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Abstract

Current literature on posterior approximation
for Bayesian inference offers many alterna-
tive methods. Does our chosen approximation
scheme work well on the observed data? The
best existing generic diagnostic tools treating
this kind of question by looking at performance
averaged over data space, or otherwise lack di-
agnostic detail. However, if the approximation
is bad for most data, but good at the observed
data, then we may discard a useful approxima-
tion. We give graphical diagnostics for poste-
rior approximation at the observed data. We
estimate a “distortion map” that acts on univari-
ate marginals of the approximate posterior to
move them closer to the exact posterior, without
recourse to the exact posterior.

1 INTRODUCTION

When we implement Bayesian inference for even moder-
ately large datasets or complicated models some approxi-
mation is usually inescapable. Approximation schemes
suitable for different Bayesian applications include Ap-
proximate Bayesian Computation (Pritchard et al., 1999;
Beaumont, 2010), Variational Inference (Jordan et al.,
1999; Hoffman et al., 2013), loss-calibrated inference
(Lacoste-Julien et al., 2011; Kuśmierczyk et al., 2019)
and synthetic likelihood (Wood, 2010; Price et al., 2018).
New applications suggest new approximation schemes.
In this setting diagnostic tools are useful for assessing
approximation quality.

Menendez et al. (2014) give procedures for correcting
approximation error in Bayesian credible sets. Rodrigues
et al. (2018) give a post-processing algorithm specifically
for recalibrating ABC posteriors. The new generic di-
agnostic tools given in Yao et al. (2018) and Talts et al.
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(2018) focus on checking the average performance of an
approximation scheme over data space Y and are related
to Prangle et al. (2014), which focuses on ABC posterior
diagnostics. Their methods can be seen as an extension
of Cook et al. (2006), Geweke (2004) and Monahan and
Boos (1992), which were setup for checking MCMC soft-
ware implementation. In contrast, we are interested in the
the quality of approximation at the observed data yobs.
If one posterior approximation scheme works poorly in
some region of Y but works well at yobs, we may reject
a useful approximation using any diagnostic based on
average performance. We may conversely accept a poor
approximation.

We give a generic diagnostic tool which checks the qual-
ity of a posterior approximation specifically at yobs ∈ Y .
We assume that 1) we can efficiently sample parameters
x ∈ X from both the prior distribution π(x) and the obser-
vation model p(y|x) and 2) the approximation scheme we
are testing is itself reasonably computationally efficient.
We need this second assumption as we may need to call
the approximation algorithm repeatedly.

The posterior has a multivariate parameter. However,
we run diagnostics on one or two parameters or scalar
functions of the parameters at a time, so our notation
in Sections 2 and 3.2 takes x ∈ R and R2 respectively.
Parameters are continuous but this is not essential.

We introduce and estimate a family of “distortion maps”

Dy : [0, 1] −→ [0, 1], y ∈ Y

which act on univariate marginals of the multivariate ap-
proximate posterior. The exact distortion map transports
the approximate marginal posterior CDF Gyobs(x) onto
the corresponding exact posterior CDF Fyobs(x). The
distortion map is a function of the parameter x defined
at each y ∈ Y by the relation Fy = Dy ◦ Gy given in
Eqn. 1 below. The distortion map Dyobs at the data con-
tains easily-interpreted diagnostic information about the
approximation error in the approximate marginal CDF



Gyobs . If the distortion map Dyobs differs substantially
from the identity map, then the magnitude and location
of any distortion is of interest. Our distortion map is
an optimal transport (El Moselhy and Marzouk, 2012)
constructed from a normalising flow.

A reliable estimate of Dyobs must be hard to achieve, as
it maps to the exact posterior CDF Fyobs . We estimate
a map D̂yobs to a distribution F̂yobs = D̂yobs ◦ Gyobs
which is only asymptotically closer in KL-divergence
to Fyobs , not equal to it. If Gyobs is far from Fyobs in
KL divergence then it is easy to find a distribution F̂yobs
which is closer to Fyobs than Gyobs was. It follows that if
D̂yobs differs significantly from the identity map then the
approximation defining Gyobs was poor. In this approach
we get diagnostically useful estimates of the distortion
map without sampling or otherwise constructing the exact
posterior.

The map Dy, y ∈ Y may be represented in several ways,
with varying convenience depending on the setting. We
can parameterise a transport map from the approximate
density to the exact density, or a mapping between the
CDF’s, or a function of the approximate random variable
itself. Since we are not interested in approximating the
true posterior, but in checking an existing approximation
for quality, we map CDF’s, estimating the distortion of the
CDF for each marginal of the joint posterior distribution.
This has some benefits and some disadvantages.

On the plus side, the mapping from the CDF of the approx-
imate posterior to the CDF of the exact posterior is an in-
vertible mapping between functions of domain and range
[0, 1]. This resembles a copula-like construction (see in
particular Eqn. 8) and doesn’t change from one problem
to another, making it easier to write generic code. There
is also a simple simulation based fitting scheme, Algo-
rithm 1, to estimate the map. On the downside, we restrict
ourselves to diagnostics for low-dimensional marginal
distributions. However, multivariate posterior distribu-
tions are in practise almost always summarised by point
estimates, credible intervals and univariate marginal densi-
ties, and the best tools we have seen, Prangle et al. (2014)
and Talts et al. (2018), also focus on univariate marginals.
We extend our diagnostics to bivariate marginal distribu-
tions in Sec. 3.2 and give examples of estimated distortion
surfaces in examples below. This works for higher dimen-
sional distortion maps, but it is not clear how this would
be useful for diagnostics and it is harder to do this well.

2 DISTORTION MAP

Let π(·) be the prior distribution of a scalar parameter
x ∈ X ⊆ R and let p(·|x) be the likelihood function of
generic data y ∈ Y . Let yobs be the observed data value.

Given generic data y, let Fy(x) be the CDF of the exact
posterior π(x|y) ∝ π(x)p(y|x). In practice these densi-
ties will the marginals of some multivariate parameter of
interest. For X ∼ π(·) and Y |(X = x) ∼ p(·|x), we
have X|(Y = y) ∼ π(·|y). We assume X|(Y = y) is
continuous, so that Fy(x) is continuously differentiable
and strictly increasing with x at every y ∈ Y . The case of
X discrete is a straightforward extension. Let π̃(x|y) be
a generic approximate posterior on X with CDF Gy(x).
We define a distortion map Dy : [0, 1] −→ [0, 1] such
that for each x ∈ X and each y ∈ Y

Dy(Gy(x)) = Fy(x). (1)

The distortion map Dy is a strictly increasing function
mapping the unit interval to itself and, as Prangle et al.
(2014) point out, is itself the CDF of Q = Gy(X) when
X ∼ Fy . To see this observe that since Fy(X) ∼ U(0, 1)
we have Dy(Q) ∼ U(0, 1) from Eqn. 1, and this is nec-
essary and sufficient for Q ∼ Dy .

Denote by

dy(q) =
d

dq
Dy(q)

the density associated with the CDFDy so that Q ∈ [0, 1]
is random variable with probability density dy(q) for q ∈
[0, 1]. Since π(x|y) = d

dxFy(x), we have from Eqn. 1,

π(x|y) = dy(Gy(x))π̃(x|y), (2)

connecting the two posterior densities.

We seek an estimate, D̂yobs , of the true distortion map at
the data, or equivalently an estimate, d̂yobs , of its density.
Other authors, focusing on constructing new posterior
approximations, have considered related problems, either
without the distortion-map representation, or in an ABC
setting. However, since we seek a diagnostic map, not a
new approximate posterior, it is not necessary to estimate
Dy exactly, but simply to find an approximate D̂y that
moves Gy towards Fy as measured by KL-divergence.
The recalibrated CDF

F̂yobs(x) = D̂yobs(Gyobs(x)) (3)

should be a better approximation (in KL-divergence) to
Fyobs than Gyobs was even if both are bad. The same ar-
gument applies at the level of densities. From Equation 1,
the recalibrated density

π̂(x|y) = d̂y(Gy(x))π̃(x|y)

must improve on π̃(x|y). If our original approximation
π̃(x|y) is bad, then we should be able to improve it.

Working with the distortion mapDy(q) is very convenient
for building generic code: our diagnostic wrapper, Algo-
rithm 1 below, is always based on a model for a density



in [0, 1]. In practice users will have a multivariate approx-
imation π̃(x(1), ..., x(p)|yobs) and get diagnostics by sim-
ulating or otherwise computing marginals π̃(x(i)|yobs).
This distribution is computationally tractable, in contrast
to π(x(i)|yobs).

3 ESTIMATING A DISTORTION MAP

We now explain how we approximate the distortion map
without simulating the exact posterior. The distortion
map Dy we would like to approximate is a continuous
distribution on [0, 1] so one approach is to sample it and
use the samples to estimate Dy. The difficulty is that
Dy(x) is a function of x which varies from one y-value to
another. We can proceed as in Algorithm 1 below which
we now outline.

We start by explaining how to simulate Q ∼ Dy. If
we simulate the generative model, {x, y} ∼ π(x)p(y|x),
then by Bayes rule {x, y} ∼ p(y)π(x|y) with p(y) =
EX(p(y|X)) the marginal likelihood, so a simulation
from the generative model gives us a draw X from the
exact posterior at the random data Y = y. This obser-
vation is just the starting point for ABC. Now, from our
discussion below Equation 1, ifQ = Gy(X) then the pair
{Q,Y } have a joint distribution with density dy(q)p(y)
and conditional distribution Q|(Y = y) ∼ Dy. This is
a recipe to simulate {qi, yi}Ni=1 pairs which are realisa-
tions of {Q,Y }: Simulate {xi, yi}Ni=1 with xi ∼ π(·)
and yi ∼ p(·|xi) and then set qi = Gyi(xi) (the subscript
i = 1, ..., N runs over samples, not multivariate compo-
nents). If π̃(x|y) admits a closed form CDF Gy(x) then
qi can be evaluated directly. If Gy(x) is not tractable (as
in our examples below) then we estimate it using MCMC
samples from the approximate posterior. We form the em-
pirical CDF Ĝy(x) and set qi = Ĝyi(xi). The samples
{qi, yi}Ni=1 are our “data” for learning about Dy .

We next define a semi-parametric model for Dy(q) and
a log-likelihood for our new “data”. For q ∈ [0, 1] and
w ∈ Rm let Dm = {Dy(·;w);w ∈ Rm} be a family of
continuously differentiable strictly increasing CDFs pa-
rameterised by an m-component parameter w, and includ-
ing the identity map, Dy(q;wI) = q, for some wI ∈ Rm
and all q ∈ [0, 1]. Because we are parameterising the
distortion, we are working with a probability distribution
on [0, 1], so we simply model dy(q;w), the corresponding
density of Dy(q;w), using

dy(q;w) = Beta(q; a(y;w), b(y;w)), (4)

a Beta density with parameters a = a(y;w) and b =
b(y;w) which vary over Y . The functions a, b : Y →
(0,∞) are parameterised by a feed-forward neural net
with two hidden layers and positive outputs a and b. We

tried a Mixture Density Network (MDN) (Bishop, 1994)
of Beta-distributions but found no real gain from taking
more than one mixture component.

We now fit our model and estimate Dyobs at the data.
The log likelihood for our parameters given our model
Dy(q;w) and simulations {qi, yi}Ni=1 is

`(w; {qi, yi}Ni=1) =
1

N

N∑
i=1

log dyi(qi;w). (5)

Let ŵN maximise this log-likelihood and consider the
estimate D̂yobs(q) = Dyobs(q; ŵN ), q ∈ [0, 1]. Let

W = {w∗ ∈ Rm : Dy(q) = Dy(q;w∗)} (6)

be the set of parameter values giving the true distortion
map. This set is empty unless Dy ∈ Dm, so the true map
can be represented by the neural net.

We show below that, if the neural net is sufficiently expres-
sive, so that W is non-empty, then Dy(q; ŵN )

p→ Dy(q)
for any fixed {y, q}. This is not straightforward as w∗

in Eqn. 6 is in general not identifiable so standard regu-
larity conditions for MLE-consistency are not satisfied.
Our result compliments that of Papamakarios and Murray
(2016) and Greenberg et al. (2019). Working in a similar
setting, those authors show that the maximiser of the limit
of the scaled log-likelihood gives the true distortion map
(if the neural net is sufficiently expressive). Our consis-
tency proof shows that the limit of the maximiser ŵN
converges to the set W of parameter values that express
the true distortion map.

Proposition 1 translates the result of Papamakarios and
Murray (2016) to our setting. At y ∈ Y and fixed
w ∈ Rm, the exact and approximate distortion maps,
Dy(q) and Dy(q;w) have associated densities dy(q) and
dy(q;w). Their KL-divergence is

KL(Dy(·), Dy(·;w)) ≡
∫ 1

0

dy(q) log

(
dy(q)

dy(q;w)

)
dq.

Here, as in Papamakarios and Murray (2016), the KL-
divergence of interest is the complement of that used
in variational inference. We choose the approximating
distribution Dy(·;w) to fit samples drawn from the true
distribution Dy(·). This is possible using ABC-style joint
sampling of x and y. By contrast in variational inference
Dy(·;w) is varied so that its samples match Dy(·).
Proposition 1. Suppose the set W in Equation 6 is non-
empty. Let yi ∼ p(y), qi ∼ Dyi(q) independently for
i = 1, ..., N . Then N−1`(w, {qi, yi}Ni=1) converges in
probability to

−EY (KL(DY (·), DY (·;w))) + EQ,Y (log(dY (Q)).

This limit function is maximized at w ∈W .



We can remove the condition that W is non-empty in
Proposition 1. This leads to modified versions of the
lemma and theorem below which may be more relevant
in practice. This is discussed in Appendix.

Proposition 1 tells us that we are maximising the right
function, since the limiting KL divergence is minimised
at the true distortion map DY , but it does not show
consistency for Dy(·; ŵN ). In Lemma 1 we prove that
Dy(q; ŵN ) is a consistent estimate of Dy(q).

Lemma 1. Under the conditions of Proposition 1, the
estimate Dy(q; ŵN ) is consistent, that is

lim
N→∞

Pr(|Dy(q; ŵN )−Dy(q)| > ε) = 0.

for every fixed q, y.

Our main result, Theorem 1, follows from Lemma 1. It
states that, asymptotically, and in KL divergence, the “im-
proved” CDF F̂y(x) = Dy(Gy(x); ŵN ) is closer to the
true posterior CDF Fy(x) than the original approximation
Gy(x). All proofs are given in Appendix.

Theorem 1. Under the conditions of Proposition 1 and
assuming KL(Fy, Gy) > 0,

Pr(KL(Fy, F̂y) < KL(Fy, Gy))→ 1

as N →∞ for every fixed y.

The fitted distortion map at the data, D̂yobs(q) =
Dyobs(q; ŵN ) = Beta(q; a(y; ŵN ), b(y; ŵN )) is of in-
terest as a diagnostic tool.The improved posterior CDF,
F̂y(x) in Equation 3, or the corresponding PDF π̂(x|y), is
of only indirect interest to us. The point here is that D̂yobs

may be a useful diagnostic for the approximate posterior
even if F̂y(x) is a poor approximation to Fy as F̂y(x)
is at least asymptotically closer in KL-divergence to Fy
than Gy is. If we can improve on the approximation Gy
substantially in KL-divergence to the true posterior, then
it was not a good approximation.

Plots of dyobs(q; ŵN ) give an easily interpreted visual
check on the approximate posterior π̃(x|yobs). A check
of this sort is not a formal test, but such a test would not
help as we know π̃(·|yobs) is an approximation and want
to know where it deviates and how badly. Since Dy is
a quantile map, if dyobs(q; ŵN ) is a cup shaped function
of q ∈ [0, 1] then Gy is under-dispersed, cap-shaped is
over-dispersed, and if say Dyobs(1/2; ŵN ) � 1/2 then
the median of Gy lies above the median of Fy and so this
is evidence that Gy is skewed to the right.

When we apply Algorithm 1 we need good neural-net
regression estimates D̂y for y in the neighborhood of
yobs only. Fitting the neural net may be quite costly,
and since the distortion-map estimate at yobs is in any

Algorithm 1 Estimating the distortion map Dyobs

Input: the observed data yobs; functions evaluating
summary statistics s(y), y ∈ Y and the approximate
CDF Gy(x); a subset ∆ ⊂ Y centered at yobs; func-
tions simulating the prior π(x) and observation model
p(y|x).
for i in 1, . . . , N do

sample {xi, yi} ∼ π(x)p(y|x) until yi ∈ ∆
compute qi = Gyi(xi)

end for
Fit a feed-forward net with weights w ∈ Rm,
input vector s(yi) ∈ Rp, two scalar out-
puts a(s(yi);w), b(s(yi);w) and loss function
−`(w; {qi, yi}Ni=1) given by Eqns. 4 and 5.
Return: the fitted distortion map D̂yobs(q) =
Dyobs(q; ŵN ), q ∈ [0, 1] where ŵN are the fitted
weights.

case dominated by information from pairs {q, y} at y-
values close to yobs, we regress on pairs {qi, yi} such that
yi ∈ ∆, where ∆ ⊆ Y is a neighbourhood of yobs. This
is not “an additional approximation” and quite different to
the windowing used in ABC. In our case our estimator is
consistent for any fixed neighborhood ∆ of yobs, whilst in
ABC this is not the case. Extending the regression to the
whole of Y space would be straightforward but pointless.

Note that in Algorithm 1 we have introduced summary
statistics s(y) on the data. This may be useful if the
data are high dimensional, or where there is a sufficient
statistic. In the examples which follow we found we were
either able to train the network with s(y) = y, or had
sufficient statistics in an exponential family model for a
random network.

3.1 Validation checks on D̂y

In this section we discuss the choice of N and the sample
variation of D̂y. Since D̂y(·) = Dy(·; ŵN ) is consistent,
Dy(·; ŵNj

) converges in probability on any increasing
subsequence Nj , j = 1, 2, 3.... In order to check we have
taken N large enough so that taking it larger will not
lead to significant change, we estimate Dyobs(·; ŵNi) at
a sampling of equally spaced Nj-values N0, N1, ..., NJ
with N0 = 0 and NJ = N increasing up to N . We
check that Dyobs(q; ŵNj

) converges numerically at each
q ∈ [0, 1] with increasing j = 1, ..., J and is stable. In
order to check the sample dependence, we break up our
sample {qi, yi}Ni=1 into blocks {qi, yi}

Nj+1

i=Nj+1 and, for

j = 0, ..., J−1, form separate estimates D̂(j)
yobs and check

the variation between function estimates is small.



3.2 Extending to higher dimensions

In this section we show how to estimate distortion maps
and the corresponding densities for the approximate poste-
rior density π̃(x1, x2|y) of a continuous bivariate parame-
ter (x1, x2) ∈ R2. The extension to higher dimensions is
straightforward but not obviously useful for diagnostics.

Let Gx1,y(x2) and Fx1,y(x2) be the CDF’s of the ap-
proximate and exact conditional posteriors, respectively
π̃(x2|x1, y) and π(x2|x1, y), and let Gy(x1) and Fy(x1)
be the CDF’s of the approximate and exact marginal pos-
teriors, respectively π̃(x1|y) and π(x1|y). Let Dx1,y be
the distortion map defined by

Dx1,y(Gx1,y(x2)) = Fx1,y(x2), (7)

with Dy(Gy(x1)) = Fy(x1) as before. The transforma-
tion of the joint density is

π(x1, x2|y) = dx1,y(Gx1,y(x2))dy(Gy(x1))π̃(x1, x2|y)
(8)

If the approximation is good at y ∈ Y , then the densities
π(x1, x2|y) and π̃(x1, x2|y) are near equal, which holds
if the “distortion surface”, dy(q1, q2) defined by

dy(q1, q2) ≡ dG−1
y (q1),y(q2)dy(q1), (9)

is close to one for all arguments (q1, q2) ∈ [0, 1]2.

We estimate Dy(q1) as before. We estimate Dx1,y(q2) by
treating x1 as data alongside y. We apply Algorithm 1,
but now we simulate {x1,i, x2,i, yi} from the generative
model in the for-loop, and create two datasets. The first
dataset, {q1,i, yi}Ni=1 with q1,i = Gyi(x1,i), is the same
as before. The second, {q2,i, (x1,i, yi)}Ni=1 with q2,i =
Gx1,i,yi(x2,i), is used to estimate the conditional Dx1,y.
We fit two neural network models for the Beta-density
parameters, one fitting the Beta-CDF Dy(q1;w) using
inputs s(yi) and choosing weights w ∈ Rm1 to maximise
the likelihood

`(w; {q1,i, yi}Ni=1) =

N∑
i=1

log dyi(q1,i;w) (10)

and the other fitting the Beta-CDF Dx1,y(q2; v) using
inputs (x1,i, s(yi)) and choosing weights v ∈ Rm2 to
maximise the likelihood

`(v; {q2,i, (x1,i, yi)}Ni=1) =

N∑
i=1

log dx1,i,yi(q2,i; v).

(11)
The run-time is approximately doubled. If ŵN and v̂N are
the MLE’s then the estimates are D̂y(q1) = Dy(q1; ŵN )

and D̂x1,y(q2) = Dx1,y(q2; v̂N ).

Finally, we plot the estimated distortion surface

d̂yobs(q1, q2) = d̂G−1
yobs

(q1),yobs
(q2)d̂yobs(q1) (12)

as a diagnostic plot. Both components are simply Beta-
densities and straightforward to evaluate.

4 FURTHER RELATED WORKS

Prangle et al. (2014) show that π̃(x|yobs) = π(x|yobs)
for all x iff Gyobs(X) ∼ U(0, 1) for X ∼ π(·|yobs).
The authors give a diagnostic tool based on this idea for
an ABC posterior using the simulated Q’s as test statis-
tics. They sample {xi, yi} from the truncated generative
distribution π(x)p(y|x)1(y ∈ ∆), where ∆ ⊂ Y is a
subset containing yobs, and compute qi = Gyi(xi) for
i = 1, ..., N . Then they check that the simulated {qi}Ni=1

are uniformly distributed over [0, 1]. This corresponds to
studying the distribution of the marginalized random vari-
able Q = EY ∈∆(GY (X)|Y ) rather than the conditional
random variable [Q|(Y = yobs)] = Gyobs(X) which we
study. The diagnostic histogram plotted by Prangle et al.
(2014) estimates the marginal density d∆(·) of Q,

Q ∼ d∆(·), d∆(Q) ∝
∫
y∈∆

dy(Q)p(y)dy. (13)

Since ∆ is typically rather large, dy(·) may vary over
y ∈ ∆. In this case the marginal distribution of Q may
be flat when the conditional distribution of Q|(Y = yobs)
is far from flat (or the converse). We give an example in
which this is the case. Similar ideas are explored in Talts
et al. (2018) and Yao et al. (2018). Notice that when we
window our data {q, y}, y ∈ ∆ for neural net regression
estimation of ŵN there is no integration over data y. We
regress the distribution of Q|(Y = y) at each y ∈ ∆ (i.e.
close yobs), so we explicitly model variation in dy(·) with
y within ∆.

Rodrigues et al. (2018) give a post-processing recalibra-
tion scheme for the ABC posterior developing Prangle
et al. (2014). The setup is a multivariate version of Equa-
tion 1. Ignoring the intrinsic ABC approximation, the
“approximation” they correct is due to the fact that they
have posterior samples at one y-value and they want to
transport or recalibrate them so that they are samples from
the posterior at a different y-value. The main difference
is that these authors are approximating the true posterior,
whilst we are trying to avoid doing that.

Greenberg et al. (2019) propose Automatic Posterior
Transformation (APT) to construct an approximate pos-
terior. Our Algorithm 1 can be seen as the first loop of
their Algorithm 4. In their notation, let qF (y,w)(x) be an
approximation to π(x|y) where w are parameters of the



fitted approximation. Let pr(x) be a proposal distribution
for x. Define

q̃F (y,w)(x) = qF (y,w)(x)
pr(x)

π(x)Z(y, w)
, (14)

with Z a normalisation over x, and

L̃(w) =

N∑
i=1

log q̃F (yi,w)(xi), (15)

where {xi, yi} ∼ pr(x)p(y|x) iid for i = 1, ..., N . Ap-
pealing to Papamakarios and Murray (2016), the authors
show that the w-values maximising the scaled limit of
L(w), w∗ say, satisfy qF (y,w∗)(x) = π(x|y) (if the rep-
resentation is sufficiently expressive) and this leads to
a novel algorithm for approximating the posterior. Our
approach is a special case obtained by taking x ∈ R,
pr(x) = π(x) (so Z = 1) and the special parameteriza-
tion

qF (y,w)(x) = dy(G(x);w)π̃(x|y). (16)

In further contrast, we are concerned with diagnosing an
approximation, not targeting a posterior.

Some previous work on diagnostics has also avoided form-
ing a good approximation to FY by focusing on estimat-
ing the error for expectations of special functions only.
Work on calibration of credible sets by Xing et al. (2019)
and Lee et al. (2018) falls in this category. Instead of
estimating distortion over the whole CDF GY , these au-
thors estimate the distortion in the value of one quantile.
This lacks diagnostic detail compared to our distortion
map. They consider a level q approximate credible set
C̃y(q) ⊆ X computed from the approximate posterior.
Xing et al. (2019) estimate how well this approximate
credible set covers the true posterior, that is they estimate

cyobs(q) = EX|Y=yobs(1(X ∈ C̃yobs(q))), (17)

using regression and methods related to importance sam-
pling. In contrast to Xing et al. (2019), we estimate
Dyobs(q) as a function of q, so we estimate the distor-
tion in the CDF, not just the distortion in the mass it puts
on one set.

5 TOY EXAMPLE

We apply Algorithm 1 to Bayesian logistic regression. Let
X be a n× p design matrix, let β ∈ Rp be regression co-
efficients and y = (y(1), ..., y(n)) ∈ {0, 1}n be binary re-
sponse data. For each j = 1, ..., n, y(j) ∼ Bernoulli(pj)
where logit(pj) = xT(j)β and x(j) is the jth row of X .
The likelihood is

p(y|β) =

n∏
j=1

pj
y(j)(1− pj)1−y(j) , pj =

exp(xT(j)β)

exp(xT(j)β) + 1
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Figure 1: Left: Exact and approximate posterior for rows
β(i), i = 1, 2. Right: Exact D(p)

yobs(·) and fitted D̂(i)
yobs(·)

for β(i), i = 1, 2. Dashed line is the identity map.

We take a prior distribution π(β) = Normal(0, 2Ip) with
Ip the p × p identity matrix. We are interested in the
posterior distribution π(β|yobs) ∝ π(β)p(yobs|β).

The exact posterior can be sampled via standard MCMC.
It is also possible to approximate the exact π(β|yobs) us-
ing computationally cheaper Variational Inference (VI)
with posterior π̃(β|yobs) (Jaakkola and Jordan, 1997). In
this example, we set p = 8, n = 50, and we would like
to diagnose the performance of the variational posterior
π̃(β|yobs) using Algorithm 1. In our example, each entry
in the design matrix X is sampled independently from
U(0, 1). We simulate 106 synthetic {β, y}-pairs from the
generative model π(β)p(y|β), randomly pick one syn-
thetic data point as our observed yobs, and keep the 1% of
pairs {βi, yi}Ni=1 closest in Euclidean distance to yobs as
our training data (this corresponds to a particular choice
of ∆ in Algorithm 1). Since there is no low dimensional
sufficient statistic for this model, we simply use s(y) = y,
the n = 50 dimensional binary response vector, as the
summary statistic. We then apply Algorithm 1 using a
feed froward neural net with two hidden layers of 80
nodes to estimate the distortion map D̂(j)

yobs(·) for each
dimension j = 1, ..., p of β (recall p = 8), and compare
the estimated map D̂(j)

yobs(q) to the exact D(j)
yobs(q) as a

function of q ∈ [0, 1] (the exact map is available for this
problem using standard methods).

We plot the marginal posteriors and the corresponding ex-
act and fitted distortion maps for the first two dimensions
β(1), β(2) of the regression parameter β in Fig. 1. The
fitted distortion map D̂(1)

yobs(·) and D̂(2)
yobs(·) in the right

column accurately recover the exact map. Both D̂(1)
yobs(·)

and D̂(2)
yobs(·) slightly deviate from the identity map, cor-

rectly showing that the marginal VI posteriors for β(1)

and β(2) are slightly under-dispersed compared to the



Figure 2: Zachary’s Karate Club network (Zachary, 1977),
consists of 34 vertices and 78 undirected edges.

exact posterior. This simple example shows our method
is able to handle moderately high dimensional (n = 50)
summary statistics s(y).

6 KARATE CLUB NETWORK

In this section we estimate distortion maps measuring the
quality of three distinct network model approximations.
The data we choose are relatively simple, but happen to
illustrate several points neatly. We repeat the analysis
on a larger data set in Appendix. The small size of the
network data in this example is not an essential point.
Conclusions from the larger data set are similar though in
some respects less interesting.

The Zachary’s Karate Club network (Zachary, 1977) is a
social network with 34 vertices (representing club mem-
bers) and 78 undirected edges (representing friendship).
The data is available at UCINET IV Datasets. See Fig. 2.

We fit an Exponential Random Graph Model (ERGM)
(Robins et al., 2007) to these data. Let Y be the set of all
graphs with n nodes. Given y ∈ Y , let s(y) ∈ Rp be a
p-dimensional graphical summary statistic computed on
y and let x ∈ Rp be the corresponding ERGM parameter.
In our example p = 3. In an ERGM, the likelihood of the
graph y is

p(y|x) = exp {xT s(y)}/z(x) (18)

where z(x) =
∑
y∈Y exp {xT s(y)} is intractable even

for relatively small networks.

Our example approximations come from Caimo and Friel
(2012) and Bouranis et al. (2018). Let s1(y) be the num-
ber of edges in y. Following Hunter and Handcock (2006),
let EPl(y) be the number of connected dyads in y that
have l common neighbors, and letDl(y) equal the number
of nodes in y that have l neighbors. Let

v(y, φv) = eφv

n−2∑
l=1

{1− (1− e−φv )l}EPl(y)
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Figure 3: Approximate and exact posteriors

be the geometrically weighted edgewise shared partners
(gwesp) statistic and

u(y, φu) = eφu

n−1∑
l=1

{1− (1− e−φu)l}Dl(y)

be the geometrically weighted degree (gwd) statistic.
Following Caimo and Friel (2012) let φv = 0.2 and
φu = 0.8, s(y) = (s1(y), v(y, φv), u(y, φu)) and x =
{x(1), x(2), x(3)} ∈ R3. Our observation model is given
by Eqn 18. The prior distribution π(·) for x is multivariate
normal with µ = (−2, 0, 0) and Σ = 5I3.

The exact π(x|y) = π(x)p(y|x)/p(y) is doubly in-
tractable. We consider three approximation schemes yield-
ing different approximations π̃(x|y):

• Approximate Bayesian Computation with ABC ac-
ceptance fraction ρ = 0.5% and local linear regres-
sion adjustment (“ABC-reg”, Pritchard et al. (1999);
Beaumont (2010)).

• Fully adjusted pseudolikelihood (“adj-lkd”) (Boura-
nis et al., 2017, 2018);

• Variational inference (VI) (Tan and Friel, 2018)

We have ground truth in this example, sampling π(x|y)
using an approximate exchange algorithm (Murray et al.,
2012). This is still approximate but very accurate. For
each approximation scheme and dimension x(p), p =

1, ...3, we fit the distortion map D̂(p)
yobs using Algorithm 1

and compare our d̂(p)
yobs-diagnostic plot with diagnostic

plots obtained using the methods of Prangle et al. (2014)
and Talts et al. (2018).

We simulatedN = 3×105 pairs {xi, yi}Ni=1 from the gen-
erative model π(x)p(y|x), taking pairs {xi, yi} pairs in
the top 15% by least Euclidean distance to s(yobs) as our
training data. We first report the approximate posteriors

http://vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm#zachary
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Figure 4: Left: Recalibrated posterior F̂yobs for x(1) for
each approximation scheme Right: Exact D(1)

yobs(·) and
fitted D̂(1)

yobs(·) for x(1), Dashed line represents the identity
map. Grey lines are D̂(1)

yobs(·) fitted repeatedly using 70%
random subset of the training data.

themselves. In Fig. 3 (left column) we see that the adj-lkd
approach (top row) gives the best approximate posterior
for all dimensions. In comparison, the VI approach (bot-
tom row) gives an under-dispersed approximation while
the ABC-reg posterior (middle row) is over-dispersed and
slightly biased. In a real application we would not have
this ground truth.

We now run Algorithm 1 using a feed froward neural net
with two hidden layers of 80 nodes and estimate D̂(p)

yobs

for all approximation schemes and dimensions x(p). For
brevity we now focus on the distribution of x(1). In Fig. 4
(right column) we show the exact D(1)

yobs(·) (not available
in real applications, but useful to show the method is
working) and the fitted D̂(1)

yobs(·) for x(1) for all three ap-
proximation schemes with the corresponding recalibrated
posteriors π̂(x(1)|y) (left column). For all approxima-
tion schemes the estimated D̂(1)

yobs(·) is close to the exact
D

(1)
yobs(·), and are stable under repeated runs (which were

fitted using 70% of the training data). The approximate
posterior (with CDFGy) matches the true posterior (in the
graphs at left in Fig. 4) when D̂(1)

yobs(·) is close to an iden-
tity map (in the graphs at right in the same figure). The
recalibrated posteriors (with CDF F̂y) are closer to the
exact, again indicating that our fitted D̂(1)

yobs(·) is correct.
Plots of the distortion density dy allow direct comparison
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Figure 5: Diagnostic plot (Prangle et al., 2014) for each
approximation scheme for x(1) (upper) and x(3) (lower).
Black curve: marginalized (averaged) d̂∆(·) over y s.t.
s(y) ∈ ∆s(yobs). Red curve: fitted d̂yobs(·) at yobs. Recall
that d̂(·) represents the corresponding PDF of D̂(·)

with the diagnostic histograms of Prangle et al. (2014)
and Talts et al. (2018). Adopting those methods in our set-
ting, we average dy over an open ball centered at s(yobs)
containing the top 2.5% of s(yi)’s closest to s(yobs). We
see in Fig. 5, where we plot diagnostics for x(1) (top row)
and x(3) (bottom row), that these diagnostic histograms
successfully identify the under-dispersion of VI posteriors
(a U-shape in the corresponding histograms (Talts et al.,
2018) in the middle column). However, the histogram of
ABC-reg is reasonably flat for x(3), which seems healthy.
This is misleading as the ABC-reg posterior for x(3) is in
fact over-dispersed at yobs as the dy-graph in red shows.
In contrast, the non-uniformity in the histogram of adj-lkd
posterior of x(1) (top right) suggests that that approxima-
tion is poor, when we see from dy-graph in red that the
approximation is excellent (with ground truth in the top
row of Fig. 3 agreeing). The diagnostic histograms of
Prangle et al. (2014) and Talts et al. (2018) give both
false-positive and false-negative alerts in this example.

To further illustrate this behavior on the adj-lkd example
for x(1), we sampled K = 200 pairs {xk, yk}Kk=1 ∼
π(x)p(y|x)1(s(y) ∈ ∆s(yobs)), so that the s(yk)’s are all
close to s(yobs). For each data set yk, we compute an
equal-tail approximate credible set with level α = 0.8
for x(1) using the adj-lkd posterior. Following Xing et al.
(2019) we can ask, what is the true (i.e. “operational”)
coverage c̃(1)

yk (α) achieved by this approximate set in the
exact posterior? Does the approximate credible set at the
data have the stated coverage in the true posterior? The
exchange algorithm gives (fairly accurate) samples from
the true posterior so the expectation in Eqn. 17 is easily
estimated.



Figure 6: The estimated operational coverage of adj-lkd
posterior of x(1) at each s(y), magnitude of operational
coverage is represented by colour, nominal level α = 0.8

In Fig. 6 we plot the points s(yk) ∈ R3 colored by their
coverage. Red points points correspond to data where we
are getting the right coverage. However there is an orange-
colored plane region in the top right part of the plot where
c̃
(1)
yk (α) is much lower than the nominal level of 80%. The

data yobs is located at a red point so the coverage from
the adj-lkd approximation is fine (as we would expect
from the healthy diagnostics in Fig 5). However when we
average we include data where the approximation is poor
and reach the wrong conclusion. This illustrates how the
quality of approximation can vary over a subset of data
space Y .

Finally, we estimate and report the bivariate distor-
tion surface dyobs for VI and adj-lkd approximations
π̃(x(1), x(2)|yobs) to the posterior for the first two pa-
rameters x(1) and x(2). From Sec. 3.2, taking q1 =
Gyobs(x(1)) and q2 = Gx(1),yobs(x(2)), the distortion sur-
face dyobs(q1, q2) is

dyobs(q1, q2) ≡ dG−1
yobs

(q1),yobs
(q2)dyobs(q1).

Fig. 7 shows that for the VI posterior, the distortion sur-
face peaks on the boundary and corners of the [0, 1]2

square, and is below 1 at the center (recall that it is a
normalised bivariate probability density). This is the 2-D
equivalent of the U shaped diagnostic plots for scalars
described in Prangle et al. (2014) and Talts et al. (2018),
reflecting the under-dispersed VI posterior approximation.
In contrast, the distortion surface of adj-lkd posterior is
between 0.9 ∼ 1.2 and relatively flat over much of the
[0, 1]2 square: there is no evidence here for a problem
with the adj-lkd approximation.

7 CONCLUSION

In this paper we give new diagnostic tools for approxi-
mate Bayesian inference. The distortion map Dyobs is a
visual diagnostic tool for approximate marginal posteriors,
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Figure 7: Left: Distortion surface of VI posterior with
respect to q1, q2. Right: Distortion surface of adj-lkd
posterior with respect to q1, q2.

which gives us diagnostic details about the approxima-
tion error. It is computationally demanding to estimate.
Estimating the distortion map Dyobs requires sampling
synthetic data from the generative model and calling the
approximation scheme at each synthetic data point. In
contrast to existing methods it checks the quality of ap-
proximation at the observed data yobs, instead of estimat-
ing “averaged performance” over data space. Much of
the code-base (simulation outline, fitting the Beta-density
conditioned on y-values in a neighborhood of yobs) carries
over from one problem to another, so the user provides
simulators for the generative model and the approximate
posterior. The approach can be extended from diagnosing
univariate marginals to higher dimensions. One interest-
ing direction for future work is to find a way to simulate
synthetic data close to yobs while reweighting in a way
that yields an unbiased distortion map.
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A APPENDIX

A.1 Further discussion

Comparison to ABC

Distortion map estimation shares a number of features
with ABC. These include simulation of the generative
model and the presence of windowing on data y ∈ ∆.
The window plays different roles, as a marginalising win-
dow in ABC recalibration and a conditioning window in
distortion map analysis but seems superficially similar.
How do the methods compare?

Compared to standard ABC, estimation of a distortion
map is fundamentally easier. This is illustrated in Sec-
tion 5 where ABC is clearly overdispersed but the dis-
tortion map is accurately estimated. ABC sets out to
approximate the entire joint distribution of the multivari-
ate parameter. For diagnostic purposes the distortion map
is targeting scalar or at most bivariate marginals only. The
regularisation allowed by the restricted parameterisation
of Dy (see the next subsection) is helpful also.

Compared to ABC, estimation of the distortion map has
the additional computational cost of a) repeatedly ap-
plying the approximation scheme on each synthetic data
points (easy when Gy is available in closed form, as is
sometimes the case, as in mean-field VI). Existing meth-
ods (Talts et al., 2018; Rodrigues et al., 2018) pay the
same price. Another cost is b) fitting the network to the
simulated data set (we do this just once). In our experi-
ence b) requires much less time than a), so the method
presented in this paper works best when the approxima-
tion scheme is computationally cheap.

Parameterisation of Dy

In this paper we parameterise Dy as a Beta CDF. This
may seem an arbitrary and restrictive choice. However we
are partly benefiting from the normalising-flow parameter-
isation we have set up, as the distortion map is a CDF on
[0, 1]. More fundamentally we feel that a parametric re-
striction or “regularisation” of this sort is the price we pay
for estimating a bias (i.e. the distortion of the approximate
posterior from the true) without knowing the truth. We
are using the Neural Net to regress on a space of (scalar)
functions Dy(x). By restricting this function space we
regularise the fit in a helpful way. Other (possibly more
flexible) parameterisations of Dy are available. For exam-
ple, we tried parameterising Dy with a mixture of Beta
CDFs (up to 4 components) but found no improvement,
just longer run times.

One drawback of our setup is that the single component
Beta can be fooled: for example, if the true distortion

density dy was trimodal with peaks at 0.01, 0.5 and 0.99,
then the estimated d̂y would be close to uniform over
[0,1] so our estimated diagnostic would seem to be good
when the truth was bad (far from uniform). We can spot
this by fitting a mixture of Beta CDFs as a diagnostic.

Consistency and reliability of D̂y

We showed consistency of our method in Section 3 un-
der the assumption that the Beta-NN parameterisation
is sufficiently expressive. The lemma holds without
this assumption but convergence in probability holds
for the parameter w∗ minimising the KL-divergence.
The theorem holds if there exists w ∈ Rm such that
KL(Fy, Gy) > KL(Fy, Dy(Gy;w)). If this is not the
case then the approximation Gy must be good! In this
case the MLE converges to wI , parameterising the iden-
tity map, a reasonable diagnostic outcome.

We cannot guarantee for any given N that our estimate
D̂y based on ŵN is reliable (it isn’t, as it is only mapping
closer to the truth in probability) so some diagnostics are
needed to check our diagnostic tool. Section 3.1 lists two
obvious validation checks on D̂y and we may also vary
the number of mixture components in the MDN.

In principle we have access to an unlimited amount of
data to learn Dy, if we can efficiently simulate the gen-
erative model. However, this type of check can be time
consuming, as it requires repeated calls of the approxi-
mation scheme for each synthetic data point. This means
our method if effective if the computational cost of the
evaluating the approximation Gy(x) is manageable.



A.2 Proofs

The following proposition reproduces a result given in
Papamakarios and Murray (2016).

Proposition 1. Suppose the set W in Equation 6 is non-
empty. Let yi ∼ p(y), qi ∼ Dyi(q) independently for
i = 1, ..., N . Then N−1`(w, {qi, yi}Ni=1) converges in
probability to

−EY (KL(DY (·), DY (·;w))) + EQ,Y (log(dY (Q)).

This limit function is maximized at w ∈W .

Proof. Our presentation here is very brief as this result
is known. We include this proof outline in order to make
the meaning of the proposition clear.

By the WLLN,

N−1`(w, {qi, yi}Ni=1)
P→ EQ,Y (log(dY (Q;w))

and the first statement follows as

EQ,Y (log(dY (Q;w)) = −EY (KL(DY (·), DY (·;w)))

+EQ,Y (log(dY (Q)).

The second term does not depend on w so we maximise
the scaled limit of the log-likelihood by minimising the
KL-divergence. Since KL(Dy(·), Dy(·;w∗)) = 0 for
all y ∈ Y iff Dy(q;w∗) = DY (q) at each q, y, and is
otherwise continuous and positive, the limit function is
maximised at w∗ ∈ W whenever this set is non-empty.

The result above shows that the maximum of the limit of
the scaled log-likelihood gives the true distortion map.
However a proof of consistency must show that the limit
of the maximum of the scaled log-likelihood converges
in probability to the set of parameter values that express
the true distortion map. Standard theory for the MLE
does not apply as the true parameter is not identifiable.
The corresponding result for the non-identifiable case was
given in Redner et al. (1981). The following proof of
consistency is based on that paper.

Lemma 1. Under the conditions of Proposition 1, the
estimate Dy(q; ŵN ) is consistent, that is

lim
N→∞

Pr(|Dy(q; ŵN )−Dy(q)| > ε) = 0.

for every fixed q, y.

Proof. Let W = {w∗ : Dy(·;w∗) = Dy(·), y ∈ Y}.
Let τ(Rm) be the quotient topological space defined by
taking Rm, choosing a point W ∗ ∈ W , and identifying

all points in W in the original spaceRm with the single
point W ∗ in τ(Rm).

We now show (by citing Redner et al. (1981)) that the
maximum likelihood estimator converges in τ(Rm) to
W ∗, ŵN

P→ W ∗ as N → ∞. This is not an immediate
consequence of standard regularity conditions for the con-
vergence of the MLE, as we do not assume that there is
a unique w∗ satisfying Dy(q) = Dy(q;w∗), so w∗ is not
identifiable. In fact we can construct cases where W has
uncountably many elements, so this assumption does not
hold. However, the MLE convergence results for a non-
identifiable parameter given in Redner et al. (1981) apply.
Recall that W ∗ is the point in the τ(Rm) corresponding
to the set W in the original spaceRm. By Theorem 4 of
Redner et al. (1981), we have ŵN

a.s.→ W ∗ as N → ∞.
All regularity conditions required for Theorem 4 of Red-
ner et al. (1981) can be verified easily.

It then follows from the continuity of dy(q;w) (and there-
fore Dy(q;w)) and the continuous mapping theorem that,
for each pair {q, y},

Dy(q; ŵN )
P→ Dy(q;W ∗)

and then since Dy(q;W ∗) = Dy(q) we have

Dy(·; ŵN )
P→ Dy(·).

Theorem 1. Under the conditions of Proposition 1 and
assuming KL(Fy, Gy) > 0,

Pr(KL(Fy, F̂y) < KL(Fy, Gy))→ 1

as N →∞ for every fixed y.

Proof. F̂y(x) = Dy(Gy(x); ŵN ) so the density of F̂y is

π̂(x|y) = π̃(x|y)dy(Gy(x); ŵN ).

Recalling π(x|y) = π̃(x|y)dy(Gy(x)), we have

KL(Fy, F̂y) ≡
∫ ∞
−∞

π(x|y) log

(
π(x|y)

π̂(x|y)

)
dx

=

∫ ∞
−∞
π̃(x|y)dy(Gy(x)) log

(
dy(Gy(x))

dy(Gy(x); ŵN )

)
dx

=

∫ 1

0

dy(q) log

(
dy(q)

dy(q; ŵN )

)
dq

= KL(Dy(·), Dy(·; ŵN )),

where we made the change of variables q = Gy(x) to get
from the second to third lines. Taking KL(Fy, Gy) = ε
with ε > 0 we have

Pr(KL(Fy, Gy) > KL(Fy, F̂y)) = Pr(ε > KL(Dy(·), Dy(·; ŵN ))).



By Lemma 1, Dy(·; ŵN )
P→ Dy(·). The KL-divergence

is a continuous mapping, so KL(Dy(·), Dy(·; ŵN ))→ 0
in probability by the continuous mapping theorem. It
follows that the limit as N → ∞ of the quantity on the
RHS of the last equality is equal one.

Theorem 1 is a fairly natural consequence of Lemma 1:
the procedure is Maximum-Likelihood, satisfies (some
rather special) regularity conditions, and is therefore con-
sistent. However we state the result in this form in order
to emphasise that Algorithm 1 returns a distortion map
that moves F̂y closer to Fy, with high probability for all
sufficiently large N , so that the map contains information
about the distorting effects of the approximation, with-
out actually sampling Fy, or even making it possible to
sample Fy .

A.3 Gene Fusion network

We tried our approach on the larger Gene Fusion network
(Höglund et al., 2006; Kunegis, 2013) with 291 nodes
and 279 edges. Nodes represent genes and an edge is
present if fusion of the two genes is observed during the
emergence of cancer. The same ERGM given in Section
6 is used to fit the data.

In this example we report the ABC-reg and adj-lkd pos-
teriors only, as the VI posterior behaves in the same way
as in the Karate club network example (accurate mode,
under-dispersed tails). Again, we report the fitted dis-
tortion map D̂ and the recalibrated π̂(x(p)|yobs) for each
p = 1, 2, 3 for both approximation schemes in Fig. 9
and 10. Fig. 9 and 10 show that estimated distortion
maps D̂(p)

yobs are close to exact maps D(p)
yobs for each di-

mension for both approximation schemes. The estimated
distortion map deviates from the identity map when the
approximate marginals π̃(x(p)|yobs) deviate from the ex-
act π(x(p)|yobs) substantially, and is close to the identity
map when π̃(x(p)|yobs) ≈ π(x(p)|yobs).

As in Section 6 we plot the distortion surfaces for the
ABC-reg and adj-lkd posteriors for {x(1), x(3)}. In this
example there is little interesting bivariate structure as
the joint distortion map is essentially the product of the
univariate maps. From Fig. 11 we see the distortion sur-
face of the ABC-reg posterior is far from 1, indicating
that the ABC-reg approximation of the bivariate marginal
posterior π(x(1), x(3)|yobs) is unreliable. The distortion
surface of adj-lkd posterior at the data is reasonably close
to 1, though somewhat barrel-shaped, reflecting the fact
that the approximation to x(3) is (fairly slightly) overdis-
persed.

Figure 8: Gene fusion network
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Figure 9: Left: Recalibrated posterior of x(p), p = 1, ...3

for ABC-reg scheme Right: Exact D(p)
yobs(·) and fitted

D̂
(p)
yobs(·) for x(p), Dashed line represents the identity map.
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Figure 10: Left: Recalibrated posterior of x(p), p =

1, ...3 for adj-lkd scheme Right: Exact D(p)
yobs(·) and fitted

D̂
(p)
yobs(·) for x(p), Dashed line represents the identity map.
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Figure 11: Left: Distortion surface of adj-lkd posterior
with respect to q1, q3. Right: Distortion surface of abc-reg
posterior with respect to x(1), x(3).
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