Ii(π
∗; (πi2, τi1, τi2,xi2 − xi1, yi)) ≥

∑
π,π′∈Π

Pi(π
∗ = π)Pi(π

∗ = π′)D
(
Pi(yi |πi2 = π, π∗ = π′) ||Pi(yi |πi2 = π)

)
=

K∑
j,k=1

Pi(π
∗ = πj)Pi(π

∗ = πk)D
(
Pi(yi |πi2 = πj , π

∗ = πk) ||Pi(yi |πi2 = πj)
)
.

We convert the Kullback-Leibler divergence to a difference of expectations by applying Fact 9 from Russo and Van Roy
(2016), restated here: for any probability distributions P and Q such that P is absolutely continuous with respect to
Q, any random variable X taking values on the set X , and any g : X −→ R such that sup g − inf g ≤ 1,

D(P ||Q) ≥ 2
(
EP [g(X)]− EQ[g(X)]

)2
. (44)

Thus, we have that:

D
(
Pi(yi |πi2 = πj , π

∗ = πk) ||Pi(yi |πi2 = πj)
)
≥ 2
(
Ei[yi |πi2 = πj , π

∗ = πk]− Ei[yi |πi2 = πj ]
)2

,

where we applied (44) with g(x) = x; this definition of g satisfies the requirement that sup g − inf g ≤ 1, since its
argument is yi ∈

{
− 1

2 ,
1
2

}
. As a result:

Ii(π
∗; (πi2, τi1, τi2,xi2 − xi1, yi)) ≥ 2

K∑
j,k=1

Pi(π
∗ = πj)Pi(π

∗ = πk)
(
Ei[yi |πi2 = πj , π

∗ = πk]− Ei[yi |πi2 = πj ]
)2

= 2

K∑
j,k=1

(
B

(i)
jk

)2

= 2||B(i)||2F .

Combining these results gives that Γi ≤
Tr(B(i))

2

2||B(i)||2F
. As shown in Russo and Van Roy (2016) (Fact 10), for any square

matrix B ∈ Rm×m, Tr(B) ≤
√

Rank(B)||B||F . Thus:

Γi ≤
Tr
(
B(i)

)2
2||B(i)||2F

≤ 1

2
Rank

(
B(i)

)
.

The problem is therefore reduced to upper-bounding Rank
(
B(i)

)
. First, we will show that under known transition

dynamics, Rank
(
B(i)

)
≤ d = SA. Subsequently, we will demonstrate that as the sampled dynamics parameters

converge in distribution to their true values (which occurs by Proposition 1), lim
i−→∞

Rank
(
B(i)

)
≤ d.

Recall the definition of B(i) in (43). We will first show that under known transition dynamics, we can define a set of
vectors u1, . . . ,uK ,v1, . . . ,vK ∈ Rd, such thatB(i)

jk = uTk vj . Recalling that yi = rT (xi2−xi1)+ηi, and assuming
that the dynamics p are known,

Ei[yi |πi2 = πj , π
∗ = πk,p] = Ei[rT (xi2 − xi1) + ηi |πi2 = πj , π

∗ = πk,p]

(a)
= Ei[rT (xi2 − xi1) |πi2 = πj , π

∗ = πk,p]

(b)
= Ei[r |πi2 = πj , π

∗ = πk,p]T (Ei[xi2 |πi2 = πj ,p]− Ei[xi1]) (45)
(c)
= Ei[r |π∗ = πk,p]T (Ei[xi2 |πi2 = πj ,p]− Ei[xi1]),

where equality (a) holds because the noise ηi is zero-mean. Equality (b) holds because, by assumption, xi1 is drawn
from a fixed distribution, independently of π∗, πi2, or r, while given πi2 and known dynamics, the distribution of xi2



is fully-determined and independent of π∗ and r. Equality (c) holds because, conditioned upon H(2)
i−1, r and πi2 are

independent (as the history fully determines the distribution of πi2). By similar arguments,

Ei[yi |πi2 = πj ,p] = Ei[rT (xi2 − xi1) + ηi |πi2 = πj ,p] = Ei[rT (xi2 − xi1) |πi2 = πj ,p]

= Ei[r |πi2 = πj ,p]T (Ei[xi2 |πi2 = πj ,p]− Ei[xi1]) (46)

= Ei[r |p]T (Ei[xi2 |πi2 = πj ,p]− Ei[xi1]).

Subtracting the latter two quantities yields:

Ei[yi |πi2 = πj , π
∗ = πk,p]− Ei[yi |πi2 = πj ,p]

= (Ei[r |π∗ = πk,p]− Ei[r |p])T (Ei[xi2 |πi2 = πj ,p]− Ei[xi1]). (47)

Applying this result, under the case of known dynamics, B(i)
jk can be written as:

B
(i)
jk =

√
Pi(π∗ = πj |p)Pi(π∗ = πk |p)

(
Ei[yi |πi2 = πj , π

∗ = πk,p]− Ei[yi |πi2 = πj ,p]
)

=
√
Pi(π∗ = πk |p)(Ei[r |π∗ = πk,p]− Ei[r |p])T

√
Pi(π∗ = πj |p)(Ei[xi2 |πi2 = πj ,p]− Ei[xi1])

:= uTk vj ,

where in the last equality, we define uk :=
√
Pi(π∗ = πk |p)(Ei[r |π∗ = πk,p] − Ei[r |p]) and vj :=√

Pi(π∗ = πj |p) (Ei[xi2 |πi2 = πj ,p]− Ei[xi1]). Therefore:

B(i) =

u
T
1 v1 . . . uTKv1

...
. . .

...
uT1 vK . . . uTKvK

 =

v
T
1
...
vTK

 [u1 . . . uK
]
. (48)

Because B(i) can be written as the product of a K × d matrix and a d × K matrix, B(i) can have rank at most
d. To reach this result, however, we assumed that the MDP transition dynamics are known. To complete the proof,
we now show that the result still holds asymptotically as the sampled dynamics converge in distribution to the true
dynamics (Proposition 1 guarantees that this convergence occurs). Note that we only used our assumed knowledge of
the dynamics to arrive at the equalities in lines (45) and (46). In both cases, knowledge of p is used to treat xi2 and r
as conditionally independent given πi2. In particular, (45) uses that:

Ei[rTxi2 |πi2 = πj , π
∗ = πk,p] = Ei[r |πi2 = πj , π

∗ = πk,p]TEi[xi2 |πi2 = πj ,p].

We show that in general, when the transition dynamics p are not known but learned, that:

Ei[rTxi2 |πi2 = πj , π
∗ = πk]

i−→∞−→ Ei[r |πi2 = πj , π
∗ = πk]TEi[xi2 |πi2 = πj ,p]. (49)

Let pi(·) be the posterior probability density of the transition dynamics parameters; then, pi(·) is also the density with
which the dynamics p̃ are sampled at iteration i. Because each dynamics parameter converges in distribution to its
true value—and there are finitely-many dynamics parameters—the distribution pi(·) converges uniformly to δ(p = ·),
where δ(·) denotes the Dirac-delta distribution. Therefore,

Pi(xi2 = · |πi2 = πj , π
∗ = πk, r)

(a)
=

∫
p̃

Pi(xi2 = · |πi2 = πj , π
∗ = πk, r, p = p̃)pi(p̃)dp̃ (50)

i−→∞−→
∫
p̃

Pi(xi2 = · |πi2 = πj , π
∗ = πk, r, p = p̃)δ(p̃ = p)dp̃

(b)
= Pi(xi2 = · |πi2 = πj , π

∗ = πk, r, p)
(c)
= Pi(xi2 = · |πi2 = πj , p),

where (a) integrates over the posterior probability density of each possible dynamics parameter vector p̃, (b) utilizes
the sifting property of the Dirac-delta function, and (c) follows because the distribution of xi2 is fully determined



given the dynamics and policy πi2. For any discrete random variables X and Xn, n ≥ 1, defined over a finite set X ,
convergence in distribution Xn

D−→ X is equivalent to limn−→∞ P (Xn = x) = P (X = x) for each x ∈ X . Since X
is a finite set, one also has convergence in expectation:

E[Xn] =
∑
x∈X

xP (Xn = x)
n−→∞−→

∑
x∈X

xP (X = x) = E[X]. (51)

Combining (50) and (51) yields the result,

Ei[xi2 |πi2 = πj , π
∗ = πk, r]

i−→∞−→ Ei[xi2 |πi2 = πj ,p]. (52)

In consequence,

Ei[rTxi2 |πi2 = πj , π
∗ = πk]

(a)
= Ei,r[Ei[rTxi2 |πi2 = πj , π

∗ = πk, r] |πi2 = πj , π
∗ = πk]

= Ei,r[rTEi[xi2 |πi2 = πj , π
∗ = πk, r] |πi2 = πj , π

∗ = πk]

(b)−→ Ei[r |πi2 = πj , π
∗ = πk]TEi[xi2 |πi2 = πj ,p] as i −→∞, (53)

where (a) follows from the tower property of expectation, and (b) is an application of (52). This proves the desired
statement, (49). Repeating the same analysis as in (49)-(53), but removing the conditioning on π∗ = πk yields:

Ei[rTxi2 |πi2 = πj ] −→ Ei[r |πi2 = πj ]
TEi[xi2 |πi2 = πj ,p] as i −→∞. (54)

The analysis in (45)-(47) can be repeated, replacing the knowledge of p with the asymptotic relations in (53) and (54):

Ei[yi |πi2 = πj , π
∗ = πk] = Ei[rT (xi2 − xi1) + ηi |πi2 = πj , π

∗ = πk]

= Ei[rT (xi2 − xi1) |πi2 = πj , π
∗ = πk]

i−→∞−→ Ei[r |πi2 = πj , π
∗ = πk]T (Ei[xi2 |πi2 = πj ,p]− Ei[xi1])

= Ei[r |π∗ = πk]T (Ei[xi2 |πi2 = πj ,p]− Ei[xi1]), and similarly,

Ei[yi |πi2 = πj ] = Ei[rT (xi2 − xi1) + ηi |πi2 = πj ] = Ei[rT (xi2 − xi1) |πi2 = πj ]

i−→∞−→ Ei[r |πi2 = πj ]
T (Ei[xi2 |πi2 = πj ,p]− Ei[xi1])

= Ei[r]T (Ei[xi2 |πi2 = πj ,p]− Ei[xi1]).

Then, the difference between these two quantities asymptotically becomes:

Ei[yi |πi2 = πj , π
∗ = πk]− Ei[yi |πi2 = πj ]

i−→∞−→ (Ei[r |π∗ = πk]− Ei[r])T (Ei[xi2 |πi2 = πj ,p]− Ei[xi1]).

Asymptotically, B(i)
jk can then be expressed as:

B
(i)
jk =

√
Pi(π∗ = πj)Pi(π∗ = πk)

(
Ei[yi |πi2 = πj , π

∗ = πk]− Ei[yi |πi2 = πj ]
)

i−→∞−→
√
Pi(π∗ = πk)(Ei[r |π∗ = πk]− Ei[r])T

√
Pi(π∗ = πj)(Ei[xi2 |πi2 = πj ,p]− Ei[xi1])

:= u′Tk v
′
j ,

where in the last equality, we define u′k :=
√
Pi(π∗ = πk)(Ei[r |π∗ = πk] − Ei[r]) and v′j :=

√
Pi(π∗ = πj)

(Ei[xi2 |πi2 = πj ,p]− Ei[xi1]).

Thus, one can write B(i) = B
(i)
a + B

(i)
b , where B(i)

a has jkth element u′Tk v
′
j . As in (48), B(i)

a can be written as a

product of a K × d matrix with a d ×K matrix, and so its rank is at most d. Meanwhile, the elements of B(i)
b decay

to zero as i −→∞. For any ε > 0 and sufficiently-high i, the information ratio becomes upper-bounded by:

Γi ≤
Tr
(
B(i)

)2
2||B(i)||2F

=
Tr
(
B

(i)
a +B

(i)
b

)2

2||B(i)
a +B

(i)
b ||2F

(a)

≤
Tr
(
B

(i)
a

)2

2||B(i)
a ||2F

+ ε
(b)

≤ 1

2
Rank

(
B(i)
a

)
+ ε

(c)

≤ d

2
+ ε =

SA

2
+ ε,



where (a) follows because Tr(B) and ||B||F are both continuous in the elements of B, and the elements of B(i)
b

approach zero; (b) follows from Fact 10 in Russo and Van Roy (2016), as described earlier for the case with known
dynamics; and (c) holds by definition of B(i)

a .

Combining Corollary 1 and Lemma 15 yields the asymptotic regret rate for a fixed πi1-distribution:
Theorem 2. If the policy πi1 is drawn from a fixed distribution for each iteration i, then for the competing policy πi2,
DPS achieves a one-sided asymptotic Bayesian regret rate of:

S

√
AT logA

2
.

Proof. This result is a direct consequence of Corollary 1 and Lemma 15; the asymptotic bound Γ ≤ SA
2 + ε for any ε

is substituted into the expression in Corollary 1.

A.3 BOUNDING THE ONE-SIDED REGRET WHEN ONE POLICY IS DRAWN FROM A DRIFTING
AND CONVERGING DISTRIBUTION

We now assume that the distribution of πi1 is no longer fixed, but rather, that the sampled policies πi1 converge in
distribution toward some fixed probability distribution over Π, the set of deterministic policies. We will asymptotically
bound the one-sided regret incurred by πi2 in this case. To do so, we will leverage that when two discrete random
variables converge in distribution, their mutual information also converges:
Lemma 16. Let Xn and Yn, n ∈ N, be two sequences of discrete random variables that take values on the finite sets
X and Y , respectively. If Xn

D−→ X and Yn
D−→ Y , then limn−→∞ I(Xn;Yn) = I(X;Y ).

Proof. Firstly, note that Xn
D−→ X and Yn

D−→ Y imply that jointly, (Xn, Yn)
D−→ (X,Y ). Let Pn(x) and P (x) be

the probability distributions of Xn and X , respectively. Because the variables are discrete, Xn
D−→ X implies that

Pn(x) −→ P (x) for each x ∈ X , and similarly for Y and (X,Y ).

We express the mutual information as a sum of entropies: I(X;Y ) = H(X)+H(Y )−H(X,Y ) (Cover and Thomas,
2012). It suffices to show that ifXn

D−→ X , then limn−→∞H(Xn) = H(X): because Y and (X,Y ) are also discrete
random variables, this would imply that similarly, limn−→∞H(Yn) = H(Y ) and limn−→∞H(Xn, Yn) = H(X,Y ).

By definition, the entropies of X and Xn are:

H(X) = −
∑
x∈X

P (x) logP (x) and

H(Xn) = −
∑
x∈X

Pn(x) logPn(x).

Because Pn(x) −→ P (x) for each x ∈ X , for any x ∈ X and δ > 0, there exists Nx ∈ N such that for all n ≥ Nx,
|Pn(x)− P (x)| < δ. Let N = maxx∈X Nx. Then, for all n > N and all x ∈ X , |Pn(x)− P (x)| < δ.

Choose any ε′ > 0. Since f(z) = z log z is continuous for z ≥ 0 (with 0 log 0 := 0), there exists δ > 0 such that if
|Pn(x)− P (x)| < δ, then |Pn(x) logPn(x)− P (x) logP (x)| < ε′. We choose a δ that satisfies this condition.

Then, there exists N such that for all n > N and for all x ∈ X , |Pn(x) logPn(x) − P (x) logP (x)| < ε′. Finally,
choose ε > 0 and set ε′ ≤ ε

|X | , so that for all n > N :

∣∣∣H(X)−H(Xn)
∣∣∣ =

∣∣∣∣∣∑
x∈X

P (x) logP (x)−
∑
x∈X

Pn(x) logPn(x)

∣∣∣∣∣ ≤∑
x∈X

∣∣∣P (x) logP (x)− Pn(x) logPn(x)
∣∣∣

≤
∑
x∈X

ε′ = ε′|X | ≤ ε

|X |
|X | = ε.



So for any ε > 0, there existsN such that for all n > N , |H(X)−H(Xn)| ≤ ε. This proves that limn−→∞H(Xn) =
H(X), and therefore that limn−→∞ I(Xn;Yn) = I(X;Y ).

Armed with this convergence of mutual information, the one-sided regret for πi2 can be bounded as follows:

Lemma 17. Assume that πi1 is drawn from a distribution that is drifting and converging, that is, πi1 converges
in distribution to some fixed probability distribution. From Lemma 10, if πi1 is drawn from a fixed distribution,
then asymptotically, its information ratio is bounded by Γπi1 fixed

≤ SA
2 . In the case of a drifting/converging πi1

distribution, the information ratio Γi for πi2’s one-sided regret satisfies limi−→∞ Γi ≤ Γπi1 fixed
≤ SA

2 .

Proof. By Lemma 15, under a fixed πi1 distribution, the information ratio corresponding to the one-sided regret for
πi2 is asymptotically upper-bounded: limi−→∞ Γi,πi1 fixed

≤ Γπi1 fixed
, where Γi,πi1 fixed

is the information ratio at
iteration i when the distribution of πi1 is fixed.

The denominator of the information ratio, Ii(π∗; (πi2, τi1, τi2,xi2−xi1, yi)), is a mutual information between discrete
random variables, as there are finitely-many possible policies, trajectories, and preference outcomes; therefore, by
Lemma 16, it converges to the values that it would have under the fixed distribution to which πi1 converges.

The numerator of the information ratio is the square of the expected instantaneous one-sided regret,

E
[
rT (x∗i − xi2) |H(2)

i−1

]2
. Conditioned upon the historyH(2)

i−1, this does not depend upon the action xi1, and thus is
unaffected by the distribution of xi1 (recall that the xi1-dependency cancels in the regret formulation in (40)).

Thus, the information ratio can be asymptotically upper-bounded:

lim
i−→∞

Γi ≤ lim
i−→∞

Γi, πi1 fixed ≤ Γπi1 fixed
.

This means that for all ε > 0, there exists i0 such that for all i > i0, Γi ≤ Γπi1 fixed
+ ε ≤ SA

2 + ε.

A.4 OBTAINING THE ASYMPTOTIC REGRET RATE

By combining Lemma 17 with previous results, we obtain the final asymptotic Bayesian regret rate.

Theorem 3. With probability 1 − δ, where δ is a parameter of the Bayesian linear regression model, the Bayesian
regret E[REG(T )] of DPS achieves an asymptotic rate of S

√
2AT logA.

Proof. Combining Theorem 1, Theorem 2, and Lemma 17, the Bayesian one-sided regrets E[REG1(T )] and

E[REG2(T )] of policies πi1 and πi2 respectively each achieve asymptotic rates of S
√

AT logA
2 . The total regret is

the sum of the regret contributions from policies πi1 and πi2, and so asymptotically, E[REG(T )] increases at a rate of
at most S

√
2AT logA.

A.5 FACTS ABOUT CONVERGENCE IN DISTRIBUTION

Recall that for a random variable X and a sequence of random variables (Xn), n ∈ N, Xn
D−→ X denotes that

Xn converges to X in distribution, while Xn
P−→ X denotes that Xn converges to X in probability. We apply the

following two facts about convergence in distribution:

Fact 1 (Billingsley (1968)). For random variables x,xn,∈ Rd, where n ∈ N, and any continuous function g : Rd −→
R, if xn

D−→ x, then g(xn)
D−→ g(x).

Fact 2 (Billingsley (1968)). For random variables xn ∈ Rd, n ∈ N, and constant vector c ∈ Rd, xn
D−→ c is

equivalent to xn
P−→ c. Convergence in probability means that for any ε > 0, P (||xn−c||2 ≥ ε) −→ 0 as n −→∞.



B CREDIT ASSIGNMENT MODELS

This appendix contains the mathematical details of the credit assignment models evaluated in our experiments. Af-
terward, we also discuss possible avenues for extending our regret analysis techniques to additional credit assignment
models besides Bayesian linear regression.

B.1 BAYESIAN LINEAR REGRESSION

Define X ∈ RN×d as the observation matrix after N preferences, in which the ith row contains observation xi =
xi2 − xi1, while y ∈ RN is the vector of corresponding preference labels, with ith element yi ∈

{
− 1

2 ,
1
2

}
.

Section 4.1 defines the Bayesian linear regression credit assignment model to which our theoretical guarantees apply.
Because the βi(δ) factor necessary for the theoretical guarantees results in a conservative covariance matrix leading to
over-exploration, our simulations implement the following, more practical, variant. We define a Gaussian prior over
the reward vector r ∈ Rd: r ∼ N (0, λ−1I). The likelihood of the data conditioned upon r is also Gaussian:

p(y|X, r;σ2) =
1

(2πσ2)
N
2

exp

(
− 1

2σ2
||y −Xr||2

)
.

This conjugate prior and likelihood lead to the following closed-form posterior:

r|X,y, σ2, λ ∼ N (µ,Σ), where µ = (XTX + σ2λI)−1XTy and Σ = σ2(XTX + σ2λI)−1.

B.2 GAUSSIAN PROCESS REGRESSION

Credit assignment via Gaussian processes (Rasmussen and Williams, 2006) extends the linear credit assignment model
in B.1 to larger state and action spaces by generalizing across nearby states and actions. In this and the following
section, we consider two Gaussian process-based credit assignment approaches.

To perform credit assignment via Gaussian process regression, we assign binary labels to each trajectory based on
whether it is preferred or dominated. We place a Gaussian process prior upon the utilities of the state-action pairs.
Using that a trajectory’s total reward is a sum over component state-action utilities, we will show how to perform
inference over sums of Gaussian process variables to infer the state-action utilities from each trajectory’s total utility.
As the total utility of each trajectory is not observed in practice, the binary preference labels are instead substituted as
approximations in their place.

Let {s̃1, . . . , s̃d} denote the d = SA state-action pairs. In this section, the data matrix Z ∈ R2N×d holds all state-
action visitation vectors xk1,xk2, for DPS iterations k ∈ {1, . . . , N}. (This contrasts with the other credit assignment
methods, which learn from their differences, xk2 − xk1.) Let zTi be the ith row of Z, such that Z = [z1 . . . , z2N ]T ,
and zi = xkj for some DPS iteration k and j ∈ {1, 2}, that is, zi contains the state-action visit counts for the
ith trajectory rollout. In particular, the ijth matrix element zij = [Z]ij is the number of times that the ith observed
trajectory zi visits state-action s̃j .

The label vector is y ∈ R2N , where the ith element yi is the preference label corresponding to the ith observed
trajectory. For instance, if τi2 � τi1, then xi2 receives a label of 1

2 , while xi1 is labelled − 1
2 . As before, we use

r(s̃) to denote the true utility of state-action s̃, with r(τ) being trajectory τ ’s total utility along the state-action pairs it
encounters. To infer r, we approximate each r(τi) with its preference label yi.

We place a Gaussian process prior upon the rewards r: r ∼ GP(µr,Kr), where µr ∈ Rd is the prior mean and
Kr ∈ Rd×d is the prior covariance matrix, such that [Kr]ij models the prior covariance between r(s̃i) and r(s̃j). We
model trajectory τi’s total utility, r(τi), as a sum over the latent state-action utilities: r(τi) =

∑d
j=1 zijr(s̃j). Let Ri

be a noisy version of r(τi): Ri = r(τi) + εi, where εi ∼ N (0, σ2
ε) is i.i.d. noise. Then, given rewards r, we expect:

Ri =

d∑
j=1

zijr(s̃j) + εi.

Because any linear combination of jointly Gaussian variables is Gaussian, Ri is a Gaussian process over the values
{zi1, . . . , zid}. Let R ∈ R2N be the vector with ith element equal to Ri. We will calculate the relevant expectations



and covariances to show that r ∼ GP(µr,Kr) andR have the following jointly-Gaussian distribution:[
r
R

]
∼ N

([
µr

Xµr

]
,

[
Kr KrZ

T

ZKT
r ZKrZ

T + σ2
εI

])
. (55)

The standard approach for obtaining a conditional distribution from a joint Gaussian distribution (Rasmussen and
Williams, 2006) yields r|R ∼ N (µ,Σ), where:

µ = µr +KrZ
T [ZKrZ

T + σ2
εI]−1(R− Zµr) (56)

Σ = Kr −KrZ
T [ZKrZ

T + σ2
εI]−1ZKT

r . (57)

In practice, we do not observe the variable R. Instead, R is approximated with the observed preference labels y,
R ≈ y, to perform credit assignment inference.

Next, we derive the posterior inference equations (56) and (57) used in Gaussian process regression credit assignment.
We infer the state-action rewards r given noisy observationsR of the trajectories’ total utilities via the following four
steps, corresponding to the next four subsections:

A) Model the state-action utilities r(s̃) as a Gaussian process over state-action pairs s̃.

B) Model the trajectory utilitiesR as a Gaussian process that results from summing the state-action utilities r(s̃).

C) Using the two Gaussian processes defined in A) and B), obtain the covariance matrix between the values of
{r(s̃)|s̃ ∈ 1, . . . , d} and {Ri|i ∈ 1, . . . , 2N}.

D) Write the joint Gaussian distribution in (55) between the values of {r(s̃)|s̃ ∈ 1, . . . , d} and {Ri|i ∈ 1, . . . , 2N},
and obtain the posterior distribution of r over all state-actions givenR (Equations (56) and (57)).

B.2.1 The state-action utility Gaussian process

We model the state-action utilities as a Gaussian process over s̃, with mean E[r(s̃)] = µr(s̃) and covariance kernel
Cov(r(s̃), r(s̃′)) = kr(s̃, s̃

′), for all state-action pairs s̃, s̃′. For instance, kr could be the squared exponential kernel:

kr(s̃, s̃
′) = σ2

f exp

(
−1

2

(
||s̃− s̃′||

l

)2
)

+ σ2
nδij , (58)

where σf is the signal variance, l is the kernel lengthscale, σn is the noise variance, and δij is the Kronecker delta
function. Thus,

r(s̃) ∼ GP(µr(s̃), kr(s̃, s̃
′)).

Define µr ∈ Rd such that the ith element is [µr]i = µr(s̃i), the prior mean of state-action s̃i’s utility. Let Kr ∈ Rd×d
be the covariance matrix over state-action utilities, such that [Kr]ij = kr(s̃i, s̃j). Therefore, the reward vector r is
also a Gaussian process:

r ∼ GP(µr,Kr).

B.2.2 The trajectory utility Gaussian process

By assumption, the trajectory utilities R ∈ R2N are sums of the latent state-action utilities via the following relation-
ship betweenR and r:

R(zi) := Ri =

d∑
j=1

zijr(s̃j) + εi,

where εi are i.i.d. noise variables distributed according to N (0, σ2
ε). Note that R(zi) is a Gaussian process over

zi ∈ Rd because {r(s̃j),∀j} are jointly normally distributed by definition of a Gaussian process, and any linear



combination of jointly Gaussian variables has a univariate normal distribution. Next, we calculate the expectation and
covariance ofR over the observations. The expectation of the ith element Ri = R(zi) can be expressed:

E[Ri] = E

 d∑
j=1

zijr(s̃j) + εi

 =

d∑
j=1

zijE[r(s̃j)] =

d∑
j=1

zijµr(s̃j).

The expectation overR can thus be written as E[R(Z)] = Zµr. Next, we model the covariance matrix ofR. The ijth

element of this matrix is the covariance of R(zi) and R(zj):

Cov(R(zi), R(zj)) = E[R(zi)R(zj)]− E[R(zi)]E[R(zj)]

= E

[(
d∑
k=1

zikr(s̃k) + εi

)(
d∑

m=1

zjmr(s̃m) + εj

)]
−

(
d∑
k=1

zikµr(s̃k)

)(
d∑

m=1

zjmµr(s̃m)

)

=

d∑
k=1

d∑
m=1

zikzjmE[r(s̃k)r(s̃m)] + E[εiεj ]−
d∑
k=1

d∑
m=1

zikzjmµr(s̃k)µr(s̃m)

=

d∑
k=1

d∑
m=1

{
zikzjm[Cov(r(s̃k), r(s̃m)) + µr(s̃k)µr(s̃m)]− zikzjmµr(s̃k)µr(s̃m) + σ2

εI[i=j]
}

=

d∑
k=1

d∑
m=1

zikzjmCov(r(s̃k), r(s̃m)) + σ2
εI[i=j]

=

d∑
k=1

d∑
m=1

zikzjmkr(s̃k, s̃m) + σ2
εI[i=j] = zTi Krzj + σ2

εI[i=j].

We can then write the covariance matrix of R as KR, where [KR]ij := Cov(R(zi), R(zj)) = zTi Krzj + σ2
εI[i=j].

From here, it can be seen that KR = ZKrZ
T + σ2

εI :

ZKrZ
T =


zT1
zT2
...
zT2N

Kr

[
z1 z2 . . . z2N

]
=

 z
T
1 Krz1 . . . zT1 Krz2N

...
. . .

...
zT2NKrz1 . . . zT2NKrz2N

 = KR − σ2
εI.

B.2.3 Covariance between state-action and trajectory utilities

We next consider the covariance between r andR, denoted Kr,R:

[Kr,R]ij = Cov([r]i, [R]j) = Cov(r(s̃i), R(zj)).



This covariance matrix can be expressed in terms of Z,Kr, and µr:

[Kr,R]ij = Cov(r(s̃i), R(zj)) = Cov

(
r(s̃i),

d∑
k=1

zjkr(s̃k) + εj

)

= E

[
r(s̃i)

d∑
k=1

zjkr(s̃k) + εjr(s̃i)

]
− E[r(s̃i)]E

[
d∑
k=1

zjkr(s̃k) + εj

]

=

d∑
k=1

zjkE[r(s̃i)r(s̃k)]− [µr(s̃i)][z
T
j µr]

=

d∑
k=1

zjk{Cov(r(s̃i), r(s̃k)) + E[r(s̃i)]E[r(s̃k)]} − µr(s̃i)zTj µr

=

d∑
k=1

zjk[kr(s̃i, s̃k) + µr(s̃i)µr(s̃k)]− µr(s̃i)zTj µr

=
d∑
k=1

zjkkr(s̃i, s̃k) + µr(s̃i)z
T
j µr − µr(s̃i)zTj µr =

d∑
k=1

zjkkr(s̃i, s̃k) = zTj [Kr]
T
i,:,

where [Kr]
T
i,: is the column vector obtained by transposing the ith row of Kr. It is evident that Kr,R = KrZ

T .

B.2.4 Posterior inference over state-action utilities

Merging the previous three subsections’ results, one obtains the following joint probability density between r andR:[
r
R

]
∼ N

([
µr
Zµr

]
,

[
Kr KrZ

T

ZKT
r ZKrZ

T + σ2
εI

])
.

This relationship expresses all components of the joint Gaussian density in terms of Z,Kr, and µr, or in other words,
in terms of the observed state-action visitation counts (i.e., Z) and the Gaussian process prior on r. Via the standard
approach for obtaining a conditional distribution from a joint Gaussian distribution, we obtain r|R ∼ N (µ,Σ), where
the expressions for µ and Σ are given by Equations (56) and (57) above. Substituting y for R, we have expressed the
conditional posterior density of r in terms of Z, y, Kr, and µr.

B.3 GAUSSIAN PROCESS PREFERENCE MODEL

Finally, we show how to extend the preference-based Gaussian process model defined in Chu and Ghahramani (2005)
from the dueling bandit setting to the PBRL setting to perform credit assignment. Similarly to the GP regression
model, this approach places a Gaussian prior over possible rewards r; in contrast, however, this method explicitly
models the likelihood of the observed preferences given the utilities r, and thus it is a more theoretically-justified
approach for handling preference data.

We elicit a preference feedback dataset D = {τi2 � τi1 | i = 1, ..., N}, where τi2 � τi1 indicates that trajectory τi2
is preferred to τi1 in preference i. Without loss of generality, we index each trajectory pair i such that τi2 � τi1. As
before, we assume that each state-action pair s̃j , j ∈ {1, . . . , d}, has a latent, underlying utility r(s̃j). In vector form,
these are written: r = [r(s̃1), r(s̃2), ..., r(s̃d)]

T . We define a Gaussian prior over r:

p(r) =
1

(2π)
d
2 |Σ|

1
2

exp

(
−1

2
rTΣ−1r

)
, (59)

where Σ ∈ Rd×d and [Σ]ij = k(r(s̃i), r(s̃j)) for some kernel function k, such as the squared exponential kernel
defined in (58). Next, we assume that the likelihood of the ith preference given utilities r takes the following form:

P (τi2 � τi1 | r) = g

(
r(τi2)− r(τi1)

c

)
,



where g(·) is a monotonically-increasing link function that is bounded between 0 and 1, and c > 0 is a model
hyperparameter controlling the degree of preference noise. The total return r(τi1) of trajectory τi1 can be written in
terms of the corresponding state-action visitation vector xi1: r(τi1) = rTxi1. Thus, the full likelihood expression is:

P (D | r) =

N∏
i=1

g(zi), zi :=
r(τi2)− r(τi1)

c
=
rT (xi2 − xi1)

c
=
rTxi
c

. (60)

Given the preference dataset D, we are interested in the posterior probability of r:

p(r | D) ∝ P (D | r)p(r),

where the expressions for the prior p(r) and likelihood P (D | r) are given by Equations (59) and (60), respectively. We
sample reward vectors r̃ from the posterior obtained via the Laplace approximation, r̃ ∼ N (r̂MAP, αΣMAP), where:

r̂MAP = argminrS(r), (61)

ΣMAP =
(
∇2

rS(r)|r̂MAP

)−1
, (62)

and S(r) := 1
2r

TΣ−1r −
∑N
i=1 log g(zi) (note that S(r) is equivalent to − log p(r,D), neglecting constant terms);

lastly, α > 0 is a tunable hyperparameter that influences the balance between exploration and exploitation. In order
for the Laplace approximation to be valid, S(r) must be a convex function in r: this guarantees that the optimization
problem in (61) is convex and that the covariance matrix defined by (62) is positive semidefinite, and therefore a valid
Gaussian covariance matrix. Convexity of S(r) can be established by demonstrating that its Hessian matrix is positive
definite. It can be shown that for any r, ∇2

rS(r) = Σ−1 + Λ, where:

Λmn :=
1

c2

N∑
i=1

[xi]m[xi]n

[
−g
′′(zi)

g(zi)
+

(
g′(zi)

g(zi)

)2
]
, (63)

for xi = xi2 − xi1. To show that ∇2
rS(r) is positive definite, because the prior covariance Σ is positive definite, it

suffices to show that Λ is positive semidefinite. From (63), one can see that:

Λ =
1

c2

N∑
i=1

[
−g
′′(zi)

g(zi)
+

(
g′(zi)

g(zi)

)2
]
xix

T
i .

Clearly xixTi is positive semidefinite, and thus we arrive at the following sufficient condition for convexity of S(r):[
−g
′′(z)

g(z)
+

(
g′(z)

g(z)

)]
≥ 0 for all z ∈ R.

This condition is in particular satisfied for the Gaussian link function, gGaussian(·) = Φ(·), where Φ is the standard
Gaussian CDF, as well as for the sigmoidal link function, gsig(x) := σ(x) = 1

1+exp(−x) . Our experiments utilize the
sigmoidal link function.

B.3.1 Bayesian Logistic Regression

Many of our experiments with the Gaussian process preference model fall under the special case of Bayesian logistic
regression, in which c = 1, g is the sigmoidal link function, and the prior covariance matrix is diagonal, i.e. Σ = λI;
for instance, the latter condition occurs with the squared exponential kernel defined in (58) when its lengthscale l is set
to zero. In this case, the Gaussian prior over possible reward vectors r ∈ Rd is: r ∼ N (0, λI), where λ > 0. Setting
the ith preference label yi equal to 1 if τi2 � τi1, while yi = −1 if τi1 � τi2, the logistic regression likelihood is:

p(D|r) =

N∏
i=1

p(xi, yi|r) =

N∏
i=1

1

1 + exp(−yixTi r)
.



We approximate the posterior, p(r | D) ∝ p(D | r)p(r), as Gaussian via the Laplace approximation:

p(r | D) ≈ N (r̂MAP, αΣMAP), where:
r̂MAP = argmin

r
f(r), f(r) := −log p(D, r) = −log p(r)− log p(D|r), (64)

ΣMAP =
(
∇2

rf(r)
∣∣∣
r̂

)−1

, where the optimization problem in (64) is convex,

and α > 0 is a tunable hyperparameter that influences the balance between exploration and exploitation.

B.4 EXTENDING PROOF TECHNIQUES TO OTHER CREDIT ASSIGNMENT MODELS

Currently, our proof methodology treats only the Bayesian linear regression credit assignment model. Extending it to
other credit assignment models, such as the Gaussian process-based and Bayesian logistic regression methods detailed
above, is an important direction for future work. Recall that our theoretical analysis follows three main steps:

1. Prove that DPS is asymptotically-consistent, that is, over time, the probability that DPS selects the optimal
policy approaches 1 (Appendix A.1).

2. Assume that in each iteration i, policy πi1 is drawn from a fixed distribution while policy πi2 is selected by DPS.
Then, asymptotically bound the one-sided regret for πi2 (Appendix A.2).

3. Assume that policy πi1 is drawn from a drifting but converging distribution while policy πi2 is selected by DPS.
Then, asymptotically bound the one-sided regret for πi2 (Appendix A.3).

Notably, this proof outline does not depend upon any specific credit assignment model definition, and thus could
likely extend to many models. Step 1) requires asymptotic consistency of the credit assignment model; this is not
a restrictive requirement, as a non-asymptotically consistent model would not yield sublinear regret. Step 2) fixes
one of the two distributions from which policies are drawn; this removes some mathematical difficulties inherent in
analyzing preference-based sampling, making the required analysis more similar to the numeric feedback setting. Step
3) depends mainly upon continuity arguments.

The information-theoretic perspective used to prove 2) and 3) likely applies to a wide class of credit assignment
models. For instance, recent work has applied the bandit analysis framework in Russo and Van Roy (2016) to bandits
with rewards generated via a class of general link functions (Dong and Van Roy, 2018). In particular, the information
ratio has been studied for the logistic bandit problem (Dong et al., 2019); we expect that this work could be extended
toward analyzing credit assignment via Bayesian logistic regression in the PBRL setting.

Another interesting direction would be to analyze the information ratio for the state transition dynamics model. Bound-
ing this quantity would strengthen the results significantly, since our current analysis only considers dynamics conver-
gence asymptotically. Such a result would also be of independent interest outside of preference-based learning.

Finally, the concept of approximate linearity (Sui et al., 2017) could perhaps help to bridge the gap between the
preference and absolute-reward domains, as it has previously done in the bandit setting, and could help to extend
existing proof techniques toward a wider class of link functions. In practice, we expect that DPS would perform well
with any asymptotically-consistent credit assignment model that sufficiently captures users’ preference behavior.

C WHY THE INFORMATION-THEORETIC REGRET ANALYSIS?

Several existing regret analyses in the linear bandit domain (Abbasi-Yadkori et al., 2011; Agrawal and Goyal, 2013;
Abeille and Lazaric, 2017) utilize martingale concentration properties introduced by Abbasi-Yadkori et al. (2011). In
these analyses, a key step requires sublinearly upper-bounding an expression of the form (e.g. Lemma 11 in Abbasi-
Yadkori et al. (2011), Prop. 2 in Abeille and Lazaric (2017)):

n∑
i=1

xTi

(
λI +

i−1∑
s=1

xsx
T
s

)−1

xi, (65)



where λ ≥ 1 and xi is the observation vector in iteration i. We will demonstrate that in the preference-feedback
setting, the analogous quantity cannot always be sublinearly upper-bounded. Consider the setting defined in Section
3, with Bayesian linear regression credit assignment. Under preference feedback, we assume that the probability that
one trajectory is preferred to another is fully determined by the difference between the trajectories’ total rewards: on
iteration i, the algorithm receives a pair of observations xi1, xi2, with xi := xi2 − xi1, and a preference generated
according to P (τi2 � τi1) = rT (xi2 − xi1) + 1

2 . Thus, only differences between compared trajectory feature vectors
yield information about the rewards. Under this assumption, one can show that applying the martingale techniques
yields the following variant of (65):

n∑
i=1

2∑
j=1

xTij

(
λI +

i−1∑
s=1

xsx
T
s

)−1

xij . (66)

This is because the expression within the matrix inverse comes from the posterior—and learning occurs with respect
to the observations xi—while regret is incurred with respect to xi1 and xi2; in contrast, in the non-preference case
(65), learning and regret both occur with respect to the same vectors xi.

To see that (66) does not necessarily have a sublinear upper bound, consider a deterministic MDP as a counterexample.
For the regret to have a sublinear upper-bound, the probability of choosing the optimal policy must approach 1. In a
fully deterministic MDP, this means that P (xi1 = xi2) −→ 1 as i −→ ∞, and thus P (xi = 0) −→ 1 as i −→ ∞.
Clearly, in this case, the inverted quantity in (66) acquires nonzero terms at a rate that decays in n, and so (66) does
not have a sublinear upper bound.

Intuitively, to be able to upper-bound Equation (66), we would need the observations xi1,xi2 to contribute fully toward
learning the rewards, rather than the contribution coming only from their difference. Notice that in the counterexample,
even when the optimal policy is selected increasingly-often, corresponding to a low regret, (66) cannot be sublinearly
bounded. In contrast, Russo and Van Roy (2016) introduces a more direct approach for quantifying the trade-off
between instantaneous regret and information gained, as encapsulated by the information ratio defined therein; our
theoretical analysis is thus based upon this framework.

D ADDITIONAL EXPERIMENTAL DETAILS

Python code for reproducing the experiments in this work is located at:
https://github.com/ernovoseller/DuelingPosteriorSampling.

Experiments were conducted in three simulated environments, described in Section 6: RiverSwim and random MDPs
(Osband et al., 2013) and the simplified version of the Mountain Car problem described in Wirth (2017). We use a
fixed episode horizon of 50 in the first two cases, while for Mountain Car, episodes have a maximum length of 500, but
terminate sooner if the agent reaches the goal state. Figures 2, 3, and 4 display performance in the three environments
for the five degrees of user preference noise evaluated. Experiments were run on an Ubuntu 16.04.3 machine with 32
GB of RAM and an Intel i7 processor. Some experiments were also run on an AWS server.

We detail the ranges of hyperparameter values tested for the different DPS credit assignment models, as well as the
particular hyperparameters used in the displayed performance curves. Hyperparameters were tuned by considering
mean performance over 30 experiment repetitions for each parameter setting considered; we only used the least-
noisy preference feedback (logistic noise, c = 0.001) to tune the preferences; this value of c is small enough that
the preferences are close to deterministic, except that the preferences are uniformly-random in tie cases. For both
Gaussian process-based credit assignment models, we use the squared exponential kernel:

K(xi, xj) = σ2
f exp

(
−1

2

(
xi − xj

l

)2
)

+ σ2
nδij ,

where σf is the signal variance, l is the kernel lengthscale, σn is the noise variance, and δij is the Kronecker delta
function. Please see Appendix B for definitions of the other hyperparameters in the credit assignment models. Tables
2, 3, and 4 display both the tested ranges and optimized values (those appearing in the performance curves) for each
case.



(a) c = 0.0001, logistic (b) c = 1, logistic (c) c = 2, logistic

(d) c = 10, logistic (e) c = 100, linear

Figure 2: Empirical performance of DPS in the RiverSwim environment. Plots display mean +/- one standard devia-
tion over 100 runs of each algorithm tested. Normalization is with respect to the total reward achieved by the optimal
policy. Overall, we see that DPS performs well and is robust to the choice of credit assignment model.

The dynamics model, meanwhile, has a Dirichlet prior and posterior. Not to assume domain knowledge that differ-
entiates the state-action pairs, we set all prior parameters of the Dirichlet model to be equal; for the RiverSwim and
Random MDP environments, the prior is set to 1 for each state-action, creating a uniform prior over all dynamics mod-
els. This is a reasonable choice with small numbers of states and actions, so we do not optimize over different values.
For the Mountain Car problem, smaller prior values perform better because they favor sparse dynamics distributions.
For this environment, we test prior parameters ranging from 0.0001 to 1, and found 0.0005 to be the best-performing
value among those tested.

The EMPC algorithm (Wirth and Fürnkranz, 2013b) has two hyperparameter values, α and η. We optimize both of
these jointly via a grid search over values of (0.1, 0.2, . . . , 0.9), with 100 repetitions of each pair of values. The best-
performing hyperparameter values (i.e. those achieving the highest total reward) are displayed in Table 1; these are
the hyperparameter values depicted in the performance curve plots.

Finally, Figures 5, 6, and 7 illustrate how DPS’s performance varies as the hyperparameters are modified over a set of
representative values from the ranges that we tested. These plots demonstrate that DPS is largely robust across many
choices of model hyperparameters.



Table 1: Hyperparameters for the EPMC baseline algorithm. Each table element shows the best-performing α/η values
for the corresponding simulation domain and noise parameter.

NOISE LOGISTIC, 10 LOGISTIC, 2 LOGISTIC, 1 LOGISTIC, 0.0001 LINEAR

RiverSwim 0.1/0.8 0.3/0.7 0.1/0.2 0.8/0.8 0.3/0.1
Random MDPs 0.2/0.2 0.7/0.7 0.6/0.4 0.2/0.8 0.7/0.1

NOISE LOGISTIC, 100 LOGISTIC, 20 LOGISTIC, 10 LOGISTIC, 0.0001 LINEAR

MountainCar 0.1/0.8 0.1/0.7 0.1/0.6 0.1/0.4 0.2/0.5

Table 2: Credit assignment hyperparameters for the RiverSwim Environment

MODEL HYPERPARAMETER RANGE TESTED OPTIMIZED VALUE

Bayesian linear regression σ [0.05, 5] 0.5
λ [0.01, 10] 0.1

GP regression σ2
f [0.001, 0.5] 0.1
l [0, 0] ([state, action]) 0
σ2
n [0.0001, 0.1] 0.001

GP preference (special case: λ = σ2
f + σ2

n [0.1, 30] 1
Bayesian logistic regression) α [0.01, 1] 1

GP preference (varying c) c [1, 13] N/A
σ2
f [1]
l [0, 0] ([state, action])
σ2
n [0.001]
α [1]

Table 3: Credit assignment hyperparameters for the Random MDP Environment

MODEL HYPERPARAMETER RANGE TESTED OPTIMIZED VALUE

Bayesian linear regression σ [0.05, 5] 0.1
λ [0.01, 20] 10

GP regression σ2
f [0.001, 1] 0.05
l [0, 0] ([state, action]) 0
σ2
n [0.0001, 0.1] 0.0005

GP preference (special case: λ = σ2
f + σ2

n [1, 15] 0.1
Bayesian logistic regression) α [0.01, 1] 0.01

GP preference (varying c) c [0.0001, 1000] N/A
σ2
f [1]
l [0, 0] ([state, action])
σ2
n [0.03]
α [1]



(a) c = 0.0001, logistic (b) c = 1, logistic (c) c = 2, logistic

(d) c = 10, logistic (e) c varies, linear

Figure 3: Empirical performance of DPS in the Random MDP environment. Plots display mean +/- one standard
deviation over 100 runs of each algorithm tested. Normalization is with respect to the total reward achieved by the
optimal policy. Overall, we see that DPS performs well and is robust to the choice of credit assignment model.

Table 4: Credit assignment hyperparameters for the Mountain Car Environment

MODEL HYPERPARAMETER RANGE TESTED OPTIMIZED VALUE

Bayesian linear regression σ [0.001, 30] 10
λ [0.001, 10] 1

GP regression σ2
f [0.0001, 10] 0.01
l [x, x, 0], x ∈ [1, 3] x = 2

([position, velocity, action])
σ2
n [1e-7, 0.01] 1e-5

GP preference (special case: λ = σ2
f + σ2

n [0.0001, 10] 0.0001
Bayesian logistic regression) α [0.0001, 1] 0.01

GP preference (varying c) c [10, 10000] N/A
σ2
f [1]
l [2, 2, 0]

([position, velocity, action])
σ2
n [0.001]
α [1]



(a) c = 0.0001, logistic (b) c = 10, logistic (c) c = 20, logistic

(d) c = 100, logistic (e) c = 1, 000, linear (f) Legend

Figure 4: Empirical performance of DPS in the Mountain Car environment. Plots display mean +/- one standard
deviation over 100 runs of each algorithm tested. Overall, we see that DPS performs well and is robust to the choice
of credit assignment model.



(a) Bayesian linear regression (b) Gaussian process regression

(c) Gaussian process preference model (special case:
Bayesian logistic regression)

(d) Gaussian process preference model (varying c)

Figure 5: Empirical performance of DPS in the RiverSwim environment for different hyperparameter com-
binations. Plots display mean +/- one standard deviation over 30 runs of each algorithm tested with lo-
gistic user noise and c = 0.001. Overall, we see that DPS is robust to the choice of hyperpa-
rameters. The hyperparameter values depicted in each plot are (from left to right): for Bayesian lin-
ear regression, (σ, λ) = {(0.5, 0.1), (0.5, 10), (0.1, 0.1), (0.1, 10), (1, 0.1)}; for GP regression, (σ2

f , σ
2
n) =

{(0.1, 0.001), (0.1, 0.1), (0.01, 0.001), (0.001, 0.0001), (0.5, 0.1)}; for Bayesian logistic regression (special case of
the GP preference model), (λ, α) = {(1, 1), (30, 1), (20, 0.5), (1, 0.5), (30, 0.1)}; and additionally for the GP pref-
erence model, c ∈ {0.5, 1, 2, 5, 13}. See Table 2 for the values of any hyperparameters not specifically mentioned
here.



(a) Bayesian linear regression (b) Gaussian process regression

(c) Gaussian process preference model (special case:
Bayesian logistic regression)

(d) Gaussian process preference model (varying c)

Figure 6: Empirical performance of DPS in the Random MDP environment for different hyperparame-
ter combinations. Plots display mean +/- one standard deviation over 30 runs of each algorithm tested
with logistic user noise and c = 0.001. Overall, we see that DPS is robust to the choice of hyper-
parameters. The hyperparameter values depicted in each plot are (from left to right): for Bayesian lin-
ear regression, (σ, λ) = {(0.1, 10), (0.1, 0.1), (0.05, 0.01), (0.5, 20), (1, 10)}; for GP regression, (σ2

f , σ
2
n) =

{(0.05, 0.0005), (0.001, 0.0001), (0.05, 0.1), (0.001, 0.0005), (1, 0.1)}; for Bayesian logistic regression (special case
of the GP preference model), (λ, α) = {(0.1, 0.01), (1, 0.01), (0.1, 1), (30, 0.1), (5, 0.5)}; and additionally for the
GP preference model, c ∈ {1, 10, 15, 19, 100}. See Table 3 for the values of any hyperparameters not specifically
mentioned here.



(a) Bayesian linear regression (b) Gaussian process regression

(c) Gaussian process preference model (special case:
Bayesian logistic regression)

(d) Gaussian process preference model (varying c)

Figure 7: Empirical performance of DPS in the Mountain Car environment for different hyperpa-
rameter combinations. Plots display mean +/- one standard deviation over 30 runs of each algorithm
tested with logistic user noise and c = 0.001. Overall, we see that DPS is robust to the choice
of hyperparameters. The hyperparameter values depicted in each plot are (from left to right): for
Bayesian linear regression, (σ, λ) = {(10, 1), (10, 10), (30, 0.001), (0.001, 10), (0.1, 0.1)}; for GP re-
gression, (σ2

f , l, σ
2
n) = {(0.01, 2, 10−5), (0.01, 1, 10−5), (0.1, 2, 0.01), (1, 2, 0.001), (0.001, 3, 10−6)};

for Bayesian logistic regression (special case of the GP preference model), (λ, α) =
{(0.0001, 0.01), (0.1, 0.01), (0.0001, 0.0001), (0.001, 0.0001), (0.001, 0.01)}; and additionally for the GP pref-
erence model, c ∈ {10, 300, 400, 700, 1000}. See Table 4 for the values of any hyperparameters not specifically
mentioned here.


