Selling Data at an Auction under Privacy Constraints

Mengxiao Zhang
Business School
The University of Auckland
Auckland, NZ
mengxiao.zhang@auckland.ac.nz

Fernando Beltran
Business School
The University of Auckland
Auckland, NZ
f.beltran@auckland.ac.nz

Jiamou Liu
School of Computer Science
The University of Auckland
Auckland, NZ
jiamou.liu@auckland.ac.nz

Appendix A.

Lemma 2. For any integer $1 \leq \alpha \leq n / 4$ and $\delta \in$ $(0,1)$, if the query mechanism A is $(\alpha, \delta)-\mathrm{PAC}$, then $\alpha \geq \frac{n}{4 \sum_{i=1}^{n} \varepsilon_{i} q_{i}} \cdot(\ln \delta-\ln (1-\delta))$.

Proof. We prove the equivalent form, if A is (α, δ)-PAC, then $\sum_{i=1}^{n} \varepsilon_{i} q_{i} \geq \frac{n(\ln \delta-\ln (1-\delta))}{4 \alpha}$. We first consider count query. Recall that this case assumes that each data entry d_{i} is a $0 / 1$-value. We assume for a contradiction that $\sum_{i=1}^{n} \varepsilon_{i} q_{i}<\frac{n(\ln \delta-\ln (1-\delta))}{4 \alpha}$ and the query mechanism is (α, δ)-PAC. Let $R=\left\{r \in \mathbb{R}| | r-\varphi\left(\vec{d}_{\mathrm{gt}}\right) \mid<\alpha\right\}$. By the definition of (α, δ)-PAC, $\operatorname{Pr}\left(\Phi\left(\vec{d}_{\mathrm{gt}}\right) \in R\right) \geq$ δ.

Assume, w.l.o.g., that $\varepsilon_{i} q_{i}$ are sorted in ascending order, i.e., $\varepsilon_{1} q_{1} \leq \varepsilon_{2} q_{2} \leq \ldots \leq \varepsilon_{n} q_{n}$. Consider the first 4α data owners (Note that $4 \alpha \leq n$). Clearly,
$\sum_{i=1}^{4 \alpha} \varepsilon_{i} q_{i}<\frac{n(\ln \delta-\ln (1-\delta))}{4 \alpha} \frac{4 \alpha}{n}=\ln \delta-\ln (1-\delta)$.
Let $\overrightarrow{d^{0}}:=\left(d_{i}\right)_{i \in I_{0}}$ and $\overrightarrow{d^{1}}:=\left(d_{i}\right)_{i \in I_{1}}$ where $I_{j}=\{1 \leq$ $\left.i \leq 4 \alpha \mid d_{i}=j\right\}$ for $j \in\{0,1\}$. Without loss of generality, assume that $\left|\overrightarrow{d^{0}}\right|>2 \alpha$. Let $I^{\prime} \subseteq I_{0}$ that contains exactly 2α elements, and define a dataset $\vec{d}^{\prime}:=\left(b_{1}, \ldots, b_{n}\right)$ where $b_{i}=1$ if $i \in I^{\prime}$, and $b_{i}=d_{i}$ otherwise. It follows that $\varphi\left(\overrightarrow{d^{\prime}}\right)=\varphi\left(\vec{d}_{\mathrm{gt}}\right)+2 \alpha$.
It is straightforward to verify by definition of PDP that

$$
\begin{aligned}
\operatorname{Pr}\left(\Phi\left(\overrightarrow{d^{\prime}}\right) \in R\right) & \geq \exp \left(-\sum_{i \in I^{\prime}} \varepsilon_{i} q_{i}\right) \operatorname{Pr}\left(\Phi\left(\vec{d}_{\mathrm{gt}}\right) \in R\right) \\
& >\exp (-(\ln \delta-\ln (1-\delta))) \times \delta \\
& =\frac{1-\delta}{\delta} \cdot \delta=1-\delta
\end{aligned}
$$

Since $\varphi\left(\overrightarrow{d^{\prime}}\right)=\varphi\left(\vec{d}_{\mathrm{gt}}\right)+2 \alpha$, by the triangle
inequality, we have $\operatorname{Pr}\left(\left|\Phi\left(\overrightarrow{d^{\prime}}\right)-\varphi\left(\vec{d}^{\prime}\right)\right|>\alpha\right) \geq \quad$ Proof. For IR, suppose $\theta_{i} \leq \theta_{i}^{*}$. Then $Q_{i}\left(\theta_{i}\right)=1$. By
$\operatorname{Pr}\left(\left|\Phi\left(\vec{d}^{\prime}\right)-\varphi\left(\vec{d}_{\mathrm{gt}}\right)\right|<\alpha\right)>1-\delta$, which contradicts the (α, δ)-PAC assumption.

The proof is similar for the case when φ is the general linear predictor where the data entries are real values. The only difference is that we define the set I^{\prime} as $\{1, \ldots, 2 \alpha\}$ and the dataset \vec{d}^{\prime} by $b_{i}=d_{i}+\frac{1}{w_{i}}$ for all $i \in I^{\prime}$ and $b_{i}=d_{i}$ otherwise.

For the case when φ is a median query. Assume $d_{1}, d_{2}, \ldots, d_{n}$ are distinct positive integers. We only deal with the case when n is odd (the case when n is even can be proven in a similar way). Let m denote the median among d_{1}, \ldots, d_{n}. Let $I_{0}:=\left\{i \mid d_{i}<\right.$ $m\}$ and $I_{1}:=\left\{i \mid d_{i}>m\right\}$. Suppose, w.l.o.g., that $\sum_{i \in I_{0}} \varepsilon_{i} q_{i}<\frac{n(\ln \delta-\ln (1-\delta))}{8 \alpha}$. Let $k:=\mid\{i \mid$ $\left.m \leq d_{i}<m+2 \alpha\right\} \mid$. Note that by mutual distinction of data values, $k \leq 2 \alpha$. For every $i \in I_{0}$, put i into H if the data owner s_{i} 's privacy requirement ε_{i} is among the smallest k among data owners in I_{0}. Clearly, $\sum_{i \in H} \varepsilon_{i} q_{i} \leq \frac{n(\ln \delta-\ln (1-\delta))}{4 \alpha} \frac{2 \alpha}{n}<\ln \delta-\ln (1-\delta)$. Let $d_{\text {max }}:=\max \left\{d_{1}, \ldots, d_{n}\right\}$. Define a new dataset $\overrightarrow{d^{\prime}}:=\left(b_{1}, \ldots, b_{n}\right)$ by $b_{i}=d_{i}+d_{\max }$ if $i \in H$; and $b_{i}=d_{i}$ otherwise. It then follows that the median of $\overrightarrow{d^{\prime}}$ is at least $m+2 \alpha$ and thus $\varphi\left(\vec{d}^{\prime}\right) \geq \varphi\left(\vec{d}_{\mathrm{gt}}\right)+2 \alpha$. By PDP of Φ, we have $\operatorname{Pr}\left(\left|\Phi\left(\vec{d}^{\prime}\right)-\varphi\left(\vec{d}_{\mathrm{gt}}\right)\right|<\alpha\right)>1-\delta$. By the triangle inequality, we have $\operatorname{Pr}\left(\left|\Phi\left(\overrightarrow{d^{\prime}}\right)-\varphi\left(\vec{d}^{\prime}\right)\right|>\alpha\right) \geq$ $\operatorname{Pr}\left(\left|\Phi\left(\vec{d}^{\prime}\right)-\varphi\left(\vec{d}_{\mathrm{gt}}\right)\right|<\alpha\right)>1-\delta$, which contradicts the accuracy assumption.

Appendix B.

Lemma 3. Assuming that θ_{i}^{*} is independent from the reported valuation ψ_{i} for all $1 \leq i \leq n$, a simple direct mechanism Ψ is incentive compatible and individually rational.
(10), $P_{i}\left(\theta_{i}\right)$ equals

$$
\theta_{i} Q_{i}\left(\theta_{i}\right)+\int_{\theta_{i}}^{\overline{\theta_{i}}} Q_{i}(s) \mathrm{d} s=\theta_{i}+\int_{\theta_{i}}^{\theta_{i}^{*}} 1 \mathrm{~d} s=\theta_{i}^{*}
$$

and $U_{i}\left(\theta_{i} \mid \theta_{i}\right)=P_{i}\left(\theta_{i}\right)-\theta_{i} Q_{i}\left(\theta_{i}\right)=\theta_{i}^{*}-\theta_{i} \geq 0$. If $\theta_{i}>\theta_{i}^{*}, Q_{i}\left(\psi_{i}\right)=0$ which implies $P_{i}\left(\theta_{i}\right)=0$ and $U_{i}\left(\theta_{i} \mid \theta_{i}\right)=0$. In either case, the expected utility of reporting the valuation truthfully is non-negative.

For IC, note that θ_{i}^{*} for all $i \in\{1, \ldots, n\}$ is independent from the reported valuation. When data owners report their valuations untruthfully, there are two cases:

Case (1) Suppose s_{i} reports a valuation $\psi_{i}>\theta_{i}$.
a. if $\theta_{i}<\psi_{i} \leq \theta_{i}^{*}, U_{i}\left(\psi_{i} \mid \theta_{i}\right)=U_{i}\left(\theta_{i} \mid \theta_{i}\right)=\theta_{i}^{*}-\theta_{i}$.
b. if $\theta_{i} \leq \theta_{i}^{*}<\psi_{i}, U_{i}\left(\theta_{i} \mid \theta_{i}\right)=\theta_{i}^{*}-\theta_{i} \geq 0=U_{i}\left(\psi_{i} \mid \theta_{i}\right)$.
c. if $\theta_{i}^{*}<\theta_{i}<\psi_{i}, U_{i}\left(\psi_{i} \mid \theta_{i}\right)=U_{i}\left(\theta_{i} \mid \theta_{i}\right)=0$.

Case (2) Suppose s_{i} reports a valuation $\psi_{i}<\theta_{i}$.
a. if $\psi_{i}<\theta_{i} \leq \theta_{i}^{*}, U_{i}\left(\psi_{i} \mid \theta_{i}\right)=U_{i}\left(\theta_{i} \mid \theta_{i}\right)=\theta_{i}^{*}-\theta_{i}$.
b. if $\psi_{i} \leq \theta_{i}^{*}<\theta_{i}, U_{i}\left(\psi_{i} \mid \theta_{i}\right)=\theta_{i}^{*}-\theta_{i}<0=U_{i}\left(\theta_{i} \mid \theta_{i}\right)$.
c. if $\theta_{i}^{*}<\psi_{i}<\theta_{i}, U_{i}\left(\psi_{i} \mid \theta_{i}\right)=U_{i}\left(\theta_{i} \mid \theta_{i}\right)=0$.

The above argument shows that each data owner can maximise her expected utility by truthfully reporting the valuation.

Appendix C.

Lemma 4. The optimal solution to the optimisation problem (12) is an optimal threshold.

Proof. Firstly, since the threshold θ_{i}^{*} is determined by solving (12), it is independent from ψ_{i}. By Lemma 3, IC and IR constraints are satisfied by allocation rule (9) and payment rule (10).

For the objective function, by substituting (2) the objective function becomes $\sum_{i=1}^{n} \int_{\underline{\theta}}^{\bar{\theta}} \varepsilon_{i} Q_{i}\left(\psi_{i}\right) f_{i}\left(\psi_{i}\right) \mathrm{d} \psi_{i}$, which, by (9), is

$$
\sum_{i=1}^{n} \int_{\underline{\theta}}^{\theta_{i}^{*}} \varepsilon_{i} f_{i}\left(\psi_{i}\right) \mathrm{d} \psi_{i}=\sum_{i=1}^{n} \varepsilon_{i} F_{i}\left(\theta_{i}^{*}\right)
$$

For BF, by (3) the left hand side of the constraint (6) is

$$
\begin{aligned}
& \sum_{i=1}^{n} \int_{\underline{\theta}}^{\bar{\theta}} P_{i}\left(\psi_{i}\right) f_{i}\left(\psi_{i}\right) \mathrm{d} \psi_{i} \\
= & \sum_{i=1}^{n} \int_{\underline{\theta}}^{\bar{\theta}}\left(\psi_{i} Q_{i}\left(\psi_{i}\right)+\int_{\psi_{i}}^{\bar{\theta}} Q_{i}(s) \mathrm{d} s\right) f_{i}\left(\psi_{i}\right) \mathrm{d} \psi_{i} \quad \text { by }(10 \\
= & \sum_{i=1}^{n} \int_{\underline{\theta}}^{\theta_{i}^{*}} \theta_{i}^{*} f_{i}\left(\psi_{i}\right) \mathrm{d} \psi_{i}=\sum_{i=1}^{n} \theta_{i}^{*} F_{i}\left(\theta_{i}^{*}\right)
\end{aligned}
$$

Thus (6) is equivalent to $\sum_{i=1}^{n} \theta_{i}^{*} F_{i}\left(\theta_{i}^{*}\right) \leq B$. Moreover, it is easy to see that (6) is binding, i.e., $\sum_{i=1}^{n} \theta_{i}^{*} F_{i}\left(\theta_{i}^{*}\right)=B$. Otherwise, we can always increase the value of θ_{i}^{*} and select more data owners.

Appendix D.

Theorem 1. The procurement mechanism Ψ guarantees to find the optimal solution of Problem (8).

Proof. By Lemma 4, we only need to show that the procurement mechanism Ψ solves Problem (12). Define B_{i} as $\theta_{i}^{*} F_{i}\left(\theta_{i}^{*}\right)$. The first constraint in (12) then becomes $\sum_{i=1}^{n} B_{i}=B$, which is affine in terms of B_{i}.
Also, since any B_{i} corresponds to a θ_{i}^{*}, we can view θ_{i}^{*} as a function of B_{i} and thus write $B_{i}=\theta_{i}^{*}\left(B_{i}\right) F_{i}\left(\theta_{i}^{*}\left(B_{i}\right)\right)$. The derivative in terms of B_{i} is

$$
1=\theta_{i}^{*^{\prime}}\left(B_{i}\right) F_{i}\left(\theta_{i}^{*}\left(B_{i}\right)\right)+\theta_{i}\left(B_{i}\right)^{*} f_{i}\left(\theta_{i}^{*}\left(B_{i}\right)\right) \theta_{i}^{*^{\prime}}\left(B_{i}\right)
$$

Reorganise the equation, we can get

$$
f_{i}\left(\theta_{i}^{*}\right) \theta_{i}^{*^{\prime}}=\frac{1}{\frac{F_{i}\left(\theta_{i}^{*}\right)}{f_{i}\left(\theta_{i}^{*}\right)}+\theta_{i}^{*}}
$$

Because of the regularity assumption, the denominator is strictly increasing. Thus, $f_{i}\left(\theta_{i}^{*}\right) \theta_{i}^{*^{\prime}}$ is strictly decreasing. Furthermore, the derivative of the objective function in terms of B_{i} is

$$
\sum_{i=1}^{n} \varepsilon_{i} f_{i}\left(\theta_{i}^{*}\left(B_{i}\right)\right) \theta_{i}^{*^{\prime}}\left(B_{i}\right)
$$

It is strictly decreasing as well. Therefore, the objective is to maximise a concave function. The above arguments asserts the convexity of Problem (12).
Since Problem (12) is convex and the vector $\overrightarrow{\theta^{*}}$ satisfies conditions (14) and (15), Karush-Kuhn-Tucker theorem (see (Luenberger, 1997)) implies that $\overrightarrow{\theta^{*}}$ is the optimal solution to (12).

