8 Appendix: Proofs

Lemma 4. Suppose Λ is a deterministic uniformly least favorable distribution for composite vs. simple test $(H_0 \text{ vs. } h_1)$ under $\mathcal{M} = (\mathcal{S}, \Theta, \vec{\pi})$. Then for any $n \in \mathbb{N}$, Λ is also a uniformly least favorable distribution for testing $H_0 \text{ vs. } h_1$ under $\mathcal{M} = (\mathcal{S}^n, \Theta, \vec{\pi})$ with n i.i.d. samples.

Proof: Let $\operatorname{Spt}(\Lambda) = \{h_0^*\}$. For any $n \in \mathbb{N}$ and any $h_0 \in H_0$, we define a random variable $X_{n,h_0} : S^n \to \mathbb{R}$, where for any $P_n \in S^n$, $\operatorname{Pr}(P_n) = \pi_{h_0}(P_n) = \prod_{V \in P_n} \pi_{h_0}(V)$, and $X_{n,h_0}(P_n) = \log \operatorname{Ratio}_{h_0^*,h_1}$. It follows that

$$X_{n,h_0} = \underbrace{X_{h_0} + X_{h_0} + \dots + X_{h_0}}_{n}$$

By Lemma 3, for any $h_0 \in H_0$, $X_{h_0^*}$ weakly dominates X_{h_0} . Because first-order stochastic dominance is preserved under convolution [Deelstra and Plantin, 2014], we have that X_{n,h_0^*} weakly dominates X_{n,h_0} . The lemma follows after applying Lemma 3.

Remarks. Lemma 4 is an extension of Theorem 2.3 by Reinhardt Reinhardt [1961] to finite models. Reinhardt's theorem requires that for any constant t, with measure 0 we have $\pi_{h_0^*}(P) = t\pi_{h_1}(P)$. This is an important assumption in Reinhardt's proof because it assumes away cases with $\text{Ratio}(P) = k_{\alpha}$ so that the most powerful test is deterministic. Unfortunately, this assumption does not hold for finite models and we must deal with randomized tests.

Lemma 5 Under a Mallows' model, for any φ , any $K \in \mathbb{N}$, any $a \in \mathcal{A}$, any $W \in \mathcal{L}(\mathcal{A})$, and any $C', C \subseteq \mathcal{A}$ such that C dominates C' w.r.t. W, we have $\pi_W(\{P : w_P(C' \succ a) \ge K\}) \le \pi_W(\{P : w_P(C \succ a) \ge K\})$.

Proof: We first prove the lemma for a special case where C and C' differ in only one alternative, that is, |C - C'| = 1. Let $c \in C$ such that $c \notin C'$. Let $c' \in C'$ such that $c' \notin C$. Because C dominates C' in W, we have $c \succ_W c'$.

Let $\mathcal{P} = \{P \in \mathcal{L}(\mathcal{A}) : w_P(C \succ a) \geq K\}$ and $\mathcal{P}' = \{P \in \mathcal{L}(\mathcal{A}) : w_P(C' \succ a) \geq K\}$. We define the following permutation \mathcal{M} over $\mathcal{L}(\mathcal{A})$. For any $P \in \mathcal{L}(\mathcal{A})$, if $c \succ_P a \succ_P c'$ then $\mathcal{M}(P)$ is the ranking that is obtained from P by switching c and c'; otherwise $\mathcal{M}(P) = P$. Because |C - C'| = 1, it follows that for any $P \in \mathcal{P} - \mathcal{P}'$, we must have $c \succ_P a \succ_P c'$ and $(C - C') \succ_P a$. Therefore, $\mathcal{M}(\mathcal{P} - \mathcal{P}') = \mathcal{P}' - \mathcal{P}$.

We now prove that $\pi_W(\mathcal{P} - \mathcal{P}') > \pi_W(\mathcal{P}' - \mathcal{P})$. For any $P \in \mathcal{P} - \mathcal{P}'$, we have $c \succ_P a \succ_P c'$, which means that $\pi_W(P) \ge \pi_W(\mathcal{M}(P))/\varphi$ because $c \succ_W c'$. Therefore, $\pi_W(\mathcal{P} - \mathcal{P}') > \pi_W(\mathcal{P}' - \mathcal{P})$ because $\mathcal{M}(\mathcal{P} - \mathcal{P}') = \mathcal{P}' - \mathcal{P}$.

We have $\pi_W(\mathcal{P}) = \pi_W(\mathcal{P} \cap \mathcal{P}') + \pi_W(\mathcal{P} - \mathcal{P}') \ge \pi_W(\mathcal{P} \cap \mathcal{P}') + \pi_W(\mathcal{P}' - \mathcal{P}) = \pi_W(\mathcal{P}').$

Therefore, the lemma holds for the case where |C - C'| = 1. For general C and C', because C dominates C', there exists a sequence of sets $C = C_0, C_1, \ldots, C_l = C'$ such that for all $0 \le i \le l - 1$, (i) C_i dominates C_{i+1} ; (ii) $|C_i - C_{i+1}| = 1$. It follows that $\pi_W(\{P : w_P(C \succ a) \ge K\}) \ge \pi_W(\{P : w_P(C_1 \succ a) \ge K\}) \ge \cdots \ge \pi_W(\{P : w_P(C' \succ a) \ge K\})$.

Theorem 2 (Characterization of all UMP non-winner tests under Mallows). Given a Mallows' model \mathcal{M}^{Ma} with $m \ge 2$ and $n \ge 2$, there exists a UMP test for $H_0 = L_{a \succ others}$ vs. H_1 for all $0 < \alpha < 1$ if and only if there exists $B \subseteq \mathcal{A}$ such that $H_1 \subseteq L_{B \succ a}$.

Moreover, when $H_1 \subseteq L_{B \succ a}$ *,* $f_{\alpha,a,B}$ *defined in Theorem 1 is a UMP test.*

Proof: The "if" part. We note that $f_{\alpha,a,B}$ does not depend on the orderings among alternatives in B in h_1 . It follows that for all $h_1 \in H_1$, $f_{\alpha,a,B}$ is a level- α most powerful test for H_0 vs. $\{h_1\}$, which means that $f_{\alpha,a,B}$ is a UMP test.

The "only if" part. Suppose there exist B, B' such that $B \neq B'$ and there exist two rankings $h_1^1 = [B \succ a \succ \text{ others}]$ and $h_1^2 = [B' \succ a \succ \text{ others}]$ in H_1 . W.l.o.g. suppose $B' - B \neq \emptyset$. Let α denote the number such that $K_{\alpha} = n|B| - 0.5$, $\Gamma_{\alpha} = 0$, and let $f_{\alpha,a,B}$ denote the most powerful test for H_0 vs. h_1^1 guaranteed by Theorem 1. Because K_{α} is not an integer, there does not exist P_n such that $w_{P_n}(B \succ a) = K_{\alpha}$. This means that $f_{\alpha,a,B}$ is the unique most powerful level- α test for H_0 vs. h_1^1 . We observe that for any $P_n, f_{\alpha,a,B}(P_n)$ is either 0 or 1, and $f_{\alpha,a,B}(P_n) = 1$ if and only if a is ranked below B in all n rankings in P_n . It follows that $f_{\alpha,a,B}$ must be the unique level- α UMP test for H_0 vs. H_1 . By Theorem 1, any most powerful level- α test, in particular $f_{\alpha,a,B}$, must agree with $f_{\alpha,a,B'}$ except for the threshold cases $w_{P_n}(B' \succ a) = K'_{\alpha}$ for some K'_{α} . Choose arbitrary $b' \in B' - B$ and $b \in B$. Let P_n^* be composed of n copies of $[B \succ a \succ$ others] and let P'_n be composed of n-1 copies of $[b' \succ B \succ a \succ$ others] and one copy of $[b' \succ (B - \{b\}) \succ a \succ$ others]. Because $w_{P_n^*}(B \succ a) = n|B| > K_{\alpha}$, we have $f_{\alpha,a,B}(P_n^*) = 1$. This means that the threshold K'_{α} for $f_{\alpha,a,B'}$ is no more than $w_{P_n^*}(B' \succ a) = n|B \cap B'|$. Because $n \ge 2$, we have $w_{P_n'}(B' \succ a) \ge n(|B \cap B'| + 1) - 1 > n|B \cap B'| = w_{P_n'}(B' \succ a)$, which means that $f_{\alpha,a,B}(P_n) = 1$. However, $w_{P_n'}(B \succ a) = n|B| - 1 < n|B|$, which is a contradiction because for any profile P_n , $f_{\alpha,a,B}(P_n) = 1$ if and only if $B \succ a$ in all n rankings in P_n .

Theorem 4. Let \mathcal{M}^{Ma} denote a Mallows' model with n = 1, any $m \ge 4$, and any $\varphi < 1/m$. There exists $0 < \alpha < 1$ such that no level- α UMP test exists for $H_0 = (\mathcal{L}(\mathcal{A}) - H_1)$ vs. $H_1 = L_{a \succ \text{others}}$.

Proof: By Lemma 10, if a UMP test exists then $\bar{f}_{\alpha,a}$ is also a UMP test. Therefore, it suffices to prove that $\bar{f}_{\alpha,a}$ is not a level- α UMP test. To this end, we explicitly construct a test f and prove that the rankings assigned value 1 are more cost-effective than that under $\bar{f}_{\alpha,a}$.

Let $V_1, V_2, \ldots, V_m, V'_2 \in \mathcal{L}(\mathcal{A})$ denote m + 1 rankings defined as follows. For any $j \leq m$, let $V_j = [a_j \succ \text{ others}]$, where alternatives in "others" are ranked w.r.t. the increasing order of their subscripts. In other words, V_j is obtained from V_1 by raising alternative a_j to the top position. We let $V'_3 = [a_3 \succ a_1 \succ a_4 \succ a_2 \succ \text{ others}]$.

We consider the following critical function f. For any $V \in \mathcal{L}_{a \succ \text{others}}$, we let f(V) = 1. For any V_j with $j \neq 3$, let $f(V_j) = 1$. We then let $f(V_3) = f(V'_3) = \frac{1+\varphi^m}{1+\varphi}$. Let α denote the size of f at V_2 . That is, $\alpha = \text{Size}(f, V_2)$. Let $T = \pi_{V_2}(\mathcal{L}_{a \succ \text{others}})$. It follows that

$$\begin{split} &\alpha - T \\ &\propto \varphi^0 + \frac{1 + \varphi^m}{1 + \varphi} (\varphi^{\mathrm{KT}(V_2, V_3)} + \varphi^{\mathrm{KT}(V_2, V_3')}) + \sum_{j=5}^m \varphi^{\mathrm{KT}(V_2, V_j)} \\ &= 1 + \frac{1 + \varphi^m}{1 + \varphi} (\varphi^3 + \varphi^4) + \varphi^4 + \sum_{j=5}^m \varphi^{\mathrm{KT}(V_2, V_j)} \\ &> 1 + \varphi^3 + \varphi^4 + \varphi^5 \end{split}$$

Figure 1: Kentall-Tau distance for some rankings over four alternatives.

For any $j, j^* \ge 2$ such that $j \ne j^*$, it is not hard to verify that $\operatorname{KT}(V_j, V_{j^*}) = j + j^* - 2$. Moreover, $\operatorname{KT}(V_3, V_3') = 1$, $\operatorname{KT}(V_2, V_3') = 4$, $\operatorname{KT}(V_4, V_3') = 4$, and for any $j \ge 5$, we have $\operatorname{KT}(V_3', V_j) = j + 2$. Therefore, we have the following calculations of $\operatorname{Size}(f, V_3)$, $\operatorname{Size}(f, V_3')$, and $\operatorname{Size}(f, V_4)$ (see Figure 1 for distances between V_2, V_3, V_3', V_4). We note that $T = \pi_{V_2}(\mathcal{L}_{a \succ \text{others}}) = \pi_{V_3}(\mathcal{L}_{a \succ \text{others}}) = \pi_{V_4}(\mathcal{L}_{a \succ \text{others}})$ due to symmetry.

$$\begin{aligned} \operatorname{Size}(f, V_3) - T &\propto \varphi^3 + \frac{1+\varphi^m}{1+\varphi} (1+\varphi) + \varphi^5 + \sum_{j=5} \varphi^{\operatorname{KT}(V_3, V_j)} &\leq 1+\varphi^3 + (m-3)\varphi^5 \\ \operatorname{Size}(f, V_3') - T &\propto \varphi^4 + \frac{1+\varphi^m}{1+\varphi} (1+\varphi) + \varphi^4 + \sum_{j=5} \varphi^{\operatorname{KT}(V_3', V_j)} &\leq 1+2\varphi^4 + (m-4)\varphi^6 \\ \operatorname{Size}(f, V_4) - T &\propto \varphi^4 + \frac{1+\varphi^m}{1+\varphi} (\varphi^4 + \varphi^5) + 1 + \sum_{j=5} \varphi^{\operatorname{KT}(V_4, V_j)} &\leq 1+2\varphi^4 + (m-4)\varphi^7 \end{aligned}$$

For any other $h'_0 \in H_0$, we have $\operatorname{Size}(f, h'_0) - T \leq m\varphi$. Because $\varphi < 1/m$, we have $\operatorname{Size}(f) = \alpha$. Let P denote a profile that is composed of $\{V_2, V_4, \ldots, V_m\} \cup \frac{1+\varphi^m}{1+\varphi} \{V_3, V'_3\}$. We next prove that $\operatorname{Ratio}_{V_2, V_1}(P) > \operatorname{Ratio}_{V_2, V_1}(T_{m-2})$.

Let $Z_m = \prod_{l=1}^m \frac{1-\varphi^m}{1-\varphi}$ denote the Mallows normalization factor for m alternatives. We have

$$\begin{aligned} \operatorname{Ratio}_{V_2,V_1}(T_{m-2}) &= \frac{\pi_{V_1}(T_{m-2})}{\pi_{V_2}(T_{m-2})} \\ &= \frac{\varphi Z_{m-1}}{Z_{m-2} + \varphi^2(Z_{m-1} - Z_{m-2})} \\ &= \frac{\varphi \frac{Z_{m-1}}{Z_{m-2}}}{1 + \varphi^2(\frac{Z_{m-1}}{Z_{m-2}} - 1)} = \frac{\varphi + \varphi^2 + \dots + \varphi^{m-1}}{1 + \varphi^3 + \varphi^4 + \dots + \varphi^m} < \frac{1}{\varphi} \end{aligned}$$

 $\begin{aligned} &\operatorname{Ratio}_{V_2,V_1}(P) = \frac{\varphi + \varphi^2 + \dots + \varphi^{m-1} + \varphi^{m+2}}{1 + \varphi^3 + \varphi^4 + \dots + \varphi^m + \varphi^{m+3}} \\ &> \frac{\varphi + \varphi^2 + \dots + \varphi^{m-1}}{1 + \varphi^3 + \varphi^4 + \dots + \varphi^m} \\ &= \operatorname{Ratio}_{V_2,V_1}(T_{m-2}) \end{aligned}$

We note that $\operatorname{Size}(\bar{f}_{\alpha,a}, V_2) = \alpha$. This means that $\operatorname{Power}(\bar{f}_{\alpha,a}, V_1) = \pi_{V_1}(T_{m-1}) + \alpha \operatorname{Ratio}_{T_2, T_1}(T_{m-2}) < \pi_{V_1}(T_{m-1}) + \alpha \operatorname{Ratio}_{T_2, T_1}(P) = \operatorname{Power}(f, V_1)$. This means that $\bar{f}_{\alpha,a}$ is a not a level- α UMP. The theorem follows after Lemma 10.

Theorem 5. Let \mathcal{M}^{Ma} denote a Mallows' model with n = 1 and any $m \ge 4$. There exists $\epsilon > 0$ such that for any $\varphi > 1 - \epsilon$ and any α , $\overline{f}_{\alpha,a}$ is a UMP test for $H_0 = (\mathcal{L}(\mathcal{A}) - H_1)$ vs. $H_1 = L_{a \succ \text{others}}$.

Proof: We first verify that when $K_{\alpha} = m - 1$, $\bar{f}_{\alpha,a}$ is a UMP test. For any $h_1 \in H_1$, let $h_0^* \in H_0$ denote the ranking that is obtained from h_1 by moving a down for one position. It is not hard to check that for any $V \in \mathcal{L}(\mathcal{A})$, Ratio $_{h_0^*,h_1}(V) \leq 1/\varphi$, and for all $V \in H_1$ we have Ratio $_{h_0^*,h_1}(V) = 1/\varphi$. This means that for any level- α test for H_0 vs. h_1 , the power cannot be more than α/φ . We note that $\bar{f}_{\alpha,a}$ is a level- α test whose power is exactly α/φ . This means that for all $h_1 \in H_1$, $\bar{f}_{\alpha,a}$ is a most powerful test for H_0 vs. h_1 . Therefore, when $K_{\alpha} = m - 1$, $\bar{f}_{\alpha,a}$ is a UMP test.

For any α such that $K_{\alpha} \leq m-2$, we will prove that for any $h_1 \in H_1$, $\bar{f}_{\alpha,a}$ is a most powerful level- α test for H_0 vs. h_1 . This is done in the following steps. Step 1. Find a least favorable distribution $\Lambda_{\alpha}^{h_1}$ whose support is the set of all rankings where a is ranked at the second position. Step 2. Verify that $\bar{f}_{\alpha,a}$ is the likelihood ratio test w.r.t. $\Lambda_{\alpha}^{h_1}$, and step 3. verify that the two conditions in Lemma 2 holds for $\Lambda_{\alpha}^{h_1}$.

Step 1. The main challenge is that in general there does not exist a uniformly least favorable distribution. For different α we define different $\Lambda_{\alpha}^{h_1}$ as follows. For any α , we let s_{α} denote the smallest Borda score of the ranking V such that $\bar{f}_{\alpha,a}(V) > 0$. We have that $s_{\alpha} \leq m - 2$. Let the support of $\Lambda_{\alpha}^{h_1}$ be T_{m-2} , which is the set of rankings where a is ranked at the second position. We will solve the following system of linear equations to determine $\Lambda_{\alpha}^{h_1}$. For any $h_0^* \in T_{m-2}$ there is a variable $x[h_0, s_{\alpha}]$.

$$\forall V \in T_{s_{\alpha}}, \sum_{h_{0}^{*} \in T_{m-2}} \operatorname{Ratio}_{h_{0}^{*},h_{1}}^{-1}(V) \cdot x[h_{0}^{*},s_{\alpha}] = m \qquad (\operatorname{LP}_{s_{\alpha}}^{h_{1}})$$

We note that as $\varphi \to 1$, $\operatorname{Ratio}_{h_0^*,h_1}^{-1}(V) = \frac{\pi_{h_0^*}(V)}{\pi_{h_1}(V)} = \varphi^{\operatorname{KT}(h_0^*,V) - \operatorname{KT}(h_1,V)} \to 1$. Because there are m variables and m equations, as $\varphi \to 1$ the solution to $\operatorname{LP}_{s_\alpha}^{h_1}$ converges to $\vec{1}$. Therefore, there exists $\epsilon > 0$ such that for all $\varphi > 1 - \epsilon$, the linear systems $\{\operatorname{LP}_{s_1}^{h_1} : s \le m - 1, h_1 \in H_1\}$ all have strictly positive solutions. Let $\{x^*[h_0^*, s_\alpha] | V \in T_{s_\alpha}\}$ denote a solution to $\operatorname{LP}_{s_\alpha}^{h_1}$. For any $h_0^* \in T_{m-2}$, we let $\Lambda_{\alpha}^{h_1}(h_0^*) = \frac{x^*[h_0^*, s_\alpha]}{\sum_{h_0 \in T_{m-2}} x^*[h_0, s_\alpha]}$.

Step 2. To simplify notation we let $LR_{\alpha} = LR_{\alpha,\Lambda_{\alpha}^{h_1},h_1}$ denote the likelihood ratio test and let Ratio = Ratio_{\Lambda_{\alpha}^{h_1},h_1} denote the likelihood ratio function w.r.t. distribution $\Lambda_{\alpha}^{h_1}$ for H_0 vs. h_1 . To prove $LR_{\alpha} = \bar{f}_{\alpha,a}$, we first prove that for any $V \in \mathcal{L}(\mathcal{A})$ where a is not ranked at the bottom position, $Ratio(V) > Ratio(Down_a^1(V))$, where we recall that

 $\text{Down}_a^1(V)$ is the ranking obtained from V by moving a down for one position.

$$\begin{split} &\frac{\sum_{h_{0}^{*}\in T_{m-2}}\Lambda_{\alpha}^{h_{1}}(h_{0}^{*})\cdot\pi_{h_{0}^{*}}(\text{Down}_{a}^{1}(V))}{\sum_{h_{0}^{*}\in T_{m-2}}\Lambda_{\alpha}^{h_{1}}(h_{0}^{*})\cdot\pi_{h_{0}^{*}}(V)} \\ &= &\frac{\sum_{h_{0}^{*}\in T_{m-2}}\Lambda_{\alpha}^{h_{1}}(h_{0}^{*})\cdot\varphi^{\text{KT}(h_{0}^{*},\text{Down}_{a}^{1}(V))}}{\sum_{h_{0}^{*}\in T_{m-2}}\Lambda_{\alpha}^{h_{1}}(h_{0}^{*})\cdot\varphi^{\text{KT}(h_{0}^{*},V)}} \\ &> &\frac{\sum_{h_{0}^{*}\in T_{m-2}}\Lambda_{\alpha}^{h_{1}}(h_{0}^{*})\cdot\varphi^{\text{KT}(h_{0}^{*},V)}\cdot\varphi^{\text{KT}(V,\text{Down}_{a}^{1}(V))}}{\sum_{h_{0}^{*}\in T_{m-2}}\Lambda_{\alpha}^{h_{1}}(h_{0}^{*})\cdot\varphi^{\text{KT}(h_{0}^{*},V)}} \\ &= &\varphi = \frac{\pi_{h_{1}}(\text{Down}_{a}^{1}(V))}{\pi_{h_{1}}(V)} \end{split}$$

The strict inequality holds because of (1) triangle inequality for Kentall-Tau distance, and (2) for any ranking V where the top-ranked alternative in h_0^* is ranked right below a, we have $\operatorname{KT}(h_0^*, V) + \operatorname{KT}(V, \operatorname{Down}_a^1(V)) > \operatorname{KT}(h_0^*, \operatorname{Down}_a^1(V))$, and (3) for all $h_0^* \in T_{m-2}$, $\Lambda_{\alpha}^{h_1}(h_0^*) > 0$.

It follows from the strict inequality that

$$\begin{aligned} \text{Ratio}(V) = & \frac{\pi_{h_1}(V)}{\sum_{h_0^* \in T_{m-2}} \Lambda_{\alpha}^{h_1}(h_0^*) \cdot \pi_{h_0^*}(V)} \\ > & \frac{\pi_{h_1}(\text{Down}_a^1(V))}{\sum_{h_0^* \in T_{m-2}} \Lambda_{\alpha}^{h_1}(h_0^*) \cdot \pi_{h_0^*}(\text{Down}_a^1(V))} \\ = & \text{Ratio}(\text{Down}_a^1(V)) \end{aligned}$$

Moreover, for any $V, V' \in T_{s_{\alpha}}$ we have $\operatorname{Ratio}(V) = \operatorname{Ratio}(V')$ by verifying $\operatorname{LP}_{s_{\alpha}}^{h_1}$. Therefore, for any $V \in T_i$ with $i < s_{\alpha}$, we can move up the position of a one by one until we reach the $(m - s_{\alpha})$ -th position. Let $V^* \in T_{s_{\alpha}}$ denote this ranking. It follows that $\operatorname{Ratio}(V) < \operatorname{Ratio}(V^*)$. Similarly for any $V' \in T_i$ with $i > s_{\alpha}$ we have $\operatorname{Ratio}(V') > \operatorname{Ratio}(V^*)$ for any $V^* \in T_{s_{\alpha}}$. This means that for any V where a is ranked above the $(m - s_{\alpha})$ -th position, we have $\operatorname{LR}_{\alpha}(V) = 1$; for any V where a is ranked below the $(m - s_{\alpha})$ -th position, we have $\operatorname{LR}_{\alpha}(V) = 0$; for any V where a is ranked at the $(m - s_{\alpha})$ -th position, we have $\operatorname{LR}_{\alpha}(V) = 0$; follows that $\operatorname{LR}_{\alpha} = \overline{f}_{\alpha,a}$.

Step 3. Due to the symmetry $f_{\alpha,a}$ among alternatives in $\mathcal{A} - \{a\}$, for any $i \leq m - 2$ and any $h_0, h'_0 \in T_i$, we have $\operatorname{Size}(\bar{f}_{\alpha,a}, h_0) = \operatorname{Size}(\bar{f}_{\alpha,a}, h'_0)$. Therefore, condition (i) in Lemma 2 is satisfied. Choose arbitrary $h_0^{m-2} \in T_{m-2}$. For any $i \leq m - 3$, let $h_0^i \in T_i$ denote the ranking obtained from h_0^{i+1} by moving a down for one position. To verify condition (ii) in Lemma 2, it suffices to prove that for any $i \leq m - 3$ and any $K \in \mathbb{N}$, we have

$$\pi_{h_0^{m-2}}(\{V : \operatorname{Borda}_a(V) \ge K\}) \\ \ge \pi_{h_0^i}(\{V : \operatorname{Borda}_a(V) \ge K\})$$

$$(2)$$

We will prove a slightly stronger lemma.

Lemma 8 Under Mallows' model, for any m, any φ , any $W \in \mathcal{L}(\mathcal{A})$, any $b, c \in \mathcal{A}$ such that $b \succ_W c$, and any K, we have $\pi_W(\{V : Borda_b(V) \ge K\}) \ge \pi_W(\{V : Borda_c(V) \ge K\})$.

Proof: The proof is similar to the proof of Lemma 5. It suffices to prove the lemma for the case where b and c are adjacent in W. Let $\mathcal{P} = \{V \in \mathcal{L}(\mathcal{A}) : \text{Borda}_b(V) \ge K\}$ and $\mathcal{P}' = \{V \in \mathcal{L}(\mathcal{A}) : \text{Borda}_c(V) \ge K\}$. It follows that $\mathcal{P} \cap \mathcal{P}'$ is the set of rankings where both b and c are ranked within top m - K positions; $\mathcal{P} - \mathcal{P}'$ is the set of rankings where both b and c are ranked within top m - K positions; $\mathcal{P} - \mathcal{P}'$ is the set of rankings where c is ranked within top m - K positions but c is not; and $\mathcal{P}' - \mathcal{P}$ is the set of rankings where c is ranked within top m - K positions but c is not; and $\mathcal{P}' - \mathcal{P}$ is the set of rankings where c is ranked within top m - K positions but b is not. We let \mathcal{M} be a permutation that switches b and c. It is not hard to check that \mathcal{M} is a bijection between $(\mathcal{P} - \mathcal{P}')$ and $(\mathcal{P}' - \mathcal{P})$, and because b and c are adjacent in W, for any $V \in \mathcal{P}$, we have $\operatorname{KT}(M(V), W) = \operatorname{KT}(V, W) + 1$, which means that $\pi_W(V) = \pi(M(V))/\varphi$. Therefore, we have

$$\pi_W(\{V : \operatorname{Borda}_b(V) \ge K\}) - \pi_W(\{V : \operatorname{Borda}_c(V) \ge K\})$$

= $\pi_W(\mathcal{P}) - \pi_W(\mathcal{P}') = \pi_W(\mathcal{P} - \mathcal{P}') - \pi_W(\mathcal{P}' - \mathcal{P})$
= $\pi_W(\mathcal{P} - \mathcal{P}') - \pi_W(M(\mathcal{P} - \mathcal{P}'))$
= $(\frac{1}{\varphi} - 1)\pi_W(\mathcal{P} - \mathcal{P}') \ge 0$

This proves the lemma.

Let W be an arbitrary ranking and let M_i denote a permutation such that $M_i(h_0^i) = W$. We have $\pi_{h_0^i}(\{V : \text{Borda}_a(V) \ge K\}) = \pi_{M_i(h_0^i)}(\{V : \text{Borda}_{M_i(a)}(V) \ge K\})$. We note that $M_i(a)$ is the alternative that is ranked at the (m - i)-th position in W. Inequality (2) follows after applying Lemma 8. This means that condition (ii) in Lemma 2 is also satisfied. Therefore, by Lemma 2, $\bar{f}_{\alpha,a}$ is a level- α most powerful test for H_0 vs. h_1 . Since $\bar{f}_{\alpha,a}$ does not depend on h_1 , it is a level- α UMP test for H_0 vs. H_1 .

Lemma 6. For any \mathcal{M}_X and \mathcal{M}_Y , suppose Λ_X is a least favorable distribution for composite vs. simple test $(H_{0,X}$ vs. x_1) under \mathcal{M}_X . Given $y_1 \in \Theta_Y$, let Λ^* be the distribution over $H_{0,X} \times \Theta_Y$ where for all $x \in H_{0,X}$, $\Lambda^*(x, y_1) = \Lambda_X(x)$. Then Λ^* is a least favorable distribution for $H_{0,X} \times \Theta_Y$ vs. (x_1, y_1) under $\mathcal{M}_X \otimes \mathcal{M}_Y$.

Proof: Let $x_0^1, \ldots, x_0^K \in \Theta_X$ denote the support of Λ_X . The theorem is proved by applying Lemma 2. For any $0 < \alpha < 1$ and any $P = (P_X, P_Y) \in S_X \times S_Y$, we have the following calculation. In this proof Ratio stands for Ratio $\Lambda^*, (x_1, y_1)$ and LR $_{\alpha}$ stands for LR $_{\alpha,\Lambda^*}, (x_1, y_1)$.

$$\begin{aligned} \operatorname{Ratio}(P_X, P_Y) &= \frac{\pi_{x_1, y_1}(P)}{\sum_{k=1}^{K} \Lambda^*(x_0^k, y_1) \pi_{(x_0^k, y_1)}(P)} \\ &= \frac{\pi_{x_1}(P_X) \cdot \pi_{y_1}(P_Y)}{\sum_{k=1}^{K} \Lambda^*(x_0^k, y_1) \pi_{x_0^k}(P_X) \cdot \pi_{y_1}(P_Y)} \\ &= \frac{\pi_{x_1}(P_X)}{\sum_{k=1}^{K} \Lambda(x_0^k) \pi_{x_0}^k(P_X)} = \operatorname{Ratio}_{\Lambda, x_1}(P_X) \end{aligned}$$

It follows that for any pair of samples $(P_X, P_Y), (P'_X, P'_Y) \in S_X \times S_Y$, $\text{Ratio}(P_X, P_Y) \ge \text{Ratio}(P'_X, P'_Y)$ if and only if $\text{Ratio}_{\Lambda,x}(P_X) \ge \text{Ratio}_{\Lambda,x}(P'_X)$. This means that for any $(P_X, P_Y), \text{LR}_{\alpha}(P_X, P_Y) = \text{LR}_{\alpha,\Lambda,x_1}(P_X)$. Therefore, for any $x_0 \in H_{0,X}$, we have

$$\begin{aligned} \operatorname{Size}(\operatorname{LR}_{\alpha},(x_{0},y_{1})) \\ &= \sum_{(P_{X},P_{Y})\in\mathcal{S}_{X}\times\mathcal{S}_{Y}} \pi_{x_{0}}(P_{X})\pi_{y_{1}}(P_{Y})\operatorname{LR}_{\alpha}(P_{X},P_{Y}) \\ &= \sum_{(P_{X},P_{Y})\in\mathcal{S}_{X}\times\mathcal{S}_{Y}} \pi_{x_{0}}(P_{X})\pi_{y_{1}}(P_{Y})\operatorname{LR}_{\alpha,\Lambda,x_{1}}(P_{X}) \\ &= \sum_{P_{X}\in\mathcal{S}_{X}} \pi_{x_{0}}(P_{X})\operatorname{LR}_{\alpha,\Lambda,x_{1}}(P_{X}) \\ &= \operatorname{Size}(\operatorname{LR}_{\alpha,\Lambda,x_{1}},x_{0}) \end{aligned}$$

Therefore, by Lemma 2, for any $(x_0^*, y_1) \in \text{Spt}(\Lambda^*)$, we have $\text{Size}(\text{LR}_{\alpha}, (x_0, y_1)) = \text{Size}(\text{LR}_{\alpha,\Lambda,x_1}, x_0) = \alpha$ because $x_0^* \in \text{Spt}(\Lambda)$; for any $(x_0, y) \in H_{0,X} \times \Theta_Y$, we have $\text{Size}(\text{LR}_{\alpha}, (x_0, y)) = \text{Size}(\text{LR}_{\alpha,\Lambda,x_1}, x_0) \leq \alpha$. This means that the two conditions in Lemma 2 are satisfies, which proves the theorem. \Box

Lemma 7. For any model \mathcal{M}_X and any $t \in \mathbb{N}$, suppose Λ is a uniformly least favorable distribution for composite vs. simple test $(H_0 \text{ vs. } h_1)$ under \mathcal{M}_X . Then $Ext(\Lambda, h_1, t)$ is a uniformly least favorable distribution for $Ext(H_0, h_1, t)$ vs. \vec{h}_1 in $(\mathcal{M}_X)^t$.

Proof: Again the proof is done by applying Lemma 2. We first prove a claim that characterizes samples whose likelihood ratio is no more than a given threshold. To this end, it is convenient to use the inverse of the likelihood ratio. To simplify notation, in this proof we let $\Lambda^* = \text{Ext}(\Lambda, h_1, t)$, let $H_0^* = \text{Ext}(H_0, h_1, t)$, let $\text{LR}_{\alpha} = \text{LR}_{\alpha, \Lambda^*, \vec{h}_1}$, Ratio = Ratio_{Λ^*, \vec{h}_1}.

Claim 1 For any k_{α} and any $\vec{x} \in S^t$, $\sum_{j=1}^t Ratio_{\Lambda,h_1}^{-1}(x_j) = t \cdot Ratio^{-1}(\vec{x})$.

Proof: we have
$$\operatorname{Ratio}^{-1}(\vec{x}) = \frac{1}{t} \cdot \frac{\sum_{j=1}^{t} \sum_{h_0 \in H_0} \Lambda(h_0) \cdot \pi_{(h_0, [\vec{h}_1]_{-j})}(\vec{x})}{\pi_{\vec{h}_1}(\vec{x})}$$

$$= \frac{1}{t} \cdot \frac{\sum_{j=1}^{t} \sum_{h_0 \in H_0} \Lambda(h_0) \cdot \pi_{h_0}(x_j) \cdot \pi_{[\vec{h}_1]_{-j}}(x_j)}{\pi_{h_1}(x_j) \cdot \pi_{[\vec{h}_1]_{-j}}(x_j)}$$

$$= \frac{1}{t} \sum_{j=1}^{t} \operatorname{Ratio}_{\Lambda, h_1}^{-1}(x_j) \qquad \Box$$

The next lemma proves the following: For any $\vec{z} \in H_0^*$ and any $j \leq t$, suppose the *j*-th component is not in $\text{Spt}(\Lambda) \cup \{h_1\}$. If we fix all components except *j*-th in \vec{z} and change the *j*-th component to $h_0^* \in \text{Spt}(\Lambda)$, then the size of LR_{α} will increase. If we further change the *j*-th component to h_1 , then the size of LR_{α} will further increase.

Lemma 9 For any $0 \le \alpha \le 1$, any $j \le t$, any $\vec{z}_{-j} \in \Theta^{t-1}$, any $h_0 \in H_0$, and any $h_0^* \in Spt(\Lambda)$, we have $Size(LR_{\alpha}, (h_0, \vec{z}_{-j})) \le Size(LR_{\alpha}, (h_0^*, \vec{z}_{-j})) \le Size(LR_{\alpha}, (h_1, \vec{z}_{-j}))$.

Proof: For any $\vec{z}_{-j} \in \Theta^{n-1}$, we have

Size(LR_{\alpha}, (h₀,
$$\vec{z}_{-j}$$
)) = $\pi_{(h_0, \vec{z}_{-j})}(\{\vec{x} \in S^t : \text{Ratio}(\vec{x}) > k^*_{\alpha}\})$
+ $\gamma^*_{\alpha}\pi_{(h_0, \vec{z}_{-j})}(\{\vec{x} \in S^t : \text{Ratio}(\vec{x}) = k^*_{\alpha}\})$

For any \vec{x} , we let $\operatorname{Sum}(\vec{x}) = \sum_{l=1}^{t} \operatorname{Ratio}_{\Lambda,h_1}^{-1}(x_l)$ and for any $j \leq t$, we let $\operatorname{Sum}(\vec{x}_{-j}) = \sum_{l \neq j} \operatorname{Ratio}_{\Lambda,h_1}^{-1}(x_l)$. By Claim 1, we have

$$\begin{aligned} &\pi_{(h_0,\vec{z}_{-j})}(\{\vec{x}\in\mathcal{S}^t:\operatorname{Ratio}(\vec{x})>k_{\alpha}^*\}) \\ &=\pi_{(h_0,\vec{z}_{-j})}(\{\vec{x}\in\mathcal{S}^t:\operatorname{Sum}(\vec{x})< t/k_{\alpha}^*\}) \\ &=\pi_{(h_0,\vec{z}_{-j})}(\{\vec{x}\in\mathcal{S}^t:\operatorname{Sum}(\vec{x}_{-j})+\operatorname{Ratio}_{\Lambda,h_1}^{-1}(x_j)< t/k_{\alpha}^*\}) \\ &=\int_0^{t/k_{\alpha}^*}\sum_{\vec{x}_{-j}\in\mathcal{S}^{t-1}:\operatorname{Sum}(\vec{x}_{-j})=p} \\ &\sum_{x_j:\operatorname{Ratio}_{\Lambda,h_1}^{-1}(x_j)< t/k_{\alpha}^*-p} \pi_{(h_0,\vec{z}_{-j})}(\vec{x})dp \\ &=\int_0^{t/k_{\alpha}^*}\pi_{\vec{z}_{-j}}(\{\vec{x}_{-j}\in\mathcal{S}^{t-1}:\operatorname{Sum}(\vec{x}_{-j})=p\}) \\ &\cdot\pi_{h_0}(\{x_j:\operatorname{Ratio}_{\Lambda,h_1}^{-1}(x_j)< t/k_{\alpha}^*-p\})dp \\ &=\int_0^{t/k_{\alpha}^*}Q(\vec{z}_{-j},p)\cdot\pi_{h_0}(\{x_j:\operatorname{Ratio}_{\Lambda,h_1}^{-1}(x_j)< t/k_{\alpha}^*-p\})dp \end{aligned}$$

where $Q(\vec{z}_{-j}, p) = \pi_{\vec{z}_{-j}}(\{\vec{x}_{-j} \in S^{t-1} : \operatorname{Sum}(\vec{x}_{-j}) = p\})$. Given p and γ_{α}^* , let α' denote the size of the likelihood ratio test $\operatorname{LR}_{\alpha',\Lambda,h_1}$, where the threshold $k_{\alpha'}$ is $1/(t/k_{\alpha}^* - p)$ and $\gamma_{\alpha'} = \gamma_{\alpha}^*$. We have

$$\operatorname{Size}(\operatorname{LR}_{\alpha},(h_{0},\vec{z}_{-j})) = \int_{0}^{t/k_{\alpha}^{*}} Q(\vec{z}_{-j},p) \cdot \operatorname{Size}(\operatorname{LR}_{\alpha',\Lambda,h_{1}},h_{0})dp$$
(3)

We note that in Equation (3), α' is a function of t, p, k_{α}^* , and γ_{α}^* . Because Λ is a uniformly least favorable distribution, it follows from Lemma 2 that for any $h_0^* \in \text{Spt}(\Lambda)$ and any $h_0 \in (H_0 - \text{Spt}(\Lambda))$, we have

$$\operatorname{Size}(\operatorname{LR}_{\alpha',\Lambda,h_1},h_0) \le \alpha' \le \operatorname{Size}(\operatorname{LR}_{\alpha',\Lambda,h_1},h_0^*)$$

Then by Equation (3), for any $h_0 \in (H_0 - \operatorname{Spt}(\Lambda))$ and any $h_0^* \in \operatorname{Spt}(\Lambda)$, we have

$$\begin{aligned} \operatorname{Size}(\operatorname{LR}_{\alpha},(h_{0},\vec{z}_{-j})) \\ &= \int_{0}^{t/k_{\alpha}^{*}} Q(\vec{z}_{-j},p) \cdot \operatorname{Size}(\operatorname{LR}_{\alpha',\Lambda,h_{1}},h_{0})dp \\ &\leq \int_{0}^{t/k_{\alpha}^{*}} Q(\vec{z}_{-j},p) \cdot \operatorname{Size}(\operatorname{LR}_{\alpha',\Lambda,h_{1}},h_{0}^{*})dp \\ &= \operatorname{Size}(\operatorname{LR}_{\alpha},(h_{0}^{*},\vec{z}_{-j})) \end{aligned}$$

To prove the last inequality in the lemma, we prove a claim that holds for any least favorable distribution and the corresponding likelihood ratio test. The $\text{Size}(\cdot)$ function in the claim is extended to $h_1 \in H_1$ in the natural way.

Claim 2 For any model, any composite vs. simple test $(H_0 \text{ vs. } h_1)$, suppose Λ is a level- η least favorable distribution. Then we have $Size(LR_{\eta}, h_1) \geq \eta = Size(LR_{\eta}, h_0^{\Lambda})$.⁴

Proof: For the sake of contradiction suppose this is not true, that is, for any $h_0^* \in \text{Spt}(\Lambda)$ we have $\text{Size}(\text{LR}_{\eta}, h_1) < \eta = \text{Size}(\text{LR}_{\eta}, h_0^*)$. It follows that $k_{\eta} \leq 1$, otherwise we have

$$\begin{aligned} &\operatorname{Size}(\operatorname{LR}_{\eta}, h_{1}) \\ &= \sum_{P \in \mathcal{S}: \operatorname{Ratio}(P) > k_{\eta}} \pi_{h_{1}}(P) + \gamma_{\eta} \sum_{P \in \mathcal{S}: \operatorname{Ratio}(P) = k_{\eta}} \pi_{h_{1}}(P) \\ &\geq \sum_{P \in \mathcal{S}: \operatorname{Ratio}(P) > k_{\eta}} \pi_{\Lambda}(P) \cdot k_{\eta} + \gamma_{\eta} \sum_{P \in \mathcal{S}: \operatorname{Ratio}(P) = k_{\eta}} \pi_{\Lambda}(P) \cdot k_{\eta} \\ &> \sum_{P \in \mathcal{S}: \operatorname{Ratio}(P) > k_{\eta}} \pi_{\Lambda}(P) + \gamma_{\eta} \sum_{P \in \mathcal{S}: \operatorname{Ratio}(P) = k_{\eta}} \pi_{\Lambda}(P) = \eta, \end{aligned}$$

which is a contradiction. Therefore, we have

$$1$$

$$= \operatorname{Size}(\operatorname{LR}_{\eta}, h_{1}) + \sum_{P \in \mathcal{S}: \operatorname{Ratio}(P) < k_{\eta}} \pi_{h_{1}}(P)$$

$$+ (1 - \gamma_{\eta}) \sum_{P \in \mathcal{S}: \operatorname{Ratio}(P) = k_{\eta}} \pi_{h_{1}}(P)$$

$$< \eta + \sum_{P \in \mathcal{S}: \operatorname{Ratio}(P) < k_{\eta}} \pi_{\Lambda}(P) \cdot k_{\eta}$$

$$+ (1 - \gamma_{\eta}) \sum_{P \in \mathcal{S}: \operatorname{Ratio}(P) = k_{\eta}} \pi_{\Lambda}(P) \cdot k_{\eta}$$

$$\leq \eta + k_{\eta}(1 - \operatorname{Size}(\operatorname{LR}_{\eta}, h_{0}^{\Lambda})) \leq 1,$$

which is a contradiction.

Applying Claim 2 to LR_{α',Λ,h_1} , we have

$$\begin{aligned} &\operatorname{Size}(\operatorname{LR}_{\alpha},(h_{0}^{*},\vec{z}_{-j})) \\ &= \int_{0}^{t/k_{\alpha}^{*}} Q(\vec{z}_{-j},p) \cdot \operatorname{Size}(\operatorname{LR}_{\alpha',\Lambda,h_{1}},h_{0}^{*}) dp \\ &\leq \int_{0}^{t/k_{\alpha}^{*}} Q(\vec{z}_{-j},p) \cdot \operatorname{Size}(\operatorname{LR}_{\alpha',\Lambda,h_{1}},h_{1}) dp \\ &= \operatorname{Size}(\operatorname{LR}_{\alpha},(h_{1},\vec{z}_{-j})) \end{aligned}$$

Г	-		1	
L			L	
L	_	_	1	

⁴We recall that h_0^{Λ} is the combined H_0 by Λ .

This finishes the proof of Lemma 9.

It follows from Lemma 9 that for any $j \le t$ and any $h_0^* \in \text{Spt}(\Lambda)$, we have that $\text{Size}(\text{LR}_{\alpha}, (h_0^*, [\vec{h}_1]_{-j}))$ is the same. Due to symmetry, for any $\vec{h}_0^* \in H_0^*$, $\text{Size}(\text{LR}_{\alpha}, h_0^*)$ is the same and is therefore equivalent to α . This verifies condition (i) in Lemma 2.

Condition (ii) in Lemma 2 is verified by recursively applying Lemma 9. Given any $\vec{h}_0 \in H_0^* - \text{Spt}(\Lambda^*)$, there must exist $j \leq t$ such that $[\vec{h}_0]_j \neq h_1$. We then change $[\vec{h}_0]_j$ to an arbitrary $h_0^* \in \text{Spt}(\Lambda)$, then change the other components of \vec{h}_0 to h_1 one by one. Each time we make the change the size of LR_{α} does not decrease according to Lemma 9. At the end of the process we obtain $(h_0^*, [\vec{h}_1]_j) \in \text{Spt}(\Lambda^*)$, at which the size of LR_{α} is α . The theorem follows after applying Lemma 2.

We now define a test $\bar{f}_{\alpha,a}$ for $H_0 = (\mathcal{L}(\mathcal{A}) - H_1)$ vs. $H_1 = L_{a \succ \text{others}}$ and prove that if a UMP test exists, then $\bar{f}_{\alpha,a}$ must also be a UMP test. For any $V \in \mathcal{L}(\mathcal{A})$ and any alternative $a \in \mathcal{A}$, we let $\text{Borda}_a(V)$ denote the Borda score of a in V. That is, $\text{Borda}_a(V)$ is the number of alternatives that are ranked below a in V. For any $V \in \mathcal{L}(\mathcal{A})$, we let

 $\bar{f}_{\alpha,a}(V) = \begin{cases} 1 & \text{if } \operatorname{Borda}_a(V) > K_{\alpha} \\ 0 & \text{if } \operatorname{Borda}_a(V) < K_{\alpha} \\ \Gamma_{\alpha} & \text{if } \operatorname{Borda}_a(V) = K_{\alpha} \end{cases}, \text{ where } K_{\alpha} \text{ and } \Gamma_{\alpha} \text{ are chosen so that the size of } \bar{f}_{\alpha,a} \text{ is } \alpha. \text{ In other words, } \tilde{f}_{\alpha,a} \text{ if } \operatorname{Borda}_a(V) = K_{\alpha} \end{cases}$

 $\bar{f}_{\alpha,a}$ calculates the Borda score of a in the input profile, and if it is larger than a threshold K_{α} then H_0 is rejected. It is not hard to see that $\bar{f}_{\alpha,a}$ equals to $f_{\alpha',a}$ with a possibly different level α' (defined in Theorem 3).

Lemma 10 If there exists a level- α UMP test for $H_0 = (\mathcal{L}(\mathcal{A}) - H_1)$ vs. $H_1 = L_{a \succ others}$, then $\bar{f}_{\alpha,a}$ is also a level- α UMP test.

Proof: Let f_{α} denote a level- α UMP test. For any permutation M over $\mathcal{A} - \{a\}$, we let $M(f_{\alpha})$ denote the test such that for any $V \in \mathcal{L}(\mathcal{A})$, $M(f_{\alpha})(V) = f_{\alpha}(M(V))$. Because the Kendall-Tau distance is invariant to permutations, we have that for any $h_0 \in H_0$, Size $(f_{\alpha}, h_0) =$ Size $(M(f_{\alpha}), M(h_0))$, and for any $h_1 \in H_1$, Power $(f_{\alpha}, h_1) =$ Power $(M(f_{\alpha}), M(h_1))$. Therefore Size $(M(f_{\alpha})) = \alpha$. Also because the multi-set of {Power} $(f_{\alpha}, h_1) : h_1 \in H_1$ } is the same as the multi-set {Power} $(M(f_{\alpha}), h_1) : h_1 \in H_1$ }, for all $h_1 \in H_1$, we must have Power $(f_{\alpha}, h_1) =$ Power $(M(f_{\alpha}), h_1)$, otherwise there exists $h_1 \in H_1$ such that Power $(f_{\alpha}, h_1) <$ Power $(M(f_{\alpha}), h_1)$, which contradicts the assumption that f_{α} is UMP.

It follows that for any permutation M over $\mathcal{A} - \{a\}$, $M(f_{\alpha})$ is also UMP. Therefore, $\bar{f}_{\alpha} = \frac{1}{(m-1)!} \sum_{M} M(f_{\alpha})$ is also UMP. We note that for any V, V' where a has the same Borda score, there exists a permutation M over $\mathcal{A} - \{a\}$ so that M(V) = V'. This means that $\bar{f}_{\alpha}(V) = \bar{f}_{\alpha}(V')$.

We now prove that \bar{f}_{α} must be $\bar{f}_{\alpha,a}$ as in the statement of the Lemma. More precisely, we will prove that for any V, V' such that $\operatorname{Borda}_a(V) > \operatorname{Borda}_a(V')$, if $\bar{f}_{\alpha}(V') > 0$ then $\bar{f}_{\alpha}(V) = 1$. Suppose for the sake of contradiction that this is not true, and there exist V, V' such that $s_1 = \operatorname{Borda}_a(V) > \operatorname{Borda}_a(V') = s_2$, $\bar{f}_{\alpha}(V') > 0$, and $\bar{f}_{\alpha}(V) < 1$. For any $s \leq m-1$, we let T_s denote the set of rankings where the Borda score of a is s. That is, $T_s = \{V \in \mathcal{L}(\mathcal{A}) : \operatorname{Borda}_a(V) = s\}$. We will prove that for any $s_1 > s_2$, T_{s_1} as a whole is more "cost effective" than T_{s_2} as a whole for any $h_0 \in H_0$ against any $h_1 \in H_1$. More precisely, we will prove that $\operatorname{Ratio}_{h_0,h_1}(T_{s_1}) > \operatorname{Ratio}_{h_0,h_1}(T_{s_2})$.

For any $s \le m-2$ and any $h_0 \in T_s$, let h_1 denote the ranking in $T_{m-1} = H_1$ that is obtained from θ by raising a to the top position. For any $V_{s_1} \in T_{s_1}$, we let $\text{Down}_a^{s_1-s_2}(V_{s_1}) \in T_{s_2}$ denote the ranking that is obtained from V_{s_1} by

moving a down for $s_1 - s_2$ positions, that is, from the $(m - s_1)$ -th position to the $(m - s_2)$ -th position. We have

$$\begin{aligned} &\frac{\pi_{h_0}(T_{s_2})}{\pi_{h_0}(T_{s_1})} \\ &= \frac{\sum_{V \in T_{s_2}} \pi_{h_0}(V)}{\sum_{V \in T_{s_1}} \pi_{h_0}(V)} = \frac{\sum_{V \in T_{s_1}} \pi_{h_0}(\operatorname{Down}_a^{s_1 - s_2}(V))}{\sum_{V \in T_{s_1}} \varphi^{\operatorname{KT}(h_0, \operatorname{Down}_a^{s_1 - s_2}(V))}} \\ &= \frac{\sum_{V \in T_{s_1}} \varphi^{\operatorname{KT}(h_0, \operatorname{Down}_a^{s_1 - s_2}(V))}}{\sum_{V \in T_{s_1}} \varphi^{\operatorname{KT}(h_0, V)}} \\ &> \frac{\sum_{V \in T_{s_1}} \varphi^{\operatorname{KT}(h_0, V)} \cdot \varphi^{\operatorname{KT}(V, \operatorname{Down}_a^{s_1 - s_2}(V))}}{\sum_{V \in T_{s_1}} \varphi^{\operatorname{KT}(h_0, V)}} \\ &= \varphi^{s_1 - s_2} = \frac{\pi_{h_1}(T_{s_2})}{\pi_{h_1}(T_{s_1})} \end{aligned}$$

The inequality is due to triangle inequality for Kendall-Tau distance. It is strict because for any $V \in T_{s_1}$ where the top-ranked alternative in h_0 is ranked between the $(m - s_1)$ -th and $(m - s_2)$ -th position, $\operatorname{KT}(h_0, \operatorname{Down}_a^{s_1 - s_2}(V)) < \operatorname{KT}(h_0, V) + \operatorname{KT}(V, \operatorname{Down}_a^{s_1 - s_2}(V))$. Therefore, $\frac{\pi_{h_0}(T_{s_2})}{\pi_{h_0}(T_{s_1})} > \frac{\pi_{h_1}(T_{s_2})}{\pi_{h_1}(T_{s_1})}$, which means that $\operatorname{Ratio}_{h_0,h_1}(T_{s_1}) = \frac{\pi_{h_1}(T_{s_1})}{\pi_{h_0}(T_{s_1})} > \frac{\pi_{h_1}(T_{s_2})}{\pi_{h_0}(T_{s_1})} = \operatorname{Ratio}_{h_0,h_1}(T_{s_2})$.

Therefore, we can find sufficiently small $\epsilon, \delta > 0$, and replace ϵT_{s_2} by δT_{s_1} without changing the size. This will increase the power of \bar{f}_{α} because T_{s_1} is strictly more cost effective than T_{s_2} , which contradicts the assumption that \bar{f}_{α} is a UMP test. Therefore, $\bar{f}_{\alpha} = \bar{f}_{\alpha,a}$, which proves the lemma.