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Abstract
Independent draws from a d-dimensional spherical Gaussian distribution are distributed across users,
each holding one sample. A central server seeks to distinguish between the two hypotheses: the
distribution has zero mean, or the mean has `2-norm at least ε, a pre-specified threshold. However,
the users can each transmit at most ` bits to the server. This is a distributed variant of the classic
problem of detecting signal in white noise. We study this distributed testing problem with and
without the availability of a common randomness shared by the users. We design schemes with and
without such shared randomness. We then obtain lower bounds for protocols with public randomness,
which are tight when ` = O(1). We finally conclude with several conjectures and open problems.
Keywords: Hypothesis testing, signal detection, distributed algorithms, high-dimensional distribu-
tions, Gaussian location model, mean testing, communication constraints.

1. Introduction

We consider the problem of signal detection in Gaussian noise, a natural composite hypothesis
testing problem for the Gaussian location model (GLM), defined as follows. Let G(µ, Id) denote the
d-dimensional Gaussian distribution with mean µ ∈ Rd and identity covariance Id. Given a distance
parameter ε ∈ (0, 1], consider the following two hypothesis classes:

H0 := {G(0, Id)}, Hε := {G(µ, Id) : ‖µ‖2 > ε}.

The minmax sample complexity of this hypothesis testing problem is the smallest n such that

min
T : Rn→{accept,reject}

max

{
Pr

Xn∼G(0,Id)
[ reject ], max

p∈Hε
Pr

Xn∼p
[ accept ]

}
≤ 1

10
, (1)

where Xn := X1, . . . ,Xn are i.i.d. and the (possibly randomized) mapping T takes the observation
as the input and outputs the decision to accept or reject the null hypothesisH0. Note that we have
set the two-sided error to a constant (chosen as 1/10) for convenience. Namely, we want to test if we
observe just noise or whether a signal with significant “power” is present.

We consider the distributed variant of the problem above where the observations X1, . . . ,Xn are
given to different users and user i, i ∈ [n], can describe its sample Xi to the center using an `-bit
message Yi. The mapping T is now applied by the center to the messages Y1, . . . , Yn and sample
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complexity is defined in a similar manner as above; namely, it is the minimum number of users
needed to resolve the hypothesis testing problem in the minmax sense above.

In the classic, centralized setting, it is known (see, e.g., (Wu, 2019, Chapter 23)) that a threshold-
test applied to the squared `2 norm of the sample mean attains the optimal sample complexity for
this question, given by n = Θ(

√
d/ε2) – a quadratic (in d) improvement over the sample complexity

Θ(d/ε2) of estimating the mean vector µ up to an accuracy ε. However, the simple statistic above
requires full observation of the n samples; the question of sample-optimal tests with ` bits per sample,
to the best of our knowledge, remains largely unresolved. In this paper, we make significant progress
towards answering this question.

Our results. We consider two distinct variants of this distributed setting. In the first, private-coin
setting, the messages of the n users are fully independent: upon observing sample x = Xj , user
j sends a (possibly randomized) message y = Wj(x) ∈ {0, 1}` to the central server, where Wj is
a function depending on user j’s private randomness only. In the second variant, the public-coin
setting, however, the users have access to a common random seed U , which is independent of
their observations; so that the functions W1, . . . ,Wn are jointly randomized. Note that public-coin
protocols are at least as powerful as private-coin ones, as they include the latter as a special case.

We establish the following results. For brevity, we refer to our hypothesis testing problem as the
Gausssian mean testing problem, parameterized by d, `, and ε.

Theorem 1 (Private-coin upper bound) For 1 ≤ ` ≤ d, there exists a private-coin protocol for
distributed Gaussian mean testing under `-bit communication constraints with O

(
d3/2

`ε2
∧ d
ε4

)
users.

As a quick sanity check, we can verify that setting ` = d retrieves the full-observation (centralized)
sample complexity Θ(

√
d/ε2). Interestingly, for large enough values of ε (specifically, ε� d−1/4),

the sample complexity upper bound we obtain exhibits a regime transition at ` ≈ ε2
√
d; we discuss

this in more detail in Section 5.

Theorem 2 (Public-coin upper bound) For 1 ≤ ` ≤ d, there exists a public-coin protocol for
distributed Gaussian mean testing under `-bit communication constraints with O

(
d√
`ε2

)
users.

Here, too, it is immediate to see that this matches the centralized sample complexity for ` = d.
Although intuitively reasonable, this fact is not actually immediate, as fully communicating one
sample drawn from a d-dimensional Gaussian to the server would require infinitely many bits (and
not merely d); even appropriately discretized, one would expect a number of bits depending on both
d and ε. Our results imply that a much coarser discretization of these continuous observations is
sufficient to achieve the optimal sample complexity.
We further conjecture the broader optimality of all above upper bounds:

Conjecture 3 (Private- and public-coin optimality) Theorems 1 and 2 are optimal. Specifically,
for any 1 ≤ ` ≤ d, any private-coin (resp., public-coin) protocol for distributed Gaussian mean
testing under `-bit communication constraints must have Ω

(
d3/2

`ε2
∧ d
ε4

)
(resp., Ω

(
d√
`ε2

)
) users.

We discuss this conjecture, and provide evidence for it, in Section 5. We are, however, able to show
the following (weaker) lower bounds, which are optimal for small values of `:

Theorem 4 (Public-coin lower bounds) For 1 ≤ ` ≤
√
d/ε2, any public-coin protocol for dis-

tributed Gaussian mean testing under `-bit communication constraints requires Ω
(
d
`ε2
∧ d
`2ε4

)
users.
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Related work. Distributed signal detection has been widely studied in communications and signal
processing. Primarily, previous works consider the setting where the signal is guaranteed to be one
of two possibilities (i.e., a simple hypothesis testing problem), whereas we are concerned with a
composite testing problem; furthermore, they focus on the asymptotic regime, aiming to characterize
the error exponents as n → ∞. From the pioneering works of Tsitsiklis (Tsitsiklis, 1993), and
Varshney (Varshney, 2012; Viswanathan and Varshney, 1997), decentralized detection has also
received great attention in control and signal processing, with main focus on information structure,
likelihood ratio tests, and combining local decisions for global inference. Distributed inference
under communication constraints has also been studied in information theory (Ahlswede and Csiszár,
1986; Han, 1987; Han and Amari, 1998) to characterize the error exponents as a function of the
communication rate, and has seen revived interest in recent years.

From a computer science and machine learning perspective, the problem of distributed estimation
has been considered in a number of recent works (Zhang et al., 2013; Garg et al., 2014; Shamir,
2014; Braverman et al., 2016; Xu and Raginsky, 2017; Han et al., 2018a,b; Barnes et al., 2019;
Cai and Wei, 2020; Acharya et al., 2019b,d), while distributed testing of distributions in the finite
sample regime was considered in (Acharya et al., 2019b,d; Andoni et al., 2018; Fischer et al., 2018;
Diakonikolas et al., 2019). Moreover, several recent papers have been focusing on the sample
complexity of signal detection under privacy constraints (Canonne et al., 2019a; Acharya et al.,
2019a) (as opposed to communication ones), or in the centralized setting without the spherical
identity covariance assumption (Canonne et al., 2019b).

In terms of the flavor of the results, the works closest to ours are (Acharya et al., 2019b,d),
which consider the problem of testing goodness-of-fit of univariate discrete distributions under
communication constraints. In particular, these works establish a strict separation in the sample
complexity between protocols with access to public randomness, and those where users can only
randomize their messages independently. We also note that the aforementioned work of (Han et al.,
2018b) contains the lower bound for the (related) task of distributed estimation for the Gaussian
Location Model (GLM), and some of their arguments rely on tools similar to ours (specifically,
Lemma 5). We were not, however, able to reproduce some of their arguments, which appear to
sidestep the main technical hurdle we face in our lower bounds.1

2. Preliminaries

Given ε ∈ (0, 1], let Hε := { G(µ, Id) : ‖µ‖2 ≥ ε } denote the set of alternative hypotheses. We
consider the family of channels W = W` consisting of channels2 W : X → Y where the input
alphabet is X = Rd and the output alphabet is Y = {0, 1}`.
Useful result from probability. We will heavily rely on the result below, which follows from e.g.,
the Gibbs variational principle, and whose proof is provided for completeness in Appendix C.3

1. In more detail, the argument in (Han et al., 2018b, Appendix C) handles the non-linearities inside an expectation by
integrating a Taylor expansion, an approach which is not applicable in this setting.

2. Following standard notation, W (y | x) denotes the probability of observing output y when the input to the channel is
x. With a slight abuse, we sometimes denote by W (x) the random output Y when the input is x.

3. We note that this lemma appears to be equivalent to one of the key “geometric inequalities” underlying Han et al.
(2018b); specifically, their Lemma 14.

3
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Lemma 5 (Subgaussian measure change bound) For X ∼ G(0, Id) and any function a(X),

‖E[a(X)X]‖22
E[a(X)]2

≤ 2
E[a(X) log a(X)]

E[a(X)]
+ 2 log

1

E[a(X)]
. (2)

In particular, for a(X) = 1{X ∈ A}, ‖E[a(X)X]‖22
E[a(X)]2

≤ 2 log 1
P (A) .

Remark 6 In fact, a stronger bound follows from Talagrand’s transportation cost-information
inequality: EQ

[
‖X‖22

]
≤ 2

log e log 1
P (A) , where Q� P is the conditional distribution of P on A.

In terms of the notion of Ent(a) := E[a log a]− E[a] logE[a], the inequality (2) can be restated as
‖E[a(X)X]‖22

E[a(X)] ≤ 2 Ent(a).

Lower bound framework. We use the framework of (Acharya et al., 2018), which in turn gener-
alizes (Ingster, 1986) to the information-constrained setting. LetW be a family of channels with
input alphabet X and output alphabet Y . To prove our lower bounds, we use a family of alterna-
tive distributions P , referred to as a perturbed family (see (Acharya et al., 2018)), which can be
parameterized as { pz : z ∈ Z } for some finite set Z . Let pW and qW , respectively, be the output
distributions for a channel W with input distributions p and q (that is, pW (y) = Ep[W (y | X)] for
y ∈ Y , where the expectation is over X ∼ p). Then, for δz(x) := (pz(x)− p(x))/p(x), we have
that the normalized perturbation for the induced perturbed family is given by

δWZ (y) :=
pWz (y)− pW (y)

pW (y)
=

1

pW (y)
· Ep[δZ(X)W (y | X)] , y ∈ Y . (3)

Definition 7 ((Acharya et al., 2018, Definition IV.3)) Consider a perturbed family P = {pz :
z ∈ Z} and a family of channelsW . The induced chi-square fluctuation of P for W ∈ W is given by

χ2 (W | P) := EZ
[∥∥δWZ ∥∥2

2

]
,

where Z is distributed uniformly over Z . The n-fold induced decoupled chi-square fluctuation of P
for Wn ∈ Wn is given by

χ(2) (Wn | P) := logEZZ′

exp

 n∑
j=1

〈
δ
Wj

Z , δ
Wj

Z′

〉 .
When the distribution ζ of Z is not uniform, we replace P with Pζ in our notation.

Note that, for any given perturbed family and channel, (n times) the induced chi-square fluctuation
is an upper bound on the induced decoupled fluctuation. The following is a straightforward variant
of (Acharya et al., 2018, Definition IV.4, Lemmata IV.7 and IV.9), obtained by adapting the definition
of “ε-perturbed family” to our purpose:

Definition 8 For a family of channelsW , the (n, ε)-minmax decoupled chi-square fluctuation for
W is given by

χ(2)(Wn, ε) := inf
Pε

sup
Wn∈Wn

χ(2) (Wn | Pε) ,
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and the (n, ε)-maxmin decoupled chi-square fluctuation forW is given by

χ(2)(Wn, ε) := sup
Wn∈Wn

inf
Pε

χ(2) (Wn | Pε) ,

where the infimum is over all ε-perturbed families Pε, i.e., all families Pε ⊆ Hε.

Lemma 9 (Minmax decoupled chi-square fluctuation bound for testing) For 0 < ε < 1 and a
reference distribution p, the sample complexity n = n(d, ε) of distinguishing p fromHε usingW
for public-coin protocols must satisfy χ(2)(Wn, ε) ≥ c, for some constant c > 0 depending only on
the probability of error.

Lemma 10 (Maxmin decoupled chi-square fluctuation bound for testing) For 0 < ε < 1 and
a reference distribution p, the sample complexity n = n(d, ε) of distinguishing p fromHε usingW
for private-coin protocols must satisfy χ(2)(Wn

, ε) ≥ c, for some constant c > 0 depending only on
the probability of error (whereW denotes the convex hull ofW).

Expanding those definitions, we get more convenient forms for the quantities at play: for W ∈ W ,

χ2 (W | Pε) =
∑
y∈Y

EZ

[
EX [δZ(X)W (y | X)]2

EX [W (y | X)]

]

=
∑
y∈Y

EXX′ [EZ [δZ(X)δZ(X ′)]W (y | X)W (y | X ′)]
EX [W (y | X)]

(4)

where X is drawn according to p. Similarly,

χ(2) (Wn | Pε) = logEZZ′

exp

 n∑
j=1

〈
δ
Wj

Z , δ
Wj

Z′

〉 , (5)

where 〈
δ
Wj

Z , δ
Wj

Z′

〉
=
∑
y∈Y

EX [δZ(X)W (y | X)]EX [δZ′(X)W (y | X)]

EX [W (y | X)]
. (6)

3. Upper bounds

3.1. Private-coin upper bounds

In this section, we prove Theorem 1, by providing two algorithms, each corresponding to one the
two terms in the upper bound.

3.1.1. UPPER BOUND OF O(d3/2/`ε2) USING DISTRIBUTED SIMULATION

We first show a reduction from Gaussian mean testing to the analogously defined binary product
mean testing problem described below.

Distributed binary product mean testing. Given samples from a product distribution p over
{−1, 1}d, distinguish between p being the uniform distribution over {−1, 1}d and p having mean
vector of `2 norm at least ε. It is well known (see, e.g., (Canonne et al., 2017)) that the sample

5
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complexity of solving this problem in the centralized setting is Θ(
√
d/ε2), and that this problem is

equivalent to testing whether p is ε-far from uniform in total variation (statistical) distance. Here,
we consider this problem in the distributed setting where the samples are distributed over n users,
and each user can send only ` bits to the central server. As in the Gaussian case, our goal is to
characterize the sample complexity (number of users) required.

The rationale for considering this related problem stems from our next lemma, which shows that
an upper bound for binary product mean testing implies an upper bound for the Gaussian one.

Lemma 11 Fix µ ∈ Rd. Let X ∼ G(µ, Id), and Y ∈ {−1, 1}d be defined by Yi = sgn(Xi) for all
i ∈ [d]. Then Y follows a product distribution with mean vector ν ∈ Rd, such that (i) If µ = 0, then
ν = 0;, and (ii) ‖ν‖2 ≥ min{‖µ‖2,

√
d/2}/

√
2.

(This reduction was first communicated by the authors of the present paper to the authors of (Canonne
et al., 2019a), where it was used for differentially private testing. We include a self-contained proof
in Appendix A for completeness.) As a corollary, we obtain the following.

Corollary 12 If there is a private- (resp. public-) coin protocol for distributed binary mean testing
with n(d, ε) users, then there exists a private- (resp. public-) coin protocol for distributed Gaussian
mean testing with n(d, ε/

√
2) users.

Proof User j can convert their sample Xj into Yj by taking term-wise signs, and then solve the
binary distribution mean detection problem over the Yj’s.

Theorem 13 There exists a private-coin protocol for distributed Gaussian mean testing with
O
(
d3/2/(ε2`)

)
users.

Proof The proof follows the idea of “distributed simulation” introduced in (Acharya et al., 2019c).
Assume without loss of generality that ` divides d, and d/` divides n. We partition the n users
into groups of size d/` where the ith group consists of users d

` · i + 1, . . . , d` · i + d
` for i ∈

{0, 1, . . . (`n/d − 1)}. For 1 ≤ j ≤ d/`, the jth user within each group sends the signs of the
coordinates (j − 1)`+ 1, . . . , j` of its sample. Since the samples are i.i.d., and the coordinates are
independent within each sample, the d bits transmitted in total any given group of users are distributed
as Y = sgn(X). Therefore, we can simulate one sample of Y at the server from the messages of
every group of d/` users. Now, since there is a centralized procedure that uses O(

√
d/ε2) samples,

with a total of O(
√
d/ε2 · d/`) users, we can solve the distributed binary mean detection problem,

and by Corollary 12 this implies the result.

3.1.2. TIGHT BOUND OF Θ(d/ε4) USING UNSIGNED SAMPLES

Our second algorithm is motivated by the following observation: when X is drawn from G(µ, Id),
we have E[‖X‖22] = d+ ‖µ‖22, which should allow us to separate µ = 0 from ‖µ‖2 ≥ ε. We propose
an algorithm that uses the `2 norm of the samples to achieve the aforementioned O(d/ε4) bound on
the number of users. Specifically, we describe in Algorithm 1 an algorithm where each user sends a
single bit (namely, ` = 1) denoting whether the norm of their sample is larger than or smaller than a
pre-specified suitable threshold. Analyzing this algorithm establishes the following theorem:

Theorem 14 There is a private-coin protocol for distributed Gaussian mean testing with ` = 1 bit
of communication and n = O(d/ε4) users.

6
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Algorithm 1: One-bit Gaussian mean testing without shared randomness
Input: n samples X1, . . . ,Xn ∈ Rd, Xj at user j

1 User j sends Yj ← 1
{
‖Xj‖22 > d

}
.

2 if 1
n

∑n
j=1 Yj <

Γ(d/2,d/2)
Γ(d/2) + cε2/

√
d then return accept

3 return reject

Proof The proof of the theorem boils down to the following lemma, which shows that the chosen
thresholding provides a good proxy for distinguishing the two cases.

Lemma 15 For ε ∈ (0, 1), if ‖µ‖2 > ε then Yi in Algorithm 1 satisfies

Pr
µ

[Yi = 1 ]− Pr
0

[Yi = 1 ] = Ω(ε2/
√
d).

Proof We note that, for each j ∈ [n], ‖Xj‖22 follows a chi-squared distribution with d degrees
of freedom and non-centrality parameter ‖µ‖22. Consider such a r.v. Z ∼ χ2

d(‖µ‖
2
2), and denote

by Q the Marcum Q-Function with parameters d/2,
√
d: Q(x) = Marcumd/2(x,

√
d), so that

Pr[Z > d ] = Q(‖µ‖2) . In particular, Q is increasing. When ‖µ‖2 = 0, we have Pr[Z > d ] =

Q(0) = Γ(d/2,d/2)
Γ(d/2) � 1. On the other hand, when ‖µ‖2 ≥ ε, Pr[Z > d ] ≥ Q(ε) and thus, for small

ε using properties of the Marcum Q-Function, we get

Pr[Z > d ] = Q(0) + (1 + o(1)) · ε2Q′′(0)/2 = Q(0) + Θ(ε2/
√
d) ,

establishing the lemma.

With this lemma in hand, the proof of correctness of the protocol is immediate, as a number of users
(i.e., bits) quadratic in the inverse of the gap is sufficient to distinguish between the two cases.

We now show the following lower bound: Any estimator that ignores sign information will have
sample complexity Ω(d/ε4), even in the centralized setting with no communication constraints. This
establishes that the one-bit protocol above cannot be improved by allowing more bits. Specifically,
let Zj = (X2

j1, . . . ,X
2
jd) be the vector whose entries are the squares of the entries of the samples

Xj’s. Even with full access to Z1, . . . ,Zn no algorithm can solve distributed Gaussian mean testing
with fewer than O(d/ε4) users.

Theorem 16 Given access only to Z1, . . .Zn, the Gaussian mean testing problem cannot be solved
unless n = Ω(d/ε4), regardless of the value of `.

The proof is deferred to Appendix A. Therefore even in the centralized case, a scheme that only uses
this information can achieve better sample complexity than Ω(d/ε4). This can be seen as one of the
pieces of evidence that the d/ε4 term in our upper bound is, in fact, optimal.

3.2. Public-coin upper bound

Theorem 17 There is a public-coin protocol for distributed Gaussian mean testing under `-bit
communication constraints with O

(
d/(ε2

√
`)
)

users.

7
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Algorithm 2: `-bit Gaussian mean testing with shared randomness
Input: n samples X1, . . . ,Xn ∈ Rd, Xi at user i, R a random rotation matrix available to all users

1 At user i, let Yi,j = I{(R ·Xi)j > 0} for j ∈ [`]. Send Yi := (Yi,1, . . . , Yi,`)
2 Use these binary product distributions to test using the product distribution uniformity testing algorithm

of Canonne et al. (2017).

Proof The users use their shared randomness to jointly choose a rotation matrix R u.a.r. By
properties of Gaussian distributions, note that if X ∼ G(µ, Id), RX ∼ G(Rµ, Id); further, Rµ is a
uniform distribution on the sphere of radius ‖µ‖2.

Lemma 18 Let Z := (Z1, . . . , Zd) ∼ G(0, Id), and let R ∈ Rd×d be drawn uniformly from
the set of all unitary matrices. Then the distribution of Rµ is the same as the distribution of
(V1, . . . , Vd) := ‖µ‖2 ·

(Z1,...,Zd)
‖Z‖2

.

This implies the following lemma.

Lemma 19 If ‖µ‖2 ≥ ε, and 1 ≤ ` ≤ d, then PrR

[∑`
i=1 V

2
i >

ε2`
20d

]
> 1

2 .

Proof With probability at least 3/4, we have ‖Z‖22 < 2d by Gaussian concentration. Further, since∑`
i=1 Z

2
i follows a χ2

` distribution, we have the tail bound Pr
[∑`

i=1 Z
2
i ≥ `

10

]
≥ 3

4 for every ` ≥ 1.
Recalling Lemma 18, this yields the result by a union bound over these two events.

Let π` : Rd → R` denote the projection on the first ` coordinates. For a rotation matrixR ∈ Rd×d,
and a user j ∈ [n], let X′j := π`(RXj) ∈ R` be the random variable obtained by projecting RXj to
its first ` coordinates. Then X′1, . . . ,X

′
n are i.i.d. r.v.’s distributed according to G(π`(Rµ), Id). In

particular, for every j ∈ [n] and i ∈ [`], we have

pi(R) :=
1

2
Erfc

(
− 1√

2
(Rµ)i

)
= Pr

X

[
X′j,i > 0

]
= Pr[Yj,i = 1 ]

and similar to the proof of Lemma 11, standard properties of Erfc ensure that, for all i ∈ [`],
(pi(R)− 1/2)2 ≥ 1

8 min
(
(Rµ)2

i , 1/2
)
. From the above and Lemma 19, we get that, with probabil-

ity at least 1/2 over the choice of R,
∑`

i=1

(
pi(R)− 1/2

)2 ≥ 1
8 min

(
`,
∑`

i=1(Rµ)2
i

)
≥ 1

160 ·
`ε2

d .
Therefore, we have n i.i.d. samples Y1, . . . , Yn from a product distributionP (R) over {0, 1}` with

mean vector p(R) ∈ [0, 1]`, such that the following holds over the choice ofR: (i) if µ = 0, then with
probability one P (R) is the uniform distribution over {0, 1}`, i.e., p(R) = u := (1/2, . . . , 1/2) ∈
R`; (ii) if ‖µ‖2 ≥ ε, then with probability at least 1/2 we have ‖p− u‖22 ≥

1
160 ·

`ε2

d . Invoking, for
instance, the algorithm of (Canonne et al., 2017, Theorem 4.1) (looking at the soundness guarantee in
terms of the `2 norm between mean vectors, (Canonne et al., 2017, Claims 4.2 and 4.3)), this readily
implies an upper bound of

O
(√

`/
(
ε
√
`/d
)2)

= O
(
d/(
√
`ε2)

)
samples to distinguish between (i) and (ii) with probability at least 9/10.

To summarize, over the choice of R and the n = O(d/(
√
`ε2)) i.i.d. samples X1, . . . ,Xn, we

get that (i) if µ = 0, the algorithm outputs accept with probability at least 9/10; (ii) if ‖µ‖2 ≥ ε, it

8
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outputs accept with probability at most 1/2 + 1/2 · 1/10 = 11/20. Finally, repeating a constant
number of times independently (with a new R each time), thus paying only a constant factor in the
number n of users required, lets us to obtain probability 9/10 of being correct in both cases.

4. Lower bounds

In view of the lower bound framework outlined in Section 2, in order to establish lower bounds for
the sample complexity of distributed Gaussian mean testing, we are left with the following tasks:
(1) Choosing a convenient perturbed family Pε ⊆ Hε, i.e., a set Pε = { pz : z ∈ Z } (along with
a distribution ζ on Z) such that, for all z, (i) pz = G(µz, Id), and (ii) ‖µz‖2 ≥ ε;4 (2) Fixing
any channel W ∈ W` (resp., Wn ∈ Wn

` ), upper bound χ2 (W | Pε) (resp., χ(2) (Wn | Pε)) as a
function of d, n, ε, `; and (3) invoking Lemma 9 or Lemma 10 to conclude.

Given this roadmap, two natural candidates for the perturbed family come to mind. The first
consists of d Gaussians whose mean vector deviates from 0 in exactly one large “hidden coordinate:”

Phs
ε := { pz = G(µz, Id) : µz = εez, z ∈ [d] } (7)

(this corresponds to Z = [d], and the superscript stands for “hide-and-seek,” name coined in Shamir
(2014)). A natural choice for the distribution ζ is then the uniform distribution over Z = [d].

The second consists of 2d Gaussians whose mean vector deviates from 0 by ±ε/
√
d in all

coordinates:

P local
ε :=

{
pz = G(µz, Id) : µz =

ε√
d
z, z ∈ {−1, 1}d

}
(8)

(this corresponds to Z = {−1, 1}d, and the superscript stands for “locally perturbed”). A natural
choice for the distribution ζ is then the uniform distribution over Z = {−1, 1}d.5

Heuristic argument, and the challenges ahead. For the sake of intuition, suppose for now
that instead of trying to establish a lower bound on the task of distributed Gaussian mean test-
ing, we were considering the related problem of binary mean testing, i.e., with product distri-
butions over {−1, 1}d instead of spherical Gaussians over Rd. As seen in the upper bound sec-
tion, this problem is tightly connected to the Gaussian one (as an algorithm for the binary case
implies one for the Gaussian case). We can define the analogue of Phs

ε for the binary case,
Phs′
ε :=

{
pz product on {−1, 1}d : µz = εez, z ∈ [d]

}
. Then, the corresponding perturbation

(with respect to the uniform distribution p on {−1, 1}d) can be seen easily to be, for z ∈ [d],

∀x ∈ {−1, 1}d, δz(x) = (pz(x)− p(x))/p(x) =
d∏
i=1

(1 + εxi(µz)i)− 1 = εxz.

4. Instead of (ii), a weaker condition would actually suffice, namely, that PrZ∼ζ
[
‖µZ‖2 ≥ ε

]
≥ 9/10. However, we

will not require this in this section.
5. Using the remark from the previous footnote, one could also decide to instead define P local

ε for z ∈ R, along with the
prior ζ being itself a standard Gaussian. Although this simplifies some computations and complicates some others, the
two choices are essentially equivalent.

9
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Therefore, for any channel W ∈ W`, we get by the definition of δWZ in Eq. (4) that

χ2
(
W | Phs′

ε

)
=
ε2

d

∑
y∈Y

d∑
j=1

EXX′
[
XjX

′
jW (y | X)W (y | X ′)

]
EX [W (y | X)]

=
ε2

d

∑
y∈Y

‖EX [XW (y | X)]‖22
EX [W (y | X)]

≤ 4ε2

d

∑
y∈Y

EX [W (y | X)] log
1

EX [W (y | X)]
(by Lemma 5)

≤ 4ε2

d
log |Y| = (4 log 2)

ε2`

d
,

which by Lemma 9 immediately implies a lower bound of Ω(d/(`ε2)) on the number of users
required for (public-coin) distributed binary mean testing. This in particular allows us to very
easily rederive the non-interactive version of the Ω(d/(`ε2)) lower bound of Shamir (Shamir, 2014,
Theorem 2) for distributed (or memory-bounded) binary mean estimation.

However, this is considering the binary version of the problem, while we are interested in the
Gaussian case. Mimicking the argument above, we get that, for said Gaussian setting, the perturbation
with regard to the reference distribution p (which is the standard Gaussian G(0, Id)) obtained from
any pz ∈ Phs

ε is given by

∀x ∈ Rd, δz(x) = (pz(x)− p(x))/p(x) =
e−‖x−µz‖

2
2/2

e−‖x‖
2
2/2

− 1 = e−
1
2
ε2eεxz − 1 ,

for all z ∈ [d]. Pursuing the same line of reasoning as before, we get that

χ2
(
W | Phs

ε

)
= EZ

[∥∥δWZ ∥∥2

2

]
=

1

d

d∑
j=1

∑
y∈Y

EX [(e−
1
2
ε2eεXj − 1)W (y | X)]2

EX [W (y | X)]
. (9)

This does look promising. Indeed, since e−
1
2
ε2eεXj − 1 ≈ εXj for small ε, a heuristic argument

would lead to χ2
(
W | Phs

ε

)
≈ ε2

d

∑
y∈Y

‖EX [XW (y|X)]‖22
EX [W (y|X)] , from which we would recover the same

bound as in the binary case. Unfortunately, this heuristic argument relies on a first-order Taylor
expansion of e−

1
2
ε2eεXj − 1 within the expectation, even though Xj (a standard univariate Gaussian)

is unbounded: however tempting this line of reasoning seems, one cannot take this route. Indeed,
this nonlinearity of the quantity to analyze is the crux of the difficulty. (We discuss some related
conjectures in Section 5.)
Our results. Our first lower bound applies to all public-coin protocols as long as ` is not too large
(roughly, `�

√
d), and in particular is optimal for constant values of `.

Lemma 20 (General Lower Bound) For any channel W ∈ W`, and ` ≤
√
d/ε2, we have

χ2
(
W | P local

ε

)
= O

(
max

(
ε2`

d
,
ε4`2

d

))
.

Proof [Sketch] Fix any W . In view of bounding χ2
(
W | P local

ε

)
=
∑

y∈Y EZ
[
EX [δZ(X)W (y|X)]2

EX [W (y|X)]

]
,

we start by noting that, since ‖z‖22 = d for all z ∈ {−1, 1}d, δz is given by

δz(x) = e−
ε2

2 e
ε√
d
〈x,z〉 − 1, x ∈ Rd .

10
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“Since,” then, for d� 1, ε� 1, and any fixed z, x, δz(x) ≈ ε√
d
〈x, z〉, simple manipulations yield

χ2
(
W | P local

ε

)
≈ ε2

d

∑
y∈Y

EZ

[
〈EX [XW (y | X)], Z〉2

EX [W (y | X)]

]
=
ε2

d

∑
y∈Y

∥∥∥∥EX [XW (y | X)]

EX [W (y | X)]

∥∥∥∥2

2

which we can then upper bound by O(ε2`/d) as in the previous discussion by invoking Lemma 5.
Of course, the above intuition suffers the same issue – the linear approximation cannot be taken
in the expectation, and handling this nonlinearity is the technical crux of the proof, whose details
are given in Appendix B. Roughly speaking, to handle this nonlinearity, we instead expand the
square EX [δZ(X)W (y | X)]2 to bring the outer expectation (over Z) inside, leaving us with a term
EXX′ [EZ [δZ(X)δZ(X ′)]W (y | X)W (y | X ′)]. To handle the inner EZ [δZ(X)δZ(X ′)], we expand
the product δZ(X)δZ(X ′) (based on the expression of δZ), and compute their expectation with
respect to Z to obtain three nonlinear terms now only depending on X . The rest of the argument
involves their (infinite) series expansion, and carefully obtained bounds reminiscent of the “level-k
inequalities” of Lee (2019), to bound the expectation of the nonlinear terms of this expansion.

By invoking Lemma 9, this implies Theorem 4.
Our next two results are lower bounds against a restricted class of public-coin protocols, which

includes the protocol attaining our public-coin upper bounds in Theorem 2. Specifically, recall that
our public-coin upper bound is achieved by (after applying a rotation chosen u.a.r. from the public
randomness) the channel

∀x ∈ Rd,∀y ∈ {−1, 1}`, W (y | x) =
∏̀
i=1

1{yixi ≥ 0} ∈ {0, 1} (10)

i.e., the W (y | ·)’s partition the domain into 2` orthants corresponding to the first ` bits of the sample
x. For this class of public-coin protocols, we can establish the following bounds on the two perturbed
families we consider. For the first, we are able to obtain the following bound:

Lemma 21 (Restricted Lower Bound I) For the channel W ∈ W` given in (10), we have

χ2
(
W | Phs

ε

)
= O

(
ε2`

d

)
.

(Note that this bound is tight, as the distributed mean testing problem restricted to the hide-and-seek
family Phs

ε can be solved with O( d
ε2`

) users.) The proof of this lower bound turns out to be simple,
as we are able to leverage the product structure from (10).
Proof For this particular channel, we can easily and explicitly compute

EX
[
(e−

1
2
ε2eεXj − 1)W (y | X)

]
=

{
1
2`

Erf
(
yjε√

2

)
if j ≤ `,

0 if j > `.

Plugging this in the definition of χ2
(
W | Phs

ε

)
yields, since ∀y EX [W (y | X)] = 2−` for this W ,

χ2
(
W | Phs

ε

)
=

1

d

∑̀
j=1

∑
y∈Y

1

2`
Erf

(
yjε√

2

)
=

1

d

∑̀
j=1

∑
y∈Y

2
π (yjε)

2 + o(ε2)

2`
=

2

π
(1 + o(1)) · `ε

2

d

11
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which concludes the proof.

By considering the second family (the locally perturbed one), we can further show that our
analysis of the protocol of Theorem 2 (which we conjecture to be optimal) cannot be improved upon,
at least in the regime `� d2/3. The proof is deferred to Appendix B in the interest of space.

Lemma 22 (Restricted Lower Bound II) For the channel W ∈ W` given in (10), we have that

χ(2)
(
Wn | P local

ε

)
= O

(
max(n2, n`) · ε

4`

d2

)
.

Indeed, by invoking Lemma 9, this readily implies that using the class of protocol satisfying Eq. (10),
distributed Gaussian mean testing requires n = Ω(d/(ε2

√
`), d2/(ε4`2)) – which matches the bound

from Theorem 2 as long as ` ≤ d2/3/ε4/3.

5. Connections and conjectures

Finally, in this section we provide evidence for our main conjecture (Conjecture 3), and discuss
some of the technical issues that stand in the way of proving it. Although the problem we consider
here is inherently high-dimensional, each user receiving a full d-dimensional vector drawn from
the unknown Gaussian, there are similarities with the univariate, discrete goodness-of-fit problem.
Specifically, in our recent work (Acharya et al., 2018, 2019c), in the same communication-constrained
setting as this paper, we consider the task of testing whether an unknown distribution over a domain
of size k is (i) uniform, or (ii) ε-far from uniform in total variation distance. We show that solving
this problem requires n = Θ(k3/2/(2`ε2)) users for private-coin protocols and n = Θ(k/(

√
2`ε2))

for public-coin ones. There is a striking similarity between these bounds and the ones we obtain
in the current paper where we show upper bounds of n = O(d3/2/(`ε2)) and n = O(d/(

√
`ε2)).

Moreover, the lower bounds in (Acharya et al., 2018) are obtained by using the same framework as
we use here, but with a crucial difference: the perturbations they consider are “linear,” while we use
nonlinear perturbation in our setting.

To further understand the similarity between these two settings, note that in both settings the
underlying protocols work by estimating the `2 norm of a high-dimensional vector: for the mean of
the Gaussian here and for the probability vector of the probability mass function in Acharya et al.
(2018). Note that the private-coin upper bound in this paper has an O(d/ε4) term (for ` = 1) which
does not appear in the univariate setting. This can perhaps be explained by the fact that in our case,
each user gets a d-dimensional sample, which it can use to compute an estimate of the `2 norm of the
target vector. In contast, given a single sample in the univariate case, this is not possible (no unbiased
estimator of the `2 norm of the density function exists). Interestingly, it is not hard to observe that
allowing even two samples per user in the discrete univariate case enables a private-coin protocol6

with n = O(k/ε4) users for ` = 1.
These similarities, along with our (limited) lower bounds (Lemmas 20, 21 and 22, and The-

orem 16) and the seemingly intrinsic ε4/d term which appears in the proof of our lower bound
(see (18)), provide strong evidence in support of Conjecture 3. However, in order to establish these
lower bounds for the distributed Gaussian mean testing problem via our techniques, one would need
an analogue of Lemma 5 for nonlinear integrands, which we have not been able to obtain so far.

6. Specifically, this protocol simply asks that each of the n users sends a bit indicating whether their two independent
samples take the same value, i.e., if they observe a “collision.”
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Appendix A. Omitted proofs: Upper bounds

In this appendix, we provide the missing proofs from Section 3.

A.1. Proof of Theorem 16

Theorem 23 (Theorem 16, restated) Given access only to Z1, . . .Zn, the Gaussian mean testing
problem cannot be solved unless n = Ω(d/ε4), regardless of the value of `.

Proof Let p be the distribution G(0, Id), and q = G(µ, Id), where µ = (ε/
√
d, ε/
√
d, . . . , ε/

√
d).

When Xj ∼ p, then the Zj,i’s are independent standard chi-square random variables with density
(for z > 0)

P (z) =
1√

2Γ(1/2)
e−z/2

1√
z
,

and when Xj ∼ q, then Zj,i’s are independent non-central chi-squared distributions with non-
centrality λ := ε2/d, and therefore have a pdf given by

Q(z) =
1

2
e−(z+λ)/2

( z
λ

)−1/4
I−1/2(

√
λz),

where Iν is the modified Bessel function of the first kind given by Iν(y) = (y/2)ν
∑∞

j=0
(y2/4)j

j!Γ(ν+j+1) .

Let g(y) :=
∑∞

j=0
(y2/4)j

j!Γ(j+1/2) , then Iν(y) = (y/2)νg(y). Substituting y =
√
λz, we obtain

Q(z) =
1

2
e−(z+λ)/2

( z
λ

)−1/4
(

2√
λz

)1/2

g(
√
λz)

=
1√
2
e−z/2e−λ/2

1√
z
g(
√
λz)

= P (z) · e−λ/2g(
√
λz)Γ(1/2).

By the properties of Gamma function, note that Γ(j + 1/2) ≤ Γ(1/2) · j!/2, and Γ(j + 1/2) >
Γ(1/2)(j − 1)!/2, and therefore, we can upper and lower bound the probabilities as follows:

P (z) · e−λ/2
1 +

λz

2
+

∞∑
j=2

2(λz/4)j

j!j!

 ≤ Q(z) ≤ P (z) · e−λ/2
1 +

λz

2
+

∞∑
j=2

2(λz/4)j

j!(j − 1)!

 .

Therefore, the Bhattacharyya parameter B(P,Q) between Q and P can be bounded as∫ ∞
0

dz
√
P (z)Q(z) ≥

∫ ∞
0

dz P (z)

(
e−λ/4

(
1 +

λz

2
+
λ2z2

32

))1/2

. (11)

Recalling that Ep[Zj,i] = 1, we obtain
∫∞

0 dz
√
P (z)Q(z) = (1−Θ(λ2)). By the multiplicativity

of Bhattacharyya parameter, over the n samples, the distribution of Z1, . . . ,Zn under p and q is then

B(p(Z1, . . . ,Zn), q(Z1, . . . ,Zn)) = (1−Θ(λ2))nd. (12)

For the two distributions to be distinguishable, we want this parameter to be bounded away from 1
(i.e., the Hellinger distance bounded away from 0), which to happen requires nd = Ω(λ2); recalling
that λ = ε2/d yields the result.
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Remark 24 We point out that Theorem 16 is reminiscent of the results discussed in (Ingster and
Suslina, 2003, Section 2.4). Specifically, those results apply to the standard setting when there
is no communication constraint, and provide a lower bound for sample complexity of Gaussian
mean testing using algorithms that ignore the signs of the coordinates of the vector: their problem
setting, the Gaussian sequence model, is as follows. The observations are one-dimensional, and the
goal is to determine the radius ε such that a sample X = (X1, . . . , Xn) with independent G(0, µi)
coordinates can be used to solve the hypothesis testing problem of ‖µ‖2 > ε versus µ = 0. One can
invoke (Ingster and Suslina, 2003, Corollary 3.6) to obtain a chi-squared test which uses O(d/ε4)
samples. Our lower bound shows that this is the best one can do with any test that ignores the sign of
the terms; we further note that our lower bound cannot directly be obtained from those results, as the
alternative hypothesis in their setting is a larger class of distributions.

A.2. Proof of Lemma 11

Lemma 25 (Lemma 11, restated) Fix µ ∈ Rd. Let X ∼ G(µ, Id), and Y ∈ {−1, 1}d be defined
by Yi = sgn(Xi) for all i ∈ [d]. Then Y follows a product distribution with mean vector ν ∈ Rd,
such that

• If µ = 0d, then ν = 0d;

• further, ‖ν‖2 ≥ min{‖µ‖2,
√
d/2}/

√
2.

Proof The first part of the statement is immediate, so it suffices to prove the second. Suppose
‖µ‖2 > 0; then, for every i ∈ [d],

E[Yi] = 2 Pr[Yi = 1 ]− 1 = 2 Pr[Xi > 0 ]− 1 = 2 Erfc

(
− 1√

2
µi

)
− 1

and standard results on Erfc ensure that, for every i ∈ [`], E[Yi]
2 ≥ 1

2 min(µ2
i ,

1
2) . From this, we get

‖ν‖22 =
d∑
i=1

E[Yi]
2 ≥ 1

2
min

(
d

2
, ‖µ‖22

)
. (13)

concluding the proof.

Appendix B. Omitted proofs: Lower bounds

In this appendix, we provide the missing proofs from Section 4.

B.1. Proof of Lemma 20

We first restate the lemma, before providing its proof.

Lemma 26 (Lemma 20, restated) For any channel W ∈ W`, and ` ≤
√
d/ε2, we have that

χ2
(
W | P local

ε

)
= O

(
max

(
ε2`

d
,
ε4`2

d

))
.
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Proof Before delving into the proof, we can assume without loss of generality EX [W (y | X)] ≤ 1/4
for all y ∈ Y = {−1, 1}`. This will be useful at the end of the proof; to see why we can make this
assumption, note that by allowing `′ = ` + 2 bits of communication instead of ` (which does not
change the asymptotics of our bounds), we can convert any protocol into one satisfies this assumption.
(Indeed, it suffices for each player to rerandomize uniformly any given message y of the original
protocol among four copies in the new protocol. Each message in the new protocol has therefore
probability at most 1/4 to be sent.)

In view of bounding χ2
(
W | P local

ε

)
in this setting, we observe that, for the perturbed family

P local
ε defined in (8), and since the reference distribution p is the standard Gaussian G(0, Id) we have

for every z ∈ Rd

∀x ∈ Rd, δz(x) =
e−‖x−µz‖

2
2/2

e−‖x‖
2
2/2

− 1 = e−
ε2‖z‖22

2d e
ε√
d
〈x,z〉 − 1 .

For convenience of some of the computations, we will deviate a little from the definition of P local
ε ,

and actually choose the distribution of Z, ζ, to be G(0, Id) instead of uniform on {−1, 1}d. As
mentioned earlier, this does not change the result, but will simplify some of the (already cumbersome)
arguments.7 Further, we hereafter will write γ := ε/

√
d to alleviate notation. Now, we get that, for

all x, x′ ∈ Rd,

EZ
[
δZ(x)δZ(x′)

]
= e−ε

2
EZ
[
eγ〈x+x′,Z〉

]
− e−

ε2

2 EZ
[
eγ〈x,Z〉 + eγ〈x

′,Z〉
]

+ 1 . (14)

Now, since ζ is a standard Gaussian, we can use the fact that for any x ∈ R,

EU∼G(0,1)

[
eαxU−βα

2U2
]

=
e

α2x2

2(1+2βα2)√
1 + 2βα2

(15)

in order to rewrite this as

1+EZ
[
δZ(x)δZ(x′)

]
= e

γ2

2(1+2γ2)‖x+x
′‖22

(1+2γ2)d/2
−
(
e

γ2

2(1+γ2)
‖x‖22

(1+γ2)d/2
+ e

γ2

2(1+γ2)‖x
′‖22

(1+γ2)d/2

)
=

∞∑
k=0

ε2k

2kk!

(
‖x+x′‖22
d(1+2γ2)

− ln(1+2γ2)
γ2

)k
−
∞∑
k=0

ε2k

2kk!

((
‖x‖22

d(1+γ2)
− ln(1+γ2)

γ2

)k
+
(
‖x′‖22
d(1+γ2)

− ln(1+γ2)
γ2

)k)
.

From here, it follows that, for any fixed y ∈ Y , and writing a(x) := W (y | X) for convenience,

EXX′
[
EZ
[
δZ(X)δZ(X ′)

]
a(X)a(X ′)

]
=

∞∑
k=1

ε2k

2kk!
EXX′

[(
‖X+X′‖22
d(1+2γ2)

− ln(1+2γ2)
γ2

)k
a(X)a(X ′)

]

− 2EX [a(X)]
∞∑
k=1

ε2k

2kk!
EX
[(

‖X‖22
d(1+γ2)

− ln(1+γ2)
γ2

)k
a(X)

]
In order to handle this expression, we consider separately the first (linear) term, before bounding the
remaining non-linear ones.

7. Specifically, we lose the convenient fact that ‖Z‖22 = d a.s. for Z uniform on {−1, 1}d; however, we now have a
closed-form expression for some of the expectations, instead of an unwieldy product of cosh.

18



DISTRIBUTED SIGNAL DETECTION UNDER COMMUNICATION CONSTRAINTS

• Upon expanding ‖X +X ′‖22 = ‖X‖22 + ‖X ′‖22 + 2 〈X,X ′〉, the first term (k = 1) is equal to

∆1 = ε2

2 · EXX′
[(

2〈X,X′〉
d(1+2γ2)

+
‖X‖22+‖X′‖22

d

(
1

1+2γ2
− 1

1+γ2

)
+ 2 ln(1+γ2)−ln(1+2γ2)

γ2

)
a(X)a(X ′)

]
= ε2

d(1+2γ2)
EXX′

[〈
X,X ′

〉
a(X)a(X ′)

]
+ ε2

2 EX [a(X)]2 2 ln(1+γ2)−ln(1+2γ2)
γ2

+ ε2

2 ∆(X,X ′)

≤ ε2

d ‖EX [Xa(X)]‖22 + ε4

2dEX [a(X)]2 + ε2

2 ∆(X,X ′)

≤ ε2

d ‖EX [Xa(X)]‖22 + ε4

2dEX [a(X)]2 (16)

where ∆(X,X ′) :=
‖X‖22+‖X′‖22

d

(
1

1+2γ2
− 1

1+γ2

)
≤ 0, and the inequality stems from the fact

that 2 ln(1 + γ2)− ln(1 + 2γ2) ≤ γ4. This leaves us with two terms, the second of which will
be easy to take care of, and the first (‖EX [Xa(X)]‖22) which can handle with Lemma 5.

• On the other hand, we can deal with the terms of degree k ≥ 2 by considering the function
fk : R2d → R given by

fk(x, x
′) :=

(
‖x+x′‖22
d(1+2γ2)

− ln(1+2γ2)
γ2

)k
−
(
‖x‖22

d(1+γ2)
− ln(1+γ2)

γ2

)k
−
(
‖x′‖22
d(1+γ2)

− ln(1+γ2)
γ2

)k
which has degree at most 2k, and b : R2d → [0, 1] given by b(x, x′) := a(x)a(x′), thus getting,
for some absolute constant β > 0,

EXX′
[∣∣fk(X,X ′)∣∣ a(X)a(X ′)

]
≤ βk‖fk‖2 · EXX′

[
b(X,X ′)

]
lnk

e

EXX′ [b(X,X ′)]1/2k

= βk‖fk‖2 · EX [a(X)]2 lnk
e

EX [a(X)]1/k

from an application of a straightforward generalization of level-k-type inequalities (Lee, 2019,
Lemma 10). Putting it together, this leads to

EXX′
[
EZ
[
δZ(X)δZ(X ′)

]
a(X)a(X ′)

]
≤ ε2

d ‖EX [Xa(X)]‖22 + ε2

d EX [a(X)]2 + EX [a(X)]2
∞∑
k=2

βkε2k

2kk!
‖fk‖2 lnk e

EX [a(X)]1/k
(17)

To proceed, of course, it remains to give a bound on ‖fk‖2, which the following lemma (whose
proof is deferred to the end of this appendix) does.

Lemma 27 For k ≥ 2 and fk defined as above, we have ‖fk‖22 . (2C·k)2k

dk
, where C > 0 is

an absolute constant independent of k.

Therefore, absorbing said absolute constant C in the other absolute constant β, (17) then yields

EXX′
[
EZ
[
δZ(X)δZ(X ′)

]
a(X)a(X ′)

]
≤ ε2

d
‖EX [Xa(X)]‖22 + EX [a(X)]2

∞∑
k=2

2kβkε2k

dk/2k!

(
kk + lnk

1

EX [a(X)]

)
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Note that the series
∑∞

k=2
2kβkε2kkk

dk/2k!
converges (for d sufficiently large with respect to some

constant related to β), with
∞∑
k=2

2kβkε2kkk

dk/2k!
= O

(
ε4

d

)
.

In addition, we have

∞∑
k=2

2kβkε2k

dk/2k!

(
ln

1

EX [a(X)]

)k
= e

2β ε
2
√
d

ln(1/E[a(X)]) − 2β
ε2

√
d

ln
1

E[a(X)]
− 1

which “should” behave as ε4

d ln2 1
E[a(X)] (although we cannot immediately conclude this). For

convenience, let φ(x) = ex−x−1 for x ∈ R, so that the above is equal to φ(2β ε2√
d

ln(1/E[a(X)])).

To summarize, so far we have arrived to

χ2
(
W | P local

ε

)
≤ ε2

d

∑
y∈Y

‖EX [XW (y|X)]‖22
EX [W (y|X)] +

∑
y∈Y

EX [W (y | X)] ·O
(
ε4

d

)
+
∑
y∈Y

EX [W (y | X)] · φ
(

2β ε2√
d

ln 1
EX [W (y|X)]

)
.
ε2`

d
+
ε4

d
+
∑
y∈Y

EX [W (y | X)] · φ
(

2β
ε2

√
d

ln
1

EX [W (y | X)]

)
(18)

where the first term follows from Lemma 5 and
∑

y∈Y EX [W (y | X)] log 1
EX [W (y|X)] ≤ `. To

conclude, we turn to the last term; and let τ := 2β ε2√
d
� 1, so that

EX [W (y | X)]φ
(

2β ε2√
d

ln 1
EX [W (y|X)]

)
= EX [W (y | X)]φ(τ ln 1

EX [W (y|X)])

= EX [W (y | X)]1−τ − τEX [W (y | X)] ln
1

EX [W (y | X)]
− EX [W (y | X)]

To conclude, we will finally use our assumption that EX [W (y | X)] ≤ 1/4 for all y ∈ Y . Then,
since for all τ ≤ τ0, where τ0 > 0 is absolute constant, the function x 7→ x1−τ − τx ln 1

x − x is
concave on (0, 1/4), we can bound

∑
y∈Y

EX [W (y | X)] · φ
(
τ ln

1

EX [W (y | X)]

)
≤ |Y|τ − τ ln |Y| − 1 = O

(
ε4`2

d

)

the last equality as ` .
√
d/ε2. Plugging this in Eq. (18), we finally obtain

χ2 (W | Pε) = O

(
ε2`

d
+
ε4`2

d

)
as claimed.

We now provide the last piece, the proof of Lemma 27.
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Proof [Proof of Lemma 27]

‖fk‖22 = EXX′
[
fk(X,X′)2

]
≤ 5EXX′

(‖X +X′‖22
d(1 + 2γ2)

−
ln(1 + 2γ2)

γ2

)2k

+

(
‖X‖22

d(1 + γ2)
−

ln(1 + γ2)

γ2

)2k

+

(
‖X′‖22

d(1 + γ2)
−

ln(1 + γ2)

γ2

)2k


= 5 · 22kEXX′

( 1

d(1 + 2γ2)

∥∥∥∥X +X′
√

2

∥∥∥∥2
2

−
ln(1 + 2γ2)

2γ2

)2k
+ 10EX

( ‖X‖22
d(1 + γ2)

−
ln(1 + γ2)

γ2

)2k


=
5 · 22k

(1 + 2γ2)2k
EXX′

[(
1

d
‖X‖22 −

(1 + 2γ2) ln(1 + 2γ2)

2γ2

)2k
]

+
10

(1 + γ2)2k
EX

[(
1

d
‖X‖22 −

(1 + γ2) ln(1 + γ2)

γ2

)2k
]

≤ 5 · 22kEXX′

[(
1

d
‖X‖22 −

(1 + 2γ2) ln(1 + 2γ2)

2γ2

)2k
]

+ 10EX

[(
1

d
‖X‖22 −

(1 + γ2) ln(1 + γ2)

γ2

)2k
]

≤ 10 · 24kEX

[(
1

d
‖X‖22 − 1

)2k
]

+ 5 · 24k
(

(1 + 2γ2) ln(1 + 2γ2)

2γ2
− 1

)2k

+ 10 · 22k
(

(1 + γ2) ln(1 + γ2)

γ2
− 1

)2k

≤ 10 · 24kEX

[(
1

d
‖X‖22 − 1

)2k
]

+ 15 · 24kγ4k

≤
10 · 22k

d2k
· (C · k

√
d)2k + 15 · (2ε2/d)2k .

(2C · k)2k

dk

for some absolute constant C > 0, using the fact that ‖X‖22 ∼ χ2
d is a subexponential random

variable (see, e.g., (Vershynin, 2018, Section 2) (and in particular Proposition 2.7.1 and Exercise
2.7.10).

B.2. Proof of Lemma 22

We now prove Lemma 22, restated below.

Lemma 28 (Lemma 22, restated) For the channel W ∈ W` given in (10), we have that

χ(2)
(
Wn | P local

ε

)
= O

(
max(n2, n`) · ε

4`

d2

)
.

Proof Our objective is now to bound (5), for which we start by analyzing (part of) (6): since, for a
Rademacher perturbation Z, ‖Z‖22 = d a.s., we get

EX [δZ(X)W (y | X)] = EX
[
(e−

ε2

2 eγ〈X,Z〉 − 1)W (y | X)

]
= −EX [W (y | X)] + e−

ε2

2

∏̀
i=1

EX
[
eγXiZi1{yiXi ≥ 0}

]
·

d∏
i=`+1

EX
[
eγXiZi

]
= −EX [W (y | X)] + e−

ε2

2 ·
∏̀
i=1

e
γ2

2

2

(
1 + Erf

(
γyiZi√

2

))
· e(d−`) γ

2

2

= EX [W (y | X)]

(∏̀
i=1

(
1 + Erf

(
γyiZi√

2

))
− 1

)
.
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again, since EX [W (y | X)] = 2−` for all y ∈ Y , and dγ2 = ε2. Using this expression in (5) gives
us

〈
δWZ , δ

W
Z′
〉

=
∑
y∈Y

EX [W (y | X)]

(∏̀
i=1

(
1 + Erf

(
γyiZi√

2

))
− 1

)(∏̀
i=1

(
1 + Erf

(
γyiZ

′
i√

2

))
− 1

)

This does look a tad unwieldy, but we can expand this and use our assumption that EX [W (y | X)] =
1/2` to get the following, where we take the expectation over a uniformly random y ∈ {−1, 1}` and
use the fact that Erf is an odd function. In what follows, we set γ′ := Erf(γ/

√
2) to avoid cluttering

the equations: since Erf is odd, Erf(αyiZi) = Erf(α)yiZi, so that

〈
δWZ , δ

W
Z′
〉

= Ey

[∏̀
i=1

(
1 + γ′yiZi

) (
1 + γ′yiZ

′
i

)
−
∏̀
i=1

(
1 + γ′yiZi

)
−
∏̀
i=1

(
1 + γ′yiZ

′
i

)
+ 1

]

=
∏̀
i=1

Eyi
[(

1 + γ′yiZi
) (

1 + γ′yiZ
′
i

)]
− 1 =

∏̀
i=1

(
1 + γ′2ZiZ

′
i

)
− 1

≤ eγ′2
∑`
i=1 ZiZ

′
i − 1 =

2

π
γ2
∑̀
i=1

ZiZ
′
i +O(γ4`2) ,

recalling that
∣∣∣∑`

i=1 ZiZ
′
i

∣∣∣ ≤ `, and γ2` ≤ ε2 � 1. From the above, the n-fold induced decoupled

chi-square fluctuation of P local
ε for our choice of Wn ∈ Wn is

χ(2)
(
Wn | P local

ε

)
= logEZZ′

[
exp

(
2

π
nγ2

∑̀
i=1

Z ′iZi

)]
+O

(
nγ4`2

)
≤ 2`n2γ4

π2
+O

(
nγ4`2

)
= O

(
`n2γ4 + nγ4`2

)
= O

(
`n2γ4

)
.

This concludes the proof.

Appendix C. Omitted Proofs: Miscellaneous

We here provide a simple self-contained proof of our measure change bound, restated below:

Lemma 29 (Lemma 5, restated) For X ∼ G(0, Id) and any function a(X),

‖E[a(X)X]‖22
E[a(X)]2

≤ 2
E[a(X) log a(X)]

E[a(X)]
+ 2 log

1

E[a(X)]
.

In particular, for a(X) = 1{X ∈ A}, ‖E[a(X)X]‖22
E[a(X)]2

≤ 2 log 1
P (A) .

Proof By Gibb’s variational principle (which can be proved simply by nonnegativity of KL diver-
gence), for every random variable Z with distribution P and Q� P

λEQ[Z] ≤ logEP
[
eλZ
]

+D(Q‖P ).
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Setting Z = Xi and Q� P as
dQ

dP
=

a(X)

EP [a(X)]
,

we get

λEQ[Xi] ≤ logEP
[
eλXi

]
+D(Qi‖Pi) =

λ2

2
+D(Qi‖Pi),

where we denote by Qi and Pi the marginals of the ith coordinates of X under Q and P , respectively.
In particular, for λ =

√
2D(Qi‖Pi), we get

EQ[Xi] ≤
√

2D(Qi‖Pi),

whereby
EQ[Xi]

2 ≤ 2D(Qi‖Pi).

and upon summing both sides over i,

‖EQ[X]‖22 ≤ 2

d∑
i=1

D(Qi‖Pi) .

Note that the sum on the right-side above is less than

d∑
i=1

EXi−1

[
D
(
QXi|Xi−1‖PXi

)]
= D(Q‖P ) =

EP [a(X) log a(X)]

EP [a(X)]
+ log

1

EP [a(X)]
,

which completes the proof since EQ[X] = EP [a(X)X]
EP [a(X)] .
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