
A Relationship between Probabilistic
Safety and other Measures

In Proposition 4 we show that probabilistic safety, as de-
fined in Definition 1, gives a lower bound to other mea-
sures commonly used to guarantee the absence of adver-
sarial examples.

Proposition 4. For S ✓ Rnc it holds that

Psafe(T, S)  inf
x2T

Prob(fw(x) 2 S).

Moreover, if for i 2 {1, ..., nc}, we assume that S =
{y 2 Rnc | y

i
> a}. Then, it holds that

Psafe(T, S) 
infx2T Ew⇠w[fw

i
(x)]

a
.

Proof of Proposition 4

Psafe(T, S) =

1� Probw⇠w(9x 2 T, f
w(x) 2 S) =

1� Ew⇠w[sup
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1S [f
w(x)]] 
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w(x)]] =

1� sup
x2T

Probw⇠w(fw(x) 2 S) =
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a
,

where the last inequality is due to Markov’s inequality.

B Computational Complexity

Algorithm 1 has a complexity which is linear in the num-
ber of samples, N , taken from the posterior distribution
of w. The computational complexity of the method is
then determined by the computational complexity of the
method used to propagate a given interval Ĥ (that is,
line 5 in Algorithm 1). The cost of performing IBP is
O(Knm) where K is the number of hidden layers and
n ⇥m is the size of the largest weight matrix W

(k), for
k = 0, . . . ,K. LBP is instead O(K2

nm).

C Proofs

In this section of the Supplementary Material we provide
proofs for the main propositions stated in the paper.

C.1 Proposition 2

The bounding box can be computed iteratively in the
number of hidden layers of the network, K. We show
how to compute the lower bound of the bounding box;
the computation for the maximum is analogous.

Consider the k-th network layer, for k = 0, . . . ,K, we
want to find for i = 1, . . . nk+1:
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is a bi-linear form defined on an hyper-
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solution of the minimisation problem posed above.

C.2 Proposition 3

We first state the following Lemma that follows directly
from the definition of linear functions:
Lemma 2. Let fL(t) =

P
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a
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j
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j
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That is, LBFs can be propagated through linear transfor-
mation by redefining the coefficients through Equations
(9)–(10).

We now proof Proposition 3 iteratively on k = 1, . . . ,K

that is that for i = 1, . . . , nk there exist f (k),L
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Given the validity of Equations (11)–(12) up to a
certain k we now show how to compute the LBF
for layer k + 1, that is given f
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and re-arranging the elements in the above inequality, we
finally obtain:
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which is of the form of Equation (11) for the lower LBF
for the k+1-th layer. Similarly an upper LBF of the form
of Equation (12) can be obtained by using Equation (8)
in the chain of inequalities above.

D Linear Specifications

In this section of the Supplementary Material we discuss
how the output of IBP and LBP can be used to check
against specification of the form of Assumption 1, that is
of the form:

CSf
w(x) + dS � 0 8x 2 T 8w 2 H̄

with CS 2 RnS⇥nc and dS 2 RnS , H̄ = [wL
, w

U ] and
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U ]. Let i = 1, . . . , nS then we need to check
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and checking whether that is greater or equal to zero or
not. As presented in the main paper, Propositions 2 and
3 return a bounding box for the final output. Though this
bounding box can be directly used to compute the mini-
mum in Equation (13) (as this entails simply the minimi-
sation of a linear function on a rectangular space), tighter
bounds can be obtained both for IBP and for LBP. This
is described in the following two subsections.

D.1 IBP

For IBP we can do something similar to what is done
in the case of IBP for deterministic NN [13]. Instead of
propagating the bounding box up until the very last layer
to f
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, we stop at the last hidden activation
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. We thus have:
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linear transformation, of the weights and biases. The
lower and upper bounds on W

(K) and b
(K) can hence

be propagated through this two functions to obtain lower
and upper bounds that account for the specification
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. Propagating that
interval through the layer:
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gives a solution to Equation (13).

D.2 LBP

For LBP one can simply proceed by propagating the lin-
ear bound obtained. In fact, Proposition 3 yields an upper
and lower LBFs, f (K+1),L(x,w) and f

(K+1),U (x,w) on
f
w(x) for every x 2 T and w 2 Ĥ . By Lemma 2 those

two LBFs can simply be propagated through the linear
specification of Equation (13) hence obtaining lower and
upper LBFs on the full specification, which can then be
minimised to checked for the validity of the interval Ĥ .

E Computational Resources

All our experiments were conducted on a server
equipped with two 24 core Intel Xenon 6252 processors
and 256GB of RAM. For VCAS experiments no par-
allelization was necessary, whereas MNIST was paral-
lelized over 25 concurrent threads.
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